
flavio & smelli

David M. Straub Universe Cluster/TUM, Munich

Comment on WCxf

DsixTools 2.0 vs. WCxf

arXiv:1712.05298:

In principle, WCxf is not necessarily a *file* format but can also be used to directly exchange data structures between programs, bypassing the file system (e.g., in the case of Python this could be a wcxf.WC instance discussed in section 4.2 or simply a dictionary). The rest of this document will use the YAML format in all examples.

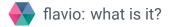
NewInput["SMEFT", {CLQ1[1,1,1,2] -> 1, CH -> -0.5}]

Why not:

1 WCxfInput["SMEFT", "Warsaw up", {"lq1_1112" -> 1, "phi" -> -0.5}]

Outline: smelli & flavio

- Observables: status
- 3 Comments on statistics



2 Observables: status

3 Comments on statistics

4 Tutorials

flavio is a Python (3.5+) package with the following main features:

- General observable calculator (with uncertainties) in terms of WET or SMEFT WCs
- Database of experimental meausurements
- Construction of likelihoods

In addition, it contains

- convenient plotting routines
- interfaces to fitters (MCMC)
- a frequentist likelihood profiler

About

- Docs: https://flav-io.github.io/
- Repo: https://github.com/flav-io/flavio
- Paper: arXiv:1810.08132 (not a manual)
- Main developer: myself, contributions from the community

smelli: what is it?

The **SME**FT Likelihood package is built on top of flavio and provides a **global likelihood** in the space of **SMEFT WCs**. The main motivation for smelli was:

- Providing a consistent set of observables included in the likelihood
- Correct treatment of SM parameters in the presence of D = 6 effects
- Construction of a nuisance-free likelihood
- More informative presentation of results (table of observables with pulls etc.)

About

- Docs: http://smelli.github.io/
- Repo: https://github.com/smelli/smelli
- Paper: arXiv:1810.07698
- Developers: Peter Stangl & myself (authors: Jason Aebischer & Jacky Kumar)

Relation between flavio & smelli

flavio aims to be easy to modify and flexible:

- modify parameters & uncertainties
- change form factor parametrizations etc.
- change experimental measurements used
- General treatment of theory uncertainties, Bayesian or frequentist
- smelli is meant to be less flexible but easier to use:
 - pre-selected set of observables and measurements
 - Default values of parameters & uncertainties
 - self-consistent choice of observables, measurements, and parameters
 - nuisance-free likelihood in WC space

flavio & smelli: master plan

- flavio to include every observable where NP can be expressed in terms of WET or SMEFT WCs and all their experimental measurements
- smelli to become truly global to constrain as many directions in SMEFT WC space as at all possible

4 Tutorials

Observables in flavio v1.5

See https://flav-io.github.io/docs/observables.html

- ▶ *B* physics: $B \to (V, P, X)\ell\ell$, $B \to \ell\ell$, $B \to (V, X)\gamma$, $\Lambda_b \to \Lambda\ell\ell$, $B \to (V, P, X)\ell\nu$, $B \to \ell\nu$, mixing
- *K* physics: $K \to \pi v v$, $K \to \ell \ell$, $K \to \ell v$, $K \to \pi \ell v$, ε_K , $\varepsilon' / \varepsilon$
- *D* physics: $D \rightarrow \ell v$, CPV in mixing
- μ physics: $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e$, μ -e conversion, v trident
- ► τ physics: $\tau \rightarrow 3\ell$, $\tau \rightarrow \ell\gamma$, $\tau \rightarrow (P, V)\ell$, $\tau \rightarrow Vv$, $\tau \rightarrow \ell vv$
- EWPT: All LEP-1 Z and W pole observables
- Dipole moments: $(g 2)_{e,\mu,\tau}$, d_n

Observables in flavio v1.5

See https://flav-io.github.io/docs/observables.html

- ► *B* physics: $B \to (V, P, X)\ell\ell$, $B \to \ell\ell$, $B \to (V, X)\gamma$, $\Lambda_b \to \Lambda\ell\ell$, $B \to (V, P, X)\ell\nu$, $B \to \ell\nu$, mixing
- *K* physics: $K \to \pi v v$, $K \to \ell \ell$, $K \to \ell v$, $K \to \pi \ell v$, ε_K , $\varepsilon' / \varepsilon$
- *D* physics: $D \rightarrow \ell v$, CPV in mixing
- μ physics: $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e$, μ -e conversion, v trident
- ► τ physics: $\tau \rightarrow 3\ell$, $\tau \rightarrow \ell\gamma$, $\tau \rightarrow (P, V)\ell$, $\tau \rightarrow Vv$, $\tau \rightarrow \ell vv$
- EWPT: All LEP-1 Z and W pole observables
- Dipole moments: $(g 2)_{e,\mu,\tau}$, d_n

Work in progress (don't tell anyone):

- Nuclear and neutron β decays A. Falkowski, M. Gonzalez-Alonso, M. Jung, DS
- Higgs production and decay A. Falkowski, M. Spannowsky, DS
- Paramagnetic EDMs
- even more secret stuff

Observables in smelli v1.3

- Every measured observable in flavio that is relevant for SMEFT
- except semi-leptonic charged-current decays since we hadn't yet accounted for NP affecting CKM extractions
- This problem has now been solved thanks to the approach suggested in Descotes-Genon et al. 1812.08163
- A similar approach has been implement in smelli and will be public soon

Future treatment of CKM elements in smelli

- 1. Select 4 input observables
- **2.** Given \vec{C} , extract the 4 parameters of the *true* CKM matrix from these 4 observables, e.g. in the presence of C_{qud} :

$$\mathsf{BR}(B o au \mathbf{v}) \propto |V_{ub} - rac{v^2}{2} C_{\varphi ud}^{23}|^2$$

The true CKM matrix is defined by:

$$M_d^{\text{diag}} = \frac{v}{\sqrt{2}} \left(Y_d - \frac{v^2}{2} C_{d\varphi} \right)$$
$$M_u^{\text{diag}} = \frac{v}{\sqrt{2}} V \left(Y_u - \frac{v^2}{2} C_{u\varphi} \right)$$

V is unitary, but it is not the matrix proportional to the W vertex
3. Use "true" V in all calculations of SM contributions

 \Rightarrow no need to profile/marginalize over CKM parameters

How to add additional observables?

To add an observable, all we need is:

1. The prediction in terms of parameters and SMEFT WCs (any WCxf EFT/basis!):

```
1 def my_obs(par, wc):
2 ...
3 return 1 + wc['phiD'] + ...
```

2. The experimental likelihood/measurement as YAML file:

```
Measurement of my obs:
values:
my_obs: 3 ± 0.2
```


2 Observables: status

4 Tutorials

Flavio likelihoods

The flavio.statistics.likelihood module defines two types of likelihoods:

1. Likelihood

Provides the likelihood as a function of parameters \vec{p} and WCs \vec{C} , optionally including theory constraints L_{th} on them (Bayesian: priors, frequentist: pseudo-measurements)

$$L(\vec{p},\vec{C}) = L_{\text{exp}}(\vec{O}(\vec{p},\vec{C})) \times L_{\text{th}}(\vec{p},\vec{C})$$

where $L_{exp}(\vec{O})$ is a measurement of observables \vec{O}

Flavio likelihoods

The flavio.statistics.likelihood module defines two types of likelihoods:

1. Likelihood

Provides the likelihood as a function of parameters \vec{p} and WCs \vec{C} , optionally including theory constraints L_{th} on them (Bayesian: priors, frequentist: pseudo-measurements)

$$L(\vec{p},\vec{C}) = L_{\text{exp}}(\vec{O}(\vec{p},\vec{C})) \times L_{\text{th}}(\vec{p},\vec{C})$$

where $L_{exp}(\vec{O})$ is a measurement of observables \vec{O}

2. FastLikelihood

Here all measurements are approximated as Gaussian and combined with the correlated theory uncertainties into a pseudo-measurement:

$$\ln L_{\text{pseudo}}(\vec{C}) = -\frac{1}{2} x (\hat{\vec{p}}, \vec{C})^T (C_{\text{exp}} + C_{\text{th}})^{-1} x (\hat{\vec{p}}, \vec{C})$$

where x is the difference between theory predictions and measurements, C_i are the covariances, and $\hat{\vec{p}}$ the central values of the parameters

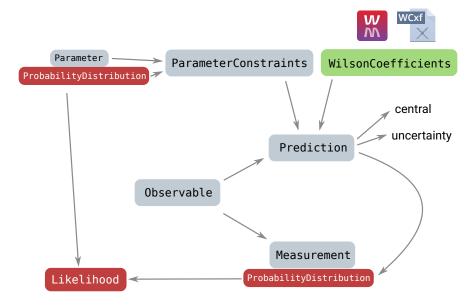
Nuisance-free likelihood in smelli

Problem

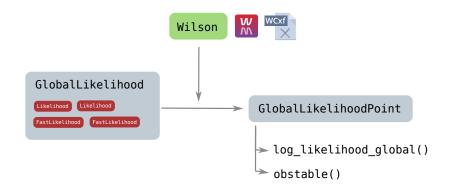
- ► We want a nuisance-free likelihood (avoid costly marginalization/profiling)
- ▶ For $b \rightarrow s\ell\ell$ fits, custom to use FastLikelihood: correlated uncertainties accounted for, NP-dependence of uncertainties smallish
- Sometimes, cannot justify Gaussian approximation. E.g. strongly asymmetric measurements or Poisson upper limits

Solution

- Use FastLikelihood where NP-dependence of uncertainties < exp uncertainties and Gaussian approximation justified
- Use full experimental likelihood but ignore theory uncertainties where justified
- ► Do not include observables where neither approach works (e.g.: neutron EDM)
 - thinking about ways to overcome this limitation, happy about suggestions



2 Observables: status


3 Comments on statistics

flavio: structure of the code

smelli: structure of the code

Tutorials

https://github.com/DavidMStraub/flavio-smelli-mini-tutorials