The SMEFTsim package

Ilaria Brivio

Institut für Theoretische Physik, Universität Heidelberg

feynrules.irmp.ucl.ac.be/wiki/SMEFT

Brivio, Jiang, Trott JHEP 1712 (2017) 070 arXiv: 1709.06492

Outline

- Motivation: global SMEFT analysis @LHC
- What is SMEFTsim?
 - main characteristics
 - some details on the theory implementation
 - some technical specifications
- Validation
- Example of application: $h \rightarrow 4f$
- What's next?

The SMEFT for LHC experiments

lack of direct discoveries so far \rightarrow systematic **indirect searches** needed

SMEFT is the best tool for this!

- reasonably model-independent
- ▶ complete & well-defined \rightarrow long-term, extensible analysis plan \rightarrow combination with other experiments

Most agnostic approach: minimize UV assumptions & arbitrary simplification

- \rightarrow compute with the **full dim. 6 basis**
 - avoids theory inconsistencies / basis dependence
 - allows one-loop improvement, RGE etc
 - provides a universal language
 - requires <u>a dedicated tool</u> for signal generation

→ Mike's talk

The SMEFTsim package

an UFO & FeynRules model with*:

Brivio, Jiang, Trott 1709.06492 feynrules.irmp.ucl.ac.be/wiki/SMEFT

- the complete B-conserving Warsaw basis for 3 generations, including all complex phases and CP terms set up for unitary gauge, fermion mass basis
- 2. automatic field redefinitions to have canonical kinetic terms

→ backup

3. automatic parameter shifts due to the choice of an input parameters set

Main scope:

estimate LO SMEFT effects: uncertainty is
$$\mathcal{O}\left(\frac{v^4}{\Lambda^4}\right) \rightarrow$$
 theo. accuracy $\gtrsim 1\%$

NLO not supported.

when testing a theory:

set of input measurements

SM:

$$\begin{split} & \Gamma(\mu \to e\nu\nu) \to \hat{G}_F(\bar{g}_1, \bar{g}_2, \bar{\nu}) \\ & \hat{m}_Z(\bar{g}_1, \bar{g}_2, \bar{\nu}) \\ & \text{Coulomb potential} \to \hat{\alpha_{\text{em}}}(\bar{g}_1, \bar{g}_2) \\ & \hat{m}_h(\bar{\lambda}, \bar{\nu}) \\ & \hat{m}_f(\bar{y}_f, \bar{\nu}) \\ & \vdots \end{split}$$

when testing a theory:

SM:

invert the relations:

$$\bar{v} = \hat{v}(\hat{G}_F)$$

 $\bar{\lambda} = \hat{\lambda}(\hat{m}_h, \hat{G}_F)$
 $\bar{y}_f = \hat{y}_f(\hat{m}_f, \hat{G}_F)$
 $\bar{g}_1 = \hat{g}_1(\alpha_{em}, \hat{G}_F, \hat{m}_Z)$
 $\bar{g}_2 = \hat{g}_2(\alpha_{em}, \hat{G}_F, \hat{m}_Z)$

when testing a theory:

SM:

analytic calculations Monte Carlo generation

e.g. at LO $\bar{m}_W = \bar{m}_Z \cos \bar{\theta}$

. . .

when testing a theory:

 $\hat{m}_W \stackrel{?}{=} \bar{m}_W$

 \bar{X} = parameter in canonical \mathcal{L} . \hat{X} = parameter inferred from SM relations.

Ilaria Brivio (ITP, Uni Heidelberg) The SMEFTsim package

when testing a theory:

SMEFT:

$$\begin{split} & \Gamma(\mu \to e\nu\nu) \to \hat{G}_F(\bar{g}_1, \bar{g}_2, \bar{\nu}, \mathbf{C}_i) \\ & \hat{m}_Z(\bar{g}_1, \bar{g}_2, \bar{\nu}, \mathbf{C}_i) \\ & \text{Coulomb potential} \to \alpha_{\rm em}^{-}(\bar{g}_1, \bar{g}_2, \mathbf{C}_i) \\ & \hat{m}_h(\bar{\lambda}, \bar{\nu}, \mathbf{C}_i) \\ & \hat{m}_f(\bar{y}_f, \bar{\nu}, \mathbf{C}_i) \\ & \vdots \end{split}$$

when testing a theory:

SMEFT:

invert the relations linearizing the C_i dependence $\bar{v} = \hat{v}(\hat{G}_F) + \delta v$ $\bar{\lambda} = \hat{\lambda}(\hat{m}_h, \hat{G}_F) + \delta \lambda$ $\bar{y}_f = \hat{y}_f(\hat{m}_f, \hat{G}_F) + \delta y_f$ $\bar{g}_1 = \hat{g}_1(\alpha_{em}^c, \hat{G}_F, \hat{m}_Z) + \delta g_1$ $\bar{g}_2 = \hat{g}_2(\alpha_{em}^c, \hat{G}_F, \hat{m}_Z) + \delta g_2$

in a numeric code: convenient to replace $ar{X}
ightarrow \hat{X} + \delta X$ everywhere in $\mathcal L$

Input parameter schemes for the EW sector

 $\{ lpha_{ ext{em}}, \textit{m}_{\textit{Z}}, \textit{G}_{\textit{f}} \}$ scheme

$$\begin{aligned} \alpha_{\rm em}^{\wedge} &= \frac{\bar{g}_{1}\bar{g}_{2}}{\bar{g}_{1}^{2} + \bar{g}_{2}^{2}} \left[1 + \frac{\bar{v}^{2}}{\Lambda^{2}} \frac{\bar{g}_{2}^{3}/\bar{g}_{1}}{\bar{g}_{1}^{2} + \bar{g}_{2}^{2}} C_{HWB} \right] \\ \hat{m}_{Z}^{2} &= \frac{(\bar{g}_{1}^{2} + \bar{g}_{2}^{2})\bar{v}^{2}}{2} + \Delta m_{Z}^{2} \qquad \Delta m_{Z}^{2} = m_{Z}^{2} \frac{\hat{v}^{2}}{\Lambda^{2}} \left[\frac{C_{HD}}{2} + \frac{2\bar{g}_{1}\bar{g}_{2}}{\bar{g}_{1}^{2} + \bar{g}_{2}^{2}} C_{HWB} \right] \\ \hat{G}_{f} &= \frac{1}{\sqrt{2}\bar{v}^{2}} + \Delta G_{F} \qquad \Delta G_{f} = \frac{\hat{v}^{2}}{\sqrt{2}\Lambda^{2}} \left[(C_{HI}^{(3)})_{11} + (C_{HI}^{(3)})_{22} - (C_{II})_{1221} \right] \end{aligned}$$

Ilaria Brivio (ITP, Uni Heidelberg)

Input parameter schemes for the EW sector

$$\{m_W, m_Z, G_f\}$$
 scheme

 \rightsquigarrow Mike's talk

$$egin{aligned} \hat{m}_W &= rac{ar{g}_2^2 ar{v}^2}{2} \ \hat{m}_Z^2 &= rac{(ar{g}_1^2 + ar{g}_2^2) ar{v}^2}{2} + \Delta m_Z^2 \ \hat{G}_f &= rac{1}{\sqrt{2} ar{v}^2} + \Delta G_F \end{aligned}$$

$$\Delta m_{Z}^{2} = m_{Z}^{2} \frac{\hat{v}^{2}}{\Lambda^{2}} \left[\frac{C_{HD}}{2} + 2c_{\hat{\theta}}s_{\hat{\theta}}C_{HWB} \right]$$
$$\Delta G_{f} = \frac{\hat{v}^{2}}{\sqrt{2}\Lambda^{2}} \left[(C_{HI}^{(3)})_{11} + (C_{HI}^{(3)})_{22} - (C_{II})_{1221} \right]$$

 $s_{\hat{ heta}}^2 = 1 - rac{\hat{m}_W^2}{\hat{m}_Z^2}$

$$\begin{split} \delta v &= \frac{\Delta G_F}{G_F} \\ \delta g_1 &= -\frac{1}{2} \left(\sqrt{2} \Delta G_f + \frac{1}{s_{\hat{\theta}}^2} \frac{\Delta m_Z^2}{m_Z^2} \right) \\ \delta g_2 &= -\frac{1}{\sqrt{2}} \Delta G_f \end{split}$$

SMEFTsim – implementations

fevnru	les.irm	n.ucl.ac.be	/wiki	/SMEFT
i cymu	0.5.11	p.uci.uc.bc		

Pre-exported UFO files (include restriction cards)

Standard Model Effective Field Theory – The SMEFTsim package

Authors

wk: SMEFT

Ilaria Brivio, Yun Jiang and Michael Trott

ilaria.brivio@nbi.ku.dk, yunjiang@nbi.ku.dk, michael.trott@cern.ch

NBIA and Discovery Center, Niels Bohr Institute, University of Copenhagen

	Set A		Set B			
	a scheme	m _W scheme	α scheme	m _W scheme		
Flavor general SMEFT	SMEFTsim_A_general_alphaScheme_UFO.tar.gz	SMEFTsim_A_general_MwScheme_UFO.tar.gz	↓SMEFT_alpha_UFO.zip ↓	SMEFT_mW_UF0.zip ↔		
MFV SMEFT	SMEFTsim_A_MFV_alphaScheme_UFO.tar.gz	SMEFTsim_A_MFV_MwScheme_UFO.tar.gz 🕁	SMEFT_alpha_MFV_UFO.zip	SMEFT_mW_MFV_UFO.zip		
U(3) ⁵ SMEFT	SMEFTsim_A_U35_alphaScheme_UFO.tar.gz 🕁	SMEFTsim_A_U35_MwScheme_UFO.tar.gz 🛃	SMEFT_alpha_FLU_UFO.zip	SMEFT_mW_FLU_UFO.zip 🕁		

SMEFTsim - available flavor assumptions

Flavor general

completely general flavor indices:

2499 C_i parameters including all complex phases

SMEFTsim - available flavor assumptions

- Flavor general
- $U(3)^5$ flavor symmetric

assume a flavor symmetry

$$U(3)^5 = U(3)_q \times U(3)_u \times U(3)_d \times U(3)_l \times U(3)_e$$

The Yukawas are the only **spurions** breaking the symmetry:

$$Y_u \mapsto U_u Y_u U_q^{\dagger} \qquad Y_d \mapsto U_d Y_d U_q^{\dagger} \qquad Y_l \mapsto U_e Y_l U_l^{\dagger}$$

▶ only 81 *C_i* parameters (incl. phases)

Examples:

$$\begin{aligned} \mathcal{Q}_{Hu} &= (H^{\dagger}i D_{\mu} H)(\bar{u}_{r}\gamma^{\mu}u_{s}) \delta_{rs} \\ \mathcal{Q}_{eB} &= B_{\mu\nu}(\bar{l}_{r}H\sigma^{\mu\nu}e_{s}) (Y_{l})_{rs} \\ \mathcal{Q}_{ll} &= (\bar{\ell}_{r}\gamma^{\mu}\ell_{s})(\bar{\ell}_{m}\gamma_{\mu}\ell_{n}) \delta_{rs}\delta_{mn} \text{ or } \delta_{rn}\delta_{ms} \to C_{ll}, C_{ll}^{\prime} \end{aligned}$$

SMEFTsim - available flavor assumptions

- Flavor general
- $U(3)^5$ flavor symmetric
- Linear Minimal Flavor Violation

MFV: assume $U(3)^5$ symmetry + CKM only source of \mathcal{L}^{p} $\mathcal{L}_i \in \mathbb{R}$ 129 C_i parameters

- CP odd bosonic operators are absent ($\propto J_{CP} \simeq 10^{-5})$
- ▶ includes the first order in flavor violation expansion. E.g.:

$$\begin{split} \mathcal{Q}_{Hu} &= (H^{\dagger}i \stackrel{\leftrightarrow}{D}_{\mu} H)(\bar{u}_{r}\gamma^{\mu}u_{s}) \left[\mathbbm{1} + (Y_{u}Y_{u}^{\dagger})\right]_{rs} \\ \mathcal{Q}_{Hq}^{(1)} &= (H^{\dagger}i \stackrel{\leftrightarrow}{D}_{\mu} H)(\bar{q}_{r}\gamma^{\mu}q_{s}) \left[\mathbbm{1} + (Y_{u}^{\dagger}Y_{u}) + (Y_{d}^{\dagger}Y_{d})\right]_{rs} \\ & \hookrightarrow \bar{u}_{L}\gamma^{\mu} \left[\mathbbm{1} + Y_{u}^{\dagger}Y_{u} + V_{\rm CKM}Y_{d}^{\dagger}Y_{d}V_{\rm CKM}^{\dagger}\right] u_{L} \\ & + \bar{d}_{L}\gamma^{\mu} \left[\mathbbm{1} + V_{\rm CKM}^{\dagger}Y_{u}^{\dagger}Y_{u}V_{\rm CKM} + Y_{d}^{\dagger}Y_{d}\right] d_{L} \end{split}$$

SMEFTsim - further specifications

- ▶ SM Higgs couplings HGG, $H\gamma\gamma$, $HZ\gamma$ included as effective vertices loop functions $I(m_t, m_W)$ hard coded in the couplings interaction order SMHLOOP associated to these terms
- interaction order NP associated to SMEFT parameters
 → in MG5: impose only 1 op./diagram with NP<=1
 → generate pure interference / quadratic with NP^2==1, 2
- <u>restriction cards</u>: SMlimit, massless, CPconserving, top physics flavor assumptions $(U(2)^5)$, only for general UFO)
- SMEFTsim supports the WCxf exchange format wcxf2smeftsim → param_card.dat

```
Aebischer et al. 1712.05298
https://wcxf.github.io
```

Mathematica notebook for analytic Feynman rules also available!

1. Internal validation: 2 independent versions (A, B)

•		,	-					
proce	ess	coefficient	general α	general Mw	U(3)^5 α	U(3)^5 Mw	MFV α	MFV Mw
e+ e- > 1	W+ W-	SMlimit	2.6156 0.059793	2.6788 0.061373	2.6156 0.059793	2.6788 0.061373	2.6156 0.059793	2.6788 0.061373
e+ e- > w+	w- NP=1	Hl3	-	-	4.3384 0.10296	4.4249 0.094337	4.3384 0.10296	4.4249 0.094337
e+ e- > w+	w- NP=1	Hl311	4.6686 0.098776	4.7797 0.10282	-	-	-	-
e+ e- > w+	w- NP=1	W	4.9648 0.10804	5.06 0.11063	4.9648 0.10804	5.06 0.11063	4.9648 0.10804	5.06 0.11063
e+ e- > w+	w- NP=1	Wtil	4.9895 0.10855	5.0848 0.1111	4.9895 0.10855	5.0848 0.1111	-	-
e+ e- >	> z h	SMlimit	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124
e+ e- > z	h NP=1	eW	-	-	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124
e+ e- > z	h NP=1	eW11	1.9983 0.0050475	0.01302 0.000033124	-	-	-	-
e+ e- > z	h NP=1	He	-	-	1.1756 0.0031	1.1838 0.0031194	1.1756 0.0031	1.1838 0.0031194
e+ e- > z	h NP=1	Hell	1.1756 0.0031	1.1838 0.0031194	-	-	-	-
e+ e- > z	h NP=1	HWB	0.040274 0.00009404	0.036476 0.000084148	0.040274 0.00009404	0.036476	0.040274 0.00009404	0.036476
p p >	d s∼	SMlimit	688390. 11858.	688390. 11858.	688390. 11858.	688390. 11858.	688390. 11858.	688390. 11858.
pp>ds	5~ NP=1	Delta2qd1	-	-	-	-	690240. 9319.7	690240. 9319.7
pp>ds	5~ NP=1	DeltadHq3	-	-	-	-	703760. 9607.7	703760. 9607.7
pp>ds	5~ NP=1	DeltadW	-	-	-	-	690240. 9319.7	690240. 9319.7
pp>ds	5~ NP=1	dW	-	-	690240. 9319.7	690240. 9319.7	-	-
pp>ds	5~ NP=1	dW12	692740. 9950.4	690240. 9319.7	-	-	-	-
pp>ds	5~ NP=1	Hq312	706050. 9205.5	706050. 9205.5	xsec [pb]	MG5 r	esults with	n set A
					err			

σ (SM+int+quadratic) for $C_i = 1$, $\Lambda = 1$ TeV

Ilaria Brivio (ITP, Uni Heidelberg)

1. Internal validation: 2 independent versions 3 flavor assum. × 2 schemes

$\sigma(SM+int+quad)$	dratic) for ($C_i = 1, \Lambda =$	1 TeV		↓ I	\sim	
process	coefficient	general α	general Mw	U(3)^5 α	U(3)^5 Mw	MFV α	MFV Mw
$e+\ e-\ >\ w+\ w-$	SMlimit	2.6156 0.059793	2.6788 0.061373	2.6156 0.059793	2.6788 0.061373	2.6156 0.059793	2.6788 0.061373
$e+\ e-\ >\ w+\ w-\ NP=1$	Hl3	-	-	4.3384 0.10296	4.4249 0.094337	4.3384 0.10296	4.4249 0.094337
$e+\ e-\ >\ w+\ w-\ NP=1$	Hl311	4.6686 0.098776	4.7797 0.10282	-	-	-	-
$e+\ e-\ >\ w+\ w-\ NP=1$	W	4.9648 0.10804	5.06 0.11063	4.9648 0.10804	5.06 0.11063	4.9648 0.10804	5.06 0.11063
$e+\ e-\ >\ w+\ w-\ NP=1$	Wtil	4.9895 0.10855	5.0848 0.1111	4.9895 0.10855	5.0848 0.1111	-	-
$e_{+} e_{-} > z h$	SMlimit	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124
e+~e-~>~z~h~NP=1	eW	-	-	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124
e+~e-~>~z~h~NP=1	eW11	1.9983 0.0050475	0.01302 0.000033124	-	-	-	-
$e+\ e-\ >\ z\ h\ NP=1$	He	-	-	1.1756 0.0031	1.1838 0.0031194	1.1756 0.0031	1.1838 0.0031194
$e+\ e-\ >\ z\ h\ NP=1$	Hell	1.1756 0.0031	1.1838 0.0031194	-	-	-	-
$e+\ e-\ >\ z\ h\ NP=1$	HWB	0.040274 0.00009404	0.036476 0.000084148	0.040274 0.00009404	0.036476 0.000084148	0.040274 0.00009404	0.036476 0.000084148
$p p > d s \sim$	SMlimit	688390. 11858.	688390. 11858.	688390. 11858.	688390. 11858.	688390. 11858.	688390. 11858.
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP=1$	Delta2qd1	-	-	-	-	690240. 9319.7	690240. 9319.7
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP=1$	DeltadHq3	-	-	-	-	703760. 9607.7	703760. 9607.7
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP=1$	DeltadW	-	-	-	-	690240. 9319.7	690240. 9319.7
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP {=} 1$	dW	-	-	690240. 9319.7	690240. 9319.7	-	-
E 10 coeff	".12	692740. 9950.4	690240. 9319.7	-	-	-	-
5-10 COEff.	× 312	706050. 9205.5	706050. 9205.5	xsec [pb]	MG5 r	esults with	set A
~ 20 proces	ises			err	10001		1 300 71

Ilaria Brivio (ITP, Uni Heidelberg)

1. Internal validation: 2 independent versions (A, B)

2. Validation against dim6top

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

_			$pp \rightarrow t\bar{t}$	$pp \rightarrow t\bar{t}b\bar{b}$	$pp \rightarrow t\bar{t} t\bar{t}$	$\rho p \rightarrow t \bar{t} e^+ \nu$	$\rho p \rightarrow t \bar{t} e^+ e^-$	$\rho p \rightarrow t \bar{t} \gamma$	$\rho p \rightarrow t \bar{t} h$	$pp \rightarrow tj$	$\rho p \rightarrow t e^{-p}$	$\rho p \rightarrow t j e^+ e^-$	$\rho p \rightarrow t j \gamma$	$pp \rightarrow tjh$
e	SM	25	$5.2 \times 10^{2} \text{ pb}$	1.9 pb	0.0098 pb	0.02 pb	0.016 pb	1.4 pb	0.4 pb	55 pb	2.5 pb	0.0054 pb	0.39 pb	0.016 pb
=	°00	<qq1< th=""><th>-0.25</th><th>-1.9</th><th>-1×10^{2}</th><th></th><th>-1.6</th><th>-0.67</th><th>-0.71</th><th></th><th></th><th></th><th></th><th></th></qq1<>	-0.25	-1.9	-1×10^{2}		-1.6	-0.67	-0.71					
	equ	cQQS	-0.16	-3.2	-34		-0.91	-0.5	-0.27					
F	¢ģi	cQt1	-0.15	-5.6	1×10^{4}		-0.76	-0.19	-0.55					
÷	eg:	cQt8	-0.053	-1.8	-41		-0.18	-0.095	-0.15					
ā	°ĝs	cQb1	-0.0055	0.72	-0.052		-0.015	-0.007	-0.026					
×	°ĝs	cQb8	0.14	3.9	0.12		0.35	0.16	0.56					
<u> </u>	¢.	ctt1	0.0007		$-1.8 \times 10^{\circ}$			0.000						
_	59	ctol	-0.0095	0.40	-0.059		-0.02	-0.026	-0.039					
~	19	-0+0+1	0.13	3.3	0.11		0.20	0.34	0.30					
~	-9:00	<0+0N8												
.Ψ	- Qiqa	c0+0b11												
L .	-0306	<0+0581												
	- 0:06	-0-83	3.7	0.11	4.7		20		16	-3.4×10^{-15}		-6.4 × 10 ⁻¹⁵	-5.2 × 10 ⁻¹³	-4.1 × 10 ⁻¹⁵
_	-24	ceding	4.7	-0.11	4.1	- 65	-20	0.5						
	°94	cuqui	12	7.1	25	2.6 × 10	/1	40	75					
11	~m	ctqs	15	0.2	21	2.6 × 10	02	51	14					
	·9-	cuus	1.4		10		21	41						
	5	-Ctub	1.4	3	10		17	7.2	45					
<	-94	cigan		2.2	10		12	10						
-	3.1	-0-17				$1.1 - 10^{2}$	22	10	10	-3.8×10^{2}		-7.9×10^{2}	-6.1×10^{2}	-4.6×10^{2}
	29	-0+11	0.01		3.0	5.0								
-	-94	cogin	0.04	-1.4	-1.1	-2.9			3.4					
	-re 1	ctqi	0.65	2.4	-7.9	0.7	0.64	3.7	4.0					
	~q.,	cuui	0.57	1.5	-5.2		1.5	2.9	4.3					
	~~~	-041	0.10	-0.29	-3.6		2.3	3.3	0.0					
1.5	-04	ctd1	-0.37	-1.3	-5		-0.91	-1.3	-2.1					
0	- 100 - 100	cto		-0.00035	-9.1	-0.034	-0.0093		$-1.2 \times 10^{2}$					-68
	÷.,	coQK	-0.063	1	-41	-0.76	$-1 \times 10^{2}$	-0.13	-0.29			21		
~	39	cr03	0.68	22	0.065	0.46	3.7	1.5	1.8	1.2 - 102	1.2 - 102	$2.2 - 10^{2}$	1.2 - 102	1.2 - 102
.0	-44	cpt	-0.024	2.8	42	-0.36	68	-0.058	-0.16	1.4 / 10	1.4 / 10	5.2	1.2 × 10	1.3 × 10
4	Cy cb	cptb												
-	CeW/	ctW	0.98	1	-34	13	1.1	69	9.4	84	-76	45	50	$9.1 \times 10^{2}$
-	C _{TZ}	ctu	-0.54	0.025	21	-0.046	-3.0	-30	-4.5			-10	-0	
>	600	ctG	$2.7 \times 10^{2}$	$2.5 \times 10^{2}$	$3.8 \times 10^{2}$	$2.4 \times 10^{2}$	$3.1 \times 10^{2}$	$2.4 \times 10^{2}$	$8.4 \times 10^{2}$		59			
5	el.	ctpI		$-7.3 \times 10^{-7}$	0.045	-0.00064	-0.00029		0.045					-0.21
0)	Sum	cptbI												
Ý	L.w	ctWI	$4.8 \times 10^{-6}$	0.032	-1.6	-0.19	0.29	0.91	0.031	$1.6 \times 10^{-16}$	-1.4	0.47	0.022	-0.13
6	e17	ctZI	$-1.4 \times 10^{-6}$	0.1	-1.2	0.0098	3.2	-0.56	-0.057			-0.87	0.67	
~	c _{bW}	cbWI												
$\sim$	che	ctGI	-0.00098	0.48	0.66	0.031	-0.7	0.019	-2.4		0.4			
	cQ/	cQ131				0.011	0.06				4.1	6		
<u>+</u>	c_0(1)	cQ1H1				-0.0062	-9.8					2.2		
_	c(1)	cQe1					-1.5					-0.39		
:	(1)	c#11				-0.0023	-3.6					-0.036		
Ľ	_(1)						6.7					0.064		
0	100 March 100						-0.7			-				

Ilaria Brivio (ITP, Uni Heidelberg)

- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

			$pp \rightarrow t\bar{t}$	$pp \rightarrow t\bar{t}b\bar{b}$	$pp \rightarrow t\bar{t} t\bar{t}$	$\rho p \rightarrow t \bar{t} e^+ \nu$	$\rho p \rightarrow t \bar{t} e^+ e^-$	$\rho \rho \rightarrow t \bar{t} \gamma$	$pp \rightarrow t\bar{t} h$	$pp \rightarrow tj$	$pp \rightarrow t e^- p$	$pp \rightarrow tj e^+ e^-$	$\rho p \rightarrow t j \gamma$	$pp \rightarrow tj h$	
<u>_</u>	SM	25	5.2 × 10° pb	1.9 pb	0.0098 pb	0.02 pb	0.016 pb	1.4 pb	0.4 pb	55 pb	2.5 pb	0.0054 pb	0.39 pb	0.016 pb	
=	999	<qq1< th=""><th>-0.25</th><th>-1.9</th><th>-1 × 10⁻</th><th></th><th>-1.0</th><th>-0.67</th><th>-0.71</th><th></th><th></th><th></th><th></th><th></th><th></th></qq1<>	-0.25	-1.9	-1 × 10 ⁻		-1.0	-0.67	-0.71						
	-99	c0+1	-0.15	-5.6	$1 \times 10^{2}$		-0	-0.19	-0.55						
<u> </u>	2	c0+8	-0.053	-1.8	-41		-0.18	-0.095	-0.15					10 +on	pro coccoc
~	el.	cDb1	-0.0055	0.72	-0.052		-0.015	-0.007	-0.026					12 lop	processes
U U	- an	cQb8	0.14	3.9	0.12		0.35	16	0.56						
<u>0</u>	c_1^T	cttl			$-1.8 \times 10^{2}$										
_	c'p	ctbl	-0.0095	0.46	-0.059		-0.02	-0.02	-0.039						
~	÷	ctb8	0.13	3.5	0.11		0.26	0.31	0.56						
~	-grav	CUEUDI -OrChill													
. e	9706	c0+0b1T													
<b>–</b>	-03Q8	cDtObBI													
	- 0308	(0:13	2.7	-0.11	4.7	-85	-20	8.5	15	$4 \times 10^{-15}$		$-6.4 \times 10^{-15}$	$-5.2 \times 10^{-15}$	$-4.1 \times 10^{-15}$	
H	23	cDall1	-												
	294	ctq8		n , +Ŧ			E h h		++++		↓ +∓	+		+++++++++++++++++++++++++++++++++++++++	nn \ +Ŧ.e.
	÷,	cQuB	PI	$p \rightarrow ll$	P	$p \rightarrow u$		$pp \rightarrow$		PP	- 110	ν	$pp \rightarrow$	lle e	$pp \rightarrow t t \gamma$
	-1°	ctul		+ <del>T</del> I	6		+:		+		· +i o ⁻	+		. +i a	nn tih
<	egu	cQdB	PP	$\rightarrow u u$	'	$pp \rightarrow$	IJ	$pp \rightarrow$	Lev	pp ·	$\rightarrow ije$	е	PP	$\rightarrow ij \gamma$	$pp \rightarrow ij n$
-	5.1	ctd8													
	29	-0-11	0.04		3.0	5.0									
-	-04	ctal	0.65	2.4	-7.9	8.7	0.84	3.7	4.8						
	1	cBal	0.57	1.5	-5.2		1.5	2.9	4.3						
	2	ctul	1.1	-0.29	-3.8		2.3	3.3	6.6						
	- Ga	cQd1	-0.19	0.55	-4		-0.66	-0.3	-1.4						
()	cíd	ctdl	-0.37	-1.3	-5		-0.91	-1.3	-2.1						
$\sim$	αφ	ctp		-0.00035	-9.1	-0.034	-0.0093		$-1.2 \times 10^{2}$					-68	
~	649	срФК	-0.063	1	41	-0.76	-1 × 10°	-0.13	-0.29			21			
0	54 Q	cpQ3	0.68	22	0.065	0.46	3.7	1.5	1.8	$1.2 \times 10^{4}$	$1.2 \times 10^{4}$	2.2 × 10*	$1.2 \times 10^{4}$	$1.3 \times 10^{4}$	
Ψ	Euro.	cptb	-0.024	2.0		-0.30		-0.030	-0.10			3.4			
-	COW.	ctW	0.98	1	-34	13	1.1	69	9.4	84	-76	45	50	$9.1 \times 10^{2}$	
$\sim$	c _{tZ}	ctZ	-0.54	0.028	27	-0.048	-3.0	-55	-4.3			-10	-6		
>	enc.	ctG	$2.7 \times 10^{2}$	$2.5 \times 10^{2}$	$3.8 \times 10^{2}$	$2.4 \times 10^{2}$	$3.1 \times 10^{2}$	$2.4 \times 10^{2}$	$8.4 \times 10^{2}$		59				
5	el.	ctpI		$-7.3 \times 10^{-7}$	0.045	-0.00064	-0.00029		0.045					-0.21	
0)	- 1°	cptbI													
$\sim$	ciw	ctWI	$4.8 \times 10^{-6}$	0.032	-1.6	-0.19	0.29	0.91	0.031	$1.6 \times 10^{-16}$	-1.4	0.47	0.022	-0.13	
0	°µ	ctZI	$-1.4 \times 10^{-6}$	0.1	-1.2	0.0098	3.2	-0.56	-0.057			-0.87	0.67		
>	cyw	cbWI	0.00008	0.49	0.66	0.021	0.7	0.010	2.4		0.4				
	- 3(1)	-0131	-0.00046	v.40	v.00	0.031	-0.7	0.019	-2.5		4.1	6			
نب	-Q/ -(1)	-0191				0.0060	0.9					2.2			
Ë	-Q/ -(1)	-Del				-0.0062	-9.8					-0.39			
.=.	6	- qui					-1.5					0.036			
~	- (i) (i)	ctil				-0.0023	-3.6					-0.036			
0	Cre	ctel					-0.7					2.004			

Ilaria Brivio (ITP, Uni Heidelberg)

- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237



Ilaria Brivio (ITP, Uni Heidelberg)

1. Internal validation: 2 independent versions (A, B)

2. Validation against dim6top

feynrules.irmp.ucl.ac.be/wiki/dim6top - G.Durieux,C.Zhang

Top WG note: Aguilar-Saavedra et al. 1802.07237

			$pp \rightarrow t\bar{t}$	$pp \rightarrow t\bar{t}b\bar{b}$	$pp \rightarrow t\bar{t} t\bar{t}$	$pp \rightarrow t\bar{t} e^+ \nu$	$\rho p \rightarrow t\bar{t} e^+ e^-$	$\rho \rho \rightarrow t \bar{t} \gamma$	$pp \rightarrow t\bar{t}h$	$pp \rightarrow tj$	$pp \rightarrow t e^{-}D$	$pp \rightarrow tj e^+$	$e^- \rho p \rightarrow t j$	$\gamma  pp \rightarrow tjh$	
e	SM	25	$5.2 \times 10^2$ pb	1.9 pb	0.0098 pb	0.02 pb	0.016 pb	1.4 pb	0.4 pb	55 pb	2.5 pb	0.0054 pt	o 0.39 pb	0.016 pb	
	500	<001	-0.25	-1.9	$-1 \times 10^{2}$		-1.6	-0.67	-0.71						
	-	c008	-0.16	-3.2	-34		-0.91	-0.5	-0.27						
_	1	c0+1	-0.15	-5.6	$1 \times 10^{2}$		-0.76	-0.19	-0.55						
E	34	-0+5	0.052	1.0	41		0.19	0.005	0.16					10 +	
-	-9:	cqcu	-0.023	- 1.0	0.050		-0.10	-0.093	-0.15						) Drocesses
-	°gu	cups	-0.0055	0.72	-0.052		-0.015	-0.007	-0.026						p. 0 0 000 00
×	°çu	cQb8	0.14	3.9	0.12		0.35	0.16	0.56						
0	¢.	cttl			$-1.8 \times 10^{4}$										
	c _{ip}	ctbl	-0.0095	0.46	-0.059		-0.02	-0.026	-0.039						
~	-2	ctb8	0.13	3.5	0.11		0.26	0.31	0.56						
>	CQ2Q6	cQtQb1													cc
-	<0:0>	cQtQbB												- 50 /	contrainta
	C0100	cQtQb1I												$\sim 300$	
-	en la	cQtQb8I													
•		c0a83	2.7	-0.11	4.7	-85	-20	8.5	15	$-3.4 \times 10^{-15}$		$-6.4 \times 10^{-1}$	-15 -5.2 × 10	-15 -4.1 × 10 ⁻¹⁵	
-	-93	-0-51	12	2.1	76	26 - 102	71	40	75						
	°94	edday	**		2.5	2.0 . 20	**		1.0						
	- <u>r</u> q	ctq8	13	8.2	27	$2.6 \times 10^{-1}$	62	51	74					· . c	
	÷0	cQuB	7.4	4.4	18		21	41	44				hoth.	INTERTE	rence and
	-2	ctu8	7.4	3	16		14	22	45				DOLII	muchic	chec and
-	°Q₄	cQd8	5	3	11		17	7.3	29						
<u> </u>	c ² 64.	ctd8	5	2.1	10		12	10	28						
	c0.4	cQq13	3.3	3	5.8	$1.1 \times 10^{2}$	22	11	18	$-3.8 \times 10^{2}$			au	adratic	Terms
	-T3	cQq11	0.94	-1.4	-7.7	-5.9	-5	3	5.4				94	aaratic	. cermo
	el.	ctal	0.65	2.4	-7.9	8.7	0.84	3.7	4.8						
	1	cBu1	0.57	1.5	-5.2		1.5	2.9	4.3						
	-94		1.1	0.20	2.0		3.9		6.6						
	- P	c041	-0.19	0.55			-0.66	-0.3	-1.4					v	
	-00		0.97	1.2			0.01	1.2	2.1					~~ .	
U U	- tod		-0.31	0.00006		0.024	0.0002	-1.3	-2.1			_	- 12	$00 \perp n$	imborg
-		cop	0.062	-0.00033	-9.1	0.76	1 - 102	0.12	-1.2 × 10					00   11	
~	-80	chen	-0.003			-0.10		-0.13	-0.29						
ō	-Ç-Q	cpQ3	0.68	22	0.065	0.46	3.7	1.5	1.8	$1.2 \times 10^{4}$	$1.2 \times 10^{4}$	2.			
<u>ب</u>	c _y e	cpt	-0.024	2.0	42	-0.35	00	-0.055	-0.10					compa	area
	- 410	cpco ch'	0.09	1	24	12		60	0.4		76				
$\frown$	Corr.	ctZ	-0.54	0.028	27	-0.048	-3.6	-55	-4.3		-70				
_	CNW	cbW													
>	90G	ctG	$2.7 \times 10^{2}$	$2.5 \times 10^{2}$	$3.8 \times 10^{2}$	$2.4 \times 10^{2}$	$3.1 \times 10^{2}$	$2.4 \times 10^{2}$	$8.4 \times 10^{2}$		59				
10	cl.	ctpI		$-7.3 \times 10^{-7}$	0.045	-0.00064	-0.00029		0.045					-0.21	
0)	2	cptbI													
$\sim$	1		$4.8 \times 10^{-6}$	0.032	-1.6	-0.19	0.29	0.91	0.031	$1.6 - 10^{-16}$		0.47	0.032	0.12	
Ь	27	ctZI	$-1.4 \times 10^{-6}$	0.1	-1.2	0.0098	3.2	-0.56	-0.057	1.0 × 10	-1.4	-0.87	0.67	-0.13	
~~	¥.	CNUT													
~	-900	c+61	-0.00098	0.48	0.65	0.031	-0.7	0.019	-2.4		0.4				
-	(1)	(013)				0.011	0.06				4.1	6			
ند	-Q/ -(1)											2.2			
-	-80	Ciganii				-0.0002	-#.0								
	°Q.	cQe1					-1.5					-0.39			
0	c ₁₁ ⁽¹⁾	ct11				-0.0023	-3.6					-0.036			
h	c _{re} ⁽¹⁾	ctel					-6.7					0.064			
<u> </u>															

Ilaria Brivio (ITP, Uni Heidelberg)

- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

3. Validation against VBFNLO

Arnold et al. 0811.4559,1107.4038, Baglio et al 1404.3940 VBSCan Thessaloniki Workshop summary. To appear.

**VBFNLO** has hard coded matrix elements for selected EW processes uses HISZ basis  $\rightarrow$  could validate  $O_{WWW} = \varepsilon_{ijk} W^{i\mu}_{\nu} W^{j\nu}_{\rho} W^{k\rho}_{\mu}$ 

checked:  $pp \rightarrow e^+ \nu_e \mu^+ \mu^-$  and  $pp \rightarrow e^+ \nu_e \mu^+ \nu_\mu jj$ 

LO, compared  $\sigma_{SM}$  + distributions



- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

3. Validation against VBFNLO

Arnold et al. 0811.4559,1107.4038, Baglio et al 1404.3940 VBSCan Thessaloniki Workshop summary. To appear.



Ilaria Brivio (ITP, Uni Heidelberg)

- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang **Top WG note:** Aguilar-Saavedra et al. 1802.07237

3. Validation against VBFNLO

Arnold et al. 0811.4559,1107.4038, Baglio et al 1404.3940 VBSCan Thessaloniki Workshop summary. To appear.

4. Validation against dim6top and SMEFT@NLO using dedicated MadGraph5 plugin

SMEFT MC validation group, CERN-LPCC-XXXX

1. Internal validation: 2 independent versions (A, B)

2. Validation again	st dim6top	feynrules	irmp.u <b>Top \</b>	cl.ac.be/wiki/d <b>WG note:</b> Agui	im6top Iar-Saav	– G.Durieux,C.Zhang vedra et al. 1802.07237
<b>3.</b> Validation again	st VBFNLO	Arnolo	l et al. VBSC	0811.4559,110 Can Thessalonik	7.4038, si Works	Baglio et al 1404.3940 shop summary. To appear.
<b>4.</b> Validation again using dedicated Ma	st dim6top and SM dGraph5 plugin	EFT@N	LO		SMEF CERN	T MC validation group, -LPCC-XXXX
5. Validation again	st analytic expression	ons		Brivio, Trott Sl Brivio, Corbett Brivio, Hays, Tr	MEFT 1 ,Trott, ott,Žem	review 1706.08945 to appear. naitytė, in preparation.
	z > e+ e- w+ > l+ vl h > a a h > b b h > e+ e- mu+ mu- p p > z h / a p p > w+ h 	-/a	z > 1 w+ > h > 2 h > 1 h > 6 g g 2 p p 2	1 u [~] uq dq [~] z a ta+ ta- e+ ve mu- > h > h > w- h	vm	





- only 1 operator insertion / diagram. All corrections linearized.
- pick  $m_W$  as input parameter  $\rightarrow \delta m_W = 0$



- only 1 operator insertion / diagram. All corrections linearized.
- pick  $m_W$  as input parameter  $\rightarrow \delta m_W = 0$

$$\mathsf{Br}(h \to 2\ell 2\nu) = \mathsf{Br}(h \to 2\ell 2\nu)_{SM} \left[ 1 + \frac{\delta\Gamma_{h \to 2\ell 2\nu}}{\Gamma_{h \to 2\ell 2\nu,SM}} - \frac{\delta\Gamma_H}{\Gamma_{H,SM}} \right]$$













estimating 
$$\delta \Gamma_{h \rightarrow e^+ \mu^- \bar{\nu}_\mu \nu_e} / \Gamma_{h \rightarrow e^+ \mu^- \bar{\nu}_\mu \nu_e, SM}$$

1. import model SMEFTsim_A_U35_MwScheme_UFO-massless

estimating 
$$\delta \Gamma_{h \to e^+ \mu^- \bar{\nu}_\mu \nu_e} / \Gamma_{h \to e^+ \mu^- \bar{\nu}_\mu \nu_e, SM}$$





generate h > e+ ve mu- vm~ NP<=1 (NP^2==1)

NP<=1 fixes max 1 op. insertion / diagram

with NP^2==1: interference only

estimating 
$$\delta \Gamma_{h \to e^+ \mu^- \bar{\nu}_\mu \nu_e} / \Gamma_{h \to e^+ \mu^- \bar{\nu}_\mu \nu_e, SM}$$



generate h > e+ ve mu- vm NP<=1 (NP^2==1)

NP<=1 fixes max 1 op. insertion / diagram

with NP^2==1: interference only

3. in the param_card.dat: - set EFT coefficients and  $\Lambda$  - fix W width to SM value

estimating 
$$\delta \Gamma_{h \to e^+ \mu^- \bar{\nu}_\mu \nu_e} / \Gamma_{h \to e^+ \mu^- \bar{\nu}_\mu \nu_e, SM}$$



– fix W width to SM value



estimating 
$$\delta \Gamma_{h \rightarrow e^+ \mu^- \bar{\nu}_\mu \nu_e} / \Gamma_{h \rightarrow e^+ \mu^- \bar{\nu}_\mu \nu_e, SM}$$

- estimate full  $\Gamma(h \rightarrow W^+ \mu^- \bar{\nu}_{\mu})$  in SM limit
- ▶ estimate pure interference contribution with one  $C_i$  turned on (×5 values) → linear interpolation  $x_i + y_i C_i \rightarrow \text{extract } y_i$
- ► estimate full  $\Gamma(h \rightarrow W^+ \mu^- \bar{\nu}_{\mu})$  with one  $C_i$  turned on (×5 values)  $\rightarrow$  quadratic interpolation  $x_i + y_i C_i + z_i C_i^2 \rightarrow$  extract  $y_i$



Ilaria Brivio (ITP, Uni Heidelberg)

estimating 
$$\delta \Gamma_{h \to e^+ \mu^- \bar{\nu}_{\mu} \nu_e} / \Gamma_{h \to e^+ \mu^- \bar{\nu}_{\mu} \nu_e, SM}$$

#### normalization:

 $\bar{C}_i = C_i \left( \frac{v^2}{\Lambda^2} \right)$ 



Ilaria Brivio (ITP, Uni Heidelberg)

estimating 
$$\delta \Gamma_{h \to e^+ \mu^- \bar{\nu}_{\mu} \nu_e} / \Gamma_{h \to e^+ \mu^- \bar{\nu}_{\mu} \nu_e, SM}$$

normalization:

$$\bar{C}_i = C_i \left( \frac{v^2}{\Lambda^2} \right)$$



	theory	MG interf	MG full xs
CHW	-1.48743	-1.48844	-1.48002
CHbox	2.	1.99786	2.00819
CHD	-0.5	-0.499802	-0.495254
CHl3	-3.76422	-3.77082	-3.76292
Cll1	3.	2.99626	2.99819
	y _i /Γ _h from p	$\rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu, SM$ oure interference	$y_i/\Gamma_{h \to e^+ \nu_e \mu^- \bar{\nu}_{\mu}, SM}$ from linearized
			iuli wiath

Ilaria Brivio (ITP, Uni Heidelberg)

estimating 
$$\delta \Gamma_{h \to e^+ \mu^- \bar{\nu}_\mu \nu_e} / \Gamma_{h \to e^+ \mu^- \bar{\nu}_\mu \nu_e, SM}$$

normaliza	ation:			
$\bar{C}_i = C_i$	$\left(\frac{\nu^2}{\Lambda^2}\right)$	validated w	ith theory	two SMEFTsim columns are consistent
		theory	MG interf	MG full xs
	CHW	-1.48743	-1.48844	-1.48002
	CHbox	2.	1.99786	2.00819
	CHD	-0.5	-0.499802	-0.495254
	CHl3	-3.76422	-3.77082	-3.76292
	Cll1	3.	2.99626	2.99819
		y _i /I from	$h \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu$ ,SM pure interference	$y_i/\Gamma_{h\to e^+\nu_e\mu^-\bar{\nu}_\mu,SM}$ from linearized full width

Ilaria Brivio (ITP, Uni Heidelberg)

estimating 
$$\delta \Gamma_{h \to e^+ \mu^- \bar{\nu}_\mu \nu_e} / \Gamma_{h \to e^+ \mu^- \bar{\nu}_\mu \nu_e, SM}$$

normalization:

 $\bar{C}_i = C_i \left( \frac{v^2}{\Lambda^2} \right)$ 

	theory	MG interf	MG full xs
CHW	-1.48743	-1.48844	-1.48002
CHbox	2.	1.99786	2.00819
CHD	-0.5	-0.499802	-0.495254
CHl3	-3.76422	-3.77082	-3.76292
Cll1	3.	2.99626	2.99819

analytic calculation!

Brivio,Corbett,Trott to appear

Ilaria Brivio (ITP, Uni Heidelberg)

# The Higgs width in the SMEFT - analytically

Analytic calculation of the inclusive  $\Gamma_H$  on the way:

Brivio, Corbett, Trott, to appear

- LO in the EFT: up to  $\Lambda^{-2}$ .
- tree level.

SM couplings  $H\gamma\gamma$ ,  $HZ\gamma$ , Hgg included for  $H \rightarrow f\bar{f}\gamma / \gamma\gamma / gg$ .

- Warsaw basis with  $U(3)^5$  flavor symmetry
- EW input scheme:  $\{m_Z, m_W, G_F\}$
- full calculation for  $h \rightarrow 4f$ : narrow width approximation for W, Z avoided

# The Higgs width in the SMEFT - analytically

Analytic calculation of the inclusive  $\Gamma_H$  on the way:

Brivio, Corbett, Trott, to appear

- LO in the EFT: up to  $\Lambda^{-2}$ .
- tree level.

SM couplings  $H\gamma\gamma$ ,  $HZ\gamma$ , Hgg included for  $H \rightarrow f\bar{f}\gamma / \gamma\gamma / gg$ .

- Warsaw basis with  $U(3)^5$  flavor symmetry
- EW input scheme:  $\{m_Z, m_W, G_F\}$
- full calculation for  $h \rightarrow 4f$ : narrow width approximation for W, Z avoided

#### Why analytic?

- allows to separate contributions
- easier to linearize in  $\delta \Gamma_V, \delta m_V$
- $\blacktriangleright$  more stable for the massless fermions case with  $\gamma$  diagrams
- ► calculation can be **automated** once and for all → much faster than running MC every time

# $H \rightarrow 4f$ - analytic calculation

automated with general decomposition:



$$\mathcal{A}\mathcal{A}^{\dagger} \sim g_{HV_1V_2} g_{HV_3V_4} \sum_n \mathcal{T}^{(n)}$$

 $\mathcal{T}^{(n)} = \mathcal{K}^{(n)} \left( g_{L,R}^{ij,V_1}, g_{L,R}^{ij,V_3}, g_{L,R}^{kl,V_2}, g_{L,R}^{kl,V_4} \right) \mathcal{F}^{(n)}_{V_1 V_2 V_3 V_4} \left( p_a, m_a \right), \quad a = \{i, j, k, l\}$ 

F computed for every {V} set.
 numerical integration of phase space: Vegas in Mathematica.
 <u>cross-check</u>: 2 independent parameterizations of phase space, RAMBO.
 agreement w. SMEFTsim to better than 1% in all channels

#### $H \rightarrow 4f$ - results

Example: 
$$H \rightarrow e^+ e^- \mu^+ \mu^ m_i, m_j, m_k, m_l = 0$$
  
$$\frac{\delta \Gamma(H \rightarrow e^+ e^- \mu^+ \mu^-)}{\Gamma_{\rm SM}(H \rightarrow e^+ e^- \mu^+ \mu^-)} = \sum_i a_i \bar{C}_i$$

	$\bar{C}_{HW}$	$\bar{C}_{HB}$	$\bar{C}_{HWB}$	$\bar{C}_{H^{o}}$	$\bar{C}_{HD}$	$ar{C}_{HI}^{(1)}$	$ar{C}_{HI}^{(3)}$	$\bar{C}_{He}$	$ar{C}_{Hq}^{(1)}$	$ar{C}_{Hq}^{(3)}$	Ē _{Hu}	$\bar{C}_{Hd}$	$\bar{C}'_{\prime\prime}$
Z	-0.78	-0.22	0.30	2	0.17	4.38	-1.62	-3.52					3.
А	1.04	-1.08	-0.68										
Е						-2.23	-2.23	1.80					
G			-0.38		0.06	0.15	1.14	0.15	-0.39	-1.34	-0.20	0.15	-0.83
tot	0.26	-1.30	-0.76	2.	0.23	2.30	-2.71	-1.58	-0.39	-1.34	-0.20	0.15	2.17

$$\begin{array}{l} {\sf Z} & {\sf corrections to SM diagram} \\ {\sf A} & \gamma {\sf diagrams} \\ {\sf E} & {\sf contact diagrams (HZee)} \\ {\sf G} & {\sf \delta} \Gamma_Z^{\rm tot}/\Gamma_{Z,SM} {\sf on + off-shell Z} \end{array}$$

Ilaria Brivio (ITP, Uni Heidelberg) The SMEFTsim package

#### $H \rightarrow 4f$ - results

Example: 
$$H \rightarrow e^+ e^- \mu^+ \mu^ m_i, m_j, m_k, m_l = 0$$
  
$$\frac{\delta \Gamma(H \rightarrow e^+ e^- \mu^+ \mu^-)}{\Gamma_{\rm SM}(H \rightarrow e^+ e^- \mu^+ \mu^-)} = \sum_i a_i \bar{C}_i$$

	$\bar{C}_{HW}$	Ē _{HB}	$\bar{C}_{HWB}$	$\bar{C}_{H^{\Box}}$	$\bar{C}_{HD}$	$ar{C}_{HI}^{(1)}$	$ar{C}_{HI}^{(3)}$	$\bar{C}_{He}$	$ar{C}_{Hq}^{(1)}$	$ar{C}_{Hq}^{(3)}$	Ē _{Hu}	$\bar{C}_{Hd}$	$\bar{C}'_{\prime\prime}$
Z	-0.78	-0.22	0.30	2	0.17	4.38	-1.62	-3.52					3.
А	1.04	-1.08	-0.68										
Е						-2.23	-2.23	1.80					
G			-0.38		0.06	0.15	1.14	0.15	-0.39	-1.34	-0.20	0.15	-0.83
tot	0.26	-1.30	-0.76	2.	0.23	2.30	-2.71	-1.58	-0.39	-1.34	-0.20	0.15	2.17

$$\begin{array}{ll} {\sf Z} & {\sf corrections to SM diagram} \\ {\sf A} & \gamma {\sf diagrams} \\ {\sf E} & {\sf contact diagrams (HZee)} \\ {\sf G} & \delta \Gamma_Z^{\rm tot}/\Gamma_{Z,SM} {\sf on + off-shell Z} \end{array}$$

Ilaria Brivio (ITP, Uni Heidelberg) The SMEFTsim package

#### Impact of photon diagrams

main contribution <u>missed</u> in the narrow width approx.

turns out to be a  $\mathcal{O}(1-250)\%$  effect!

		with $\gamma$		without $\gamma$			
	$\bar{C}_{HW}$	Ē _{HB}	Ē _{ΗWB}	$\bar{C}_{HW}$	Ē _{HB}	$\bar{C}_{HWB}$	
$h  ightarrow e^+ e^- \mu^+ \mu^-$	0.26	-1.30	-0.38	-0.77	-0.22	0.30	
$h  ightarrow ar{u} u ar{c} c$	1.45	-2.63	-0.29	-0.77	-0.22	1.33	
$h  ightarrow e^+ e^- \bar{d} d$	0.50	-1.55	-0.37	-0.77	-0.22	0.47	
$h \rightarrow e^+ e^- e^+ e^-$	0.02	-2.28	0.27	-0.76	-0.21	0.44	
$h  ightarrow ar{u} u ar{u} u$	1.39	-2.72	-0.14	-0.76	-0.21	1.19	
$h  ightarrow e^+ e^- \bar{ u}_e  u_e$	-1.49	0.01	-0.06	-1.48	-0.007	-0.07	

# The total Higgs width in the SMEFT

putting together all the main contributions* we obtain

$$\begin{split} \Gamma_{H}^{\text{tot}} &= \Gamma_{H,SM}^{\text{tot}} \left[ 1 + \frac{\delta \Gamma_{H}^{\text{tot}}}{\Gamma_{H,SM}^{\text{tot}}} \right] \\ \Gamma_{H,SM}^{\text{tot}} &= 4.100 \text{ MeV} \\ \frac{\delta \Gamma_{H}^{\text{tot}}}{\Gamma_{H,SM}^{\text{tot}}} &= -1.50 \ C_{HB} - 1.21 \ C_{HW} + 1.21 \ C_{HWB} + 50.6 \ C_{HG} \\ &+ 1.83 \ C_{H^{\Box}} - 0.43 \ C_{HD} + 1.17 \ C_{H}' \\ &- 0.06 \ |C_{uH}| - 1.16 \ |C_{dH}| - 0.13 \ |C_{eH}| \\ &+ 0.002 \ C_{Hq}^{(1)} + 0.06 \ C_{Hq}^{(3)} + 0.001 \ C_{Hu} - 0.0007 \ C_{Hd} \\ &- 0.0009 \ C_{HI}^{(1)} - 2.32 \ C_{HI}^{(3)} - 0.0006 \ C_{He} \end{split}$$

$$*gg + \gamma\gamma + \bar{b}b + \bar{c}c + \tau^{+}\tau^{-} + 4f + \bar{f}f\gamma$$
 PRELIMINARY

Main direction of improvement: optimize for signal generation for LHC

- **new flavor scheme**  $U(2)^5$  to match with top physics
- include vertices with up to 6 legs
- interaction orders for individual operators
- improve treatment of propagator corrections
- more user friendly: public FAQ / manual
- open to suggestions!

# **Backup slides**

#### The Warsaw basis

Gzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

	$X^3$		$\varphi^6$ and $\varphi^4 D^2$	$\psi^2 arphi^3$		
$Q_G$	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	$Q_{arphi}$	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_p u_r \widetilde{arphi})$	
$Q_W$	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left( arphi^{\dagger} D^{\mu} arphi  ight)^{\star} \left( arphi^{\dagger} D_{\mu} arphi  ight)$	$Q_{d\varphi}$	$(arphi^\dagger arphi) (ar q_p d_r arphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$					
	$X^2 \varphi^2$	$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$		
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	$Q_{eW}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{arphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger} \varphi  \widetilde{G}^{A}_{\mu  u} G^{A \mu  u}$	$Q_{eB}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\overline{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
$Q_{\varphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	$Q_{uG}$	$(\bar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{\varphi}  G^A_{\mu u}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{\varphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	$Q_{uW}$	$(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{\varphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	$Q_{uB}$	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{\varphi}  B_{\mu u}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
$Q_{arphi \widetilde{B}}$	$arphi^\dagger arphi  \widetilde{B}_{\mu u} B^{\mu u}$	$Q_{dG}$	$(\bar{q}_p \sigma^{\mu \nu} T^A d_r) \varphi  G^A_{\mu \nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu \nu} B^{\mu \nu}$	$Q_{dW}$	$(\bar{q}_p \sigma^{\mu u} d_r) \tau^I \varphi  W^I_{\mu u}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{\varphi \widetilde{W}B}$	$arphi^\dagger  au^I arphi  \widetilde{W}^I_{\mu u} B^{\mu u}$	$Q_{dB}$	$(\bar{q}_p \sigma^{\mu u} d_r) \varphi  B_{\mu u}$	$Q_{arphi u d}$	$i(\widetilde{arphi}^{\dagger}D_{\mu}arphi)(ar{u}_{p}\gamma^{\mu}d_{r})$	

Ilaria Brivio (ITP, Uni Heidelberg)

#### The Warsaw basis

Gzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

	$(\bar{L}L)(\bar{L}L)$		$(ar{R}R)(ar{R}R)$	$(\bar{L}L)(\bar{R}R)$		
$Q_{ll}$	$(ar{l}_p \gamma_\mu l_r) (ar{l}_s \gamma^\mu l_t)$	$Q_{ee}$	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	$Q_{le}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$	
$Q_{qq}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{q}_s \gamma^\mu q_t)$	$Q_{uu}$	$(ar{u}_p \gamma_\mu u_r)(ar{u}_s \gamma^\mu u_t)$	$Q_{lu}$	$(ar{l}_p \gamma_\mu l_r) (ar{u}_s \gamma^\mu u_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	$Q_{dd}$	$(ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t)$	$Q_{ld}$	$(ar{l}_p \gamma_\mu l_r) (ar{d}_s \gamma^\mu d_t)$	
$Q_{lq}^{(1)}$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	$Q_{eu}$	$(\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t)$	$Q_{qe}$	$(ar{q}_p \gamma_\mu q_r) (ar{e}_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p\gamma_\mu\tau^I l_r)(\bar{q}_s\gamma^\mu\tau^I q_t)$	$Q_{ed}$	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{u}_s \gamma^\mu u_t)$	
		$Q_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{d}_s \gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	B-violating				
$Q_{ledq} = (\bar{l}_p^j e_r) (\bar{d}_s q_t^j)$		$Q_{duq}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^TCu_r^{\beta}\right]\left[(q_s^{\gamma j})^TCl_t^k\right]$			
$Q_{quqd}^{(1)}$	$(ar{q}_p^j u_r) arepsilon_{jk} (ar{q}_s^k d_t)$	$Q_{qqu}$	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(q_p^{lpha j}) ight]$	$^{T}Cq_{r}^{\beta k}$	$\left[ (u_s^{\gamma})^T C e_t \right]$	
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}$	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{lpha}) ight]$	$(j)^T C q_r^{\beta}$	$^{Bk}]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n} ight]$	
$Q_{lequ}^{(1)}$	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$	$Q_{duu}$	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight.$	$Cu_r^{\beta}$	$\left[(u_s^\gamma)^T C e_t ight]$	
$Q_{lequ}^{(3)}$	$(\bar{l}_{p}^{j}\sigma_{\mu u}e_{r})arepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu u}u_{t})$					

Ilaria Brivio (ITP, Uni Heidelberg) The SMEFTsim package

#### Numerical inputs chosen

Input parameters	Value	Ref.	
$\hat{\alpha}_{ew}(m_Z)$		1/127.950	PDG 2016, 1203.5425
$\hat{m}_W$	GeV	$80.365\pm0.016$	TeVatron: 1307.7627
π _Z	GeV	$91.1876 \pm 0.0021$	PDG 2016, hep-ex/0509008,1203.5425
Ĝ _F	${\rm GeV^{-2}}$	$1.1663787(6)\times 10^{-5}$	PDG 2016, 1203.5425
$\hat{m}_h$	GeV	$125.09 \pm 0.21 \pm 0.11$	1503.07589
$\hat{\alpha}_s(m_Z)$	GeV	$0.1185 \pm 0.0011$	PDG 2016
$\hat{m}_e$	GeV	$0.5109989461(31)\times 10^{-3}$	PDG 2016
$\hat{m}_{\mu}$	GeV	$105.6583745(24)\times 10^{-3}$	PDG 2016
$\hat{m}_{ au}$	GeV	$1.77686 \pm 0.00012$	PDG 2016
$\hat{m}_u$	GeV	$2.2^{+0.6}_{-0.4}  imes 10^{-3}$	PDG 2016
$\hat{m}_c$	GeV	$1.28\pm0.03$	PDG 2016
$\hat{m}_t$	GeV	$173.21 \pm 0.51 \pm 0.71$	PDG 2016
$\hat{m}_d$	GeV	$4.7^{+0.5}_{-0.4}\times10^{-3}$	PDG 2016
$\hat{m}_s$	GeV	$0.096\substack{+0.008\\-0.004}$	PDG 2016
$\hat{m}_b$	GeV	$4.18\substack{+0.04\\-0.03}$	PDG 2016
CKM: $\lambda$		0.22506	PDG 2016
A		0.811	PDG 2016
ho		0.124	PDG 2016
$\eta$		0.356	PDG 2016

Ilaria Brivio (ITP, Uni Heidelberg)

#### **Field redefinitions**

#### Gauge bosons

$$\begin{split} \mathcal{L}_{\rm SMEFT} &\supset -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W^{I}_{\mu\nu} W^{I\mu\nu} - \frac{1}{4} G^{a}_{\mu\nu} G^{a\mu\nu} + \\ &+ C_{HB} (H^{\dagger} H) B_{\mu\nu} B^{\mu\nu} + C_{HW} (H^{\dagger} H) W^{I}_{\mu\nu} W^{I\mu\nu} + C_{HWB} (H^{\dagger} \sigma^{I} H) W^{I}_{\mu\nu} B^{\mu\nu} \\ &+ C_{HG} (H^{\dagger} H) G^{a}_{\mu\nu} G^{a\mu\nu} \end{split}$$

#### to have canonically normalized kinetic terms we need to

**1.** redefine fields and couplings keeping  $(gV_{\mu})$  unchanged:

$$\begin{split} \mathcal{B}_{\mu} &\rightarrow \mathcal{B}_{\mu}(1+\mathcal{C}_{HB}v^2) & g_1 \rightarrow g_1(1-\mathcal{C}_{HB}v^2) \\ \mathcal{W}_{\mu}^{I} &\rightarrow \mathcal{W}_{\mu}^{I}(1+\mathcal{C}_{HW}v^2) & g_2 \rightarrow g_2(1-\mathcal{C}_{HW}v^2) \\ \mathcal{G}_{\mu}^{a} \rightarrow \mathcal{G}_{\mu}^{a}(1+\mathcal{C}_{HG}v^2) & g_s \rightarrow g_s(1-\mathcal{C}_{HG}v^2) \end{split}$$

2. correct the rotation to mass eigenstates:

$$\begin{pmatrix} \mathcal{W}_{\mu}^{3} \\ \mathcal{B}_{\mu} \end{pmatrix} = \begin{pmatrix} 1 & -v^{2}C_{HWB}/2 \\ -v^{2}C_{HWB}/2 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix}$$

(equivalent to a shift of the Weinberg angle)

Grinstein, Wise Phys.Lett.B265(1991)326 Alonso, Jenkins, Manohar, Trott 1312.2014

#### Higgs

$$\mathcal{L}_{\text{SMEFT}} \supset \frac{1}{2} D_{\mu} H^{\dagger} D^{\mu} H + C_{H_{\square}} (H^{\dagger} H) (H^{\dagger} \square H) + C_{HD} (H^{\dagger} D_{\mu} H)^{*} (H^{\dagger} D^{\mu} H)$$

to have a canonically normalized kinetic term, in unitary gauge, we need to replace

$$h \rightarrow h \left( 1 + v^2 C_{H_{\Box}} - rac{v^2}{4} C_{HD} 
ight)$$

Grinstein, Wise Phys.Lett.B265(1991)326 Alonso, Jenkins, Manohar, Trott 1312.2014