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Outline

* Reminder: Why are we investigating Silicon
Photonics?

e Reminder: What is Silicon Photonics and how does
it work?

 Testing of radiation resistance of Silicon Photonics
devices

* Next steps
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Radiation resistance of optical links

Current optical links (including newest developments)
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Motivation to investigate Silicon

Photonics
A) VL and VL+ reach their limits with the end of HL-LHC

B) No solution for extreme areas, so far: Cu-links
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C) Because of space restraints in the innermost detector region

<CE/RW) highly integrated links are needed
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What is Silicon Photonics?

* Highly integrated photonics platform:
Silicon Photonics * Filters, lasers, photodetectors,
modulators and electronics grown
or implemented on the same
piece of Silicon

Modulator

from: https://ic.tweakimg.net/ext/i.dsp/1109883395.png



What is Silicon Photonics?

* Highly integrated photonics platform:
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What is Silicon Photonics?

* Highly integrated photonics platform:

Silicon Photonics * Filters, lasers, photodetectors,
modulators and electronics grown
Modulator .
or implemented on the same

piece of Silicon
e Using Silicon On Insulator (SOI)
Wafers

Silicon device layer

Photodetector » : buried oxide (SiO,)

from: https://ic.tweakimg.net/ext/i.dsp/1109883395.png
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Undercut SiPh deViceS-

P. P. Absil et al., “Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/Q’s,” Opt. Express, vol. 23, no. 7, p. 9369, Apr. 2015
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Waveguides — How light travels through
the chip

* Structure similar to optical fibers: waveguide core and waveguide
cladding

* Fundamental principle: total internal reflection

* More accurate description: optical modes
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* The deeper the silicon etch the better the confinement
* Depending on the dimensions different optical modes are guided

CE/RW * Optical communication: preferred to have only the fundamental
7 mode =2 single mode



How is light modulated in Silicon
Photonics?

Signal modulation in Laser based Transmitter:

Modulated optical
intensity
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How is light modulated in Silicon
Photonics?

Signal modulation in Laser based Transmitter:

Modulated optical
intensity

e LN —E—0 (1]
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Signal modulation in SiPh based Transmitter:

Electrical
driver |-_| |_
Modulated optical

Optical intensity intensity

— Optical modulator —bh I_I |—




So far we investigated two modulator
types

Mach-Zehnder-Modulator (MZM)

phase shifter 1

50:50 modulating electrical signal in
splitter

mbi
| constructive interference: Ap =0 destructive interference: A¢p = 1
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Ring Modulator (RM)
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How does a MZM work?
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How does a MZM work?

modulated
optical output
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Silicon photonics a possible alternative
for data transmission?

Advantages:

Compatibility with CMOS electronics (high density integration)
 small footprint
* higher bit rate
* reduced power consumption

- This sounds all very good

?

i

BUT what about radiation
chW hardness???
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First irradiation tests performed

At the beginning focus on MZMs as those where the more
advanced and promising devices at this time
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Imec Silicon Photonlcs test chip
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® 12 modulators: MZM building blocks (deep etch with travelling wave
electrodes), MZM customized designs (deep and shallow etch without
travelling wave electrodes) and a RM building block

®* 3 germanium on silicon photo diodes

® Various passive test components

Cﬁw ® Produced on 200 mm SOI wafers in the IMEC ISIPP25G technology (ePIXfab

MPW)



Improvement of radiation hardness by

design

To experimentally test the influence of design variations 2 customized designs
are produced in 2 doping concentration flavors and are compared
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X-ray irradiation tests of MZMs

15t Influence of Design:
 Slab height — etch depth
* Doping concentration

24 Influence of environment and measurement
parameters:
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Testing of MZMs — Static phase shift
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Planar fiber coupling - Pigtailing

B. Snyder et al, IEEE TRANSACTIONS ON COMPONENTS,
PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 3, NO. 6,
JUNE 2013




Assembled chip
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X-ray test - Deep etch vs. shallow etch
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© The shallower the better the radiation resistance
® The shallower the lower the mode confinement = lower
W modulation efficiency and higher losses



X-ray test - High doping vs. low doping
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Effect of ionizing radiation on Silicon
Photonics

lonizing radiation creates e-h pairs in the rather thick
oxide. This leads to:

A. Hole trapping in deep traps in the oxide close to the
Si/SiO2 interface

B. Buildup of acceptor/donor interface traps
C. Hydrogenation — Passivation of dopants

buried oxide (SiO,)

Si substrate
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Effect of ionizing radiation on Silicon
Photonics

lonizing radiation creates e-h pairs in the rather thick
oxide. This leads to:

A. Hole trapping in deep traps in the oxide close to the
Si/SiO2 interface

B. Buildup of acceptor/donor interface traps
C. Hydrogenation — Passivation of dopants

buried oxide (SiO,)
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Simulation of ionizing radiation effects —
hole density

With increasing irradiation the
concentration of positive
charge close to the interface
increases

Y (um)

X (um)



Simulation of radiation effects — electron
density

eDensity (cm?-3) Density (cm*-3)
eDensity (cm*-

1.034e+02 1.240e+05 1.488e+08 1.786e+11 2.143e+14 2.572e+17 3.086e+20
1.034e+02 1.240e+05 1.488e+08 1.786e+11 2.143e+14 2.572e+17 3.086e+20

Y (um) n - |

X (um)

eDensity (cm*-3)

1.034e+02 1.240e+05 1.487e+08 1.784e+11 2.140e+14 2.568e+17 3.080e+20




What did we learn from the simulation?

* The positive charges trapped close to the interface lead
to an accumulation of electrons and removal of holes
on the p-side

—>Pinch-off in slab region = no modulation possible
anymore

buried oxide (SiO,) pinch-off region

Si substrate

—Both; increasing the doping and the slab height leads
?E/RW to a delay of the pinch-off effect

N



X-ray irradiation tests of MZMs

24 Influence of environment and measurement
parameters:

* Temperature dependence
* Bias dependence
* Post-irradiation and annealing
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Effect of biasing during irradiation

* Reverse bias applied during irradiation—> decreased
radiation resistance
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X-ray test - Bias dependence
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The higher the bias the higher the electric field 2 holes move faster

CE/RW through the oxide towards the interface



Effect of biasing during irradiation

* Forward bias applied after irradiation = device recovery
(annealing)
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Annealing due to forward biasing
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Annealing due to forward biasing

What'’s the reason for the forward bias annealing???

buried oxide (SiO,) pinch-off region

Si substrate



Annealing due to forward biasing

What'’s the reason for the forward bias annealing???

o+ + + + o+ 4 4

buried oxide (SiO,)

++++ +++ ++++
+ + + + +

pinch-off region

Si substrate

In forward bias electrons
are pushed towards the
p-side = they can
tunnel into the oxide
and eliminate trapped
holes

free electrons depletion free holes
®) region D)
n-type S R p-type
@ . o @ e ® 0 o
®
© e o
® o ® e
@ o © ®le © o ©
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forward bias




Effectiveness of annealing

To evaluate the effectiveness of the annealing re-
irradiation tests were performed

A. 1%t irradiation up to device failure

B. Annealing: 10 mA forward current for 24 hrs followed by -3 V
reverse bias for 24 hrs

C. 29 jrradiation at the same conditions as 1stirradiation

CE/RW
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After 1stirradiation annealing with 10 mA forward for 24 hrs
followed by 2" irradiation = same irradiation resistance in both
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Forward bias annealing

* The next question is; is it possible to compensate the
irradiation effects already during irradiation with a
high enough forward bias???

* 2 mA for 1 min every measurement cycle only
showed little influence during irradiation

* New test with 10 mA for 1 min every measurement
cycle

CE/RW
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Conclusion of these results

* Forward bias could be applied in phases where
operation of HEP experiments are paused eg.
shutdowns, technical stops, interfills

* With the possibility of recovery or even compensation
of the radiation effect the necessity of designing
customized devices together with their drawbacks in
functionality is eliminated

e Standard, performance optimized devices offered by
foundries could be used
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Irradiation tests of SiGe Photodiodes

* TOo ensure
photodioc

radiation resistance of a system
es have to be tested as well

e We don’t have a lot of information about the SiGe

photodioc

es on our test chip

—>Testing of a “black box”
—As it is most likely a PIN diode we were worried

about the

intrinsic region in the Germanium

buried oxide (SiO,) buried oxide (SiO,)

i)



dark current [nA]

Irradiation tests of SiGe Photodiodes

Displacement damage:
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Irradiation tests of SiGe Photodiodes

Dark Currant (&)
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What knowledge have we gained from
these tests?

e Good news first:

* The photodiodes are very resistant against displacement
damage and TID

* Modulators are very resistant against displacement
damage

* With increasing the doping concentration and
decreasing the etch depth the radiation resistance can
be increased = a compromise between radiation
resistance and performance has to be found

* Lower temperatures also increase the radiation
resistance

 Damage produced through TID in modulators can be
annealed by forward biasing

CE/RW
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What knowledge have we gained from
these tests?

e Bad news:
e Strong degradation of modulators due to TID
But even if radiation hardness issue could be solved:

* Long MZM arms and high biases are necessary to
achieve good enough phase shift 2 long MZM arms
lead to high losses and with high doping even more -
high input power is necessary

* To operate the MZM in the quadrature point an
additional control circuit is necessary including heaters

—> all these points lead to a high power consumption

CE/RW Could Ring modulators be an alternative???
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Ring resonator

Optical transmission spectrum of the bus
waveguide has notches at the ring
resonances - light coupled into ring

Multiple resonances = FSR depends on the
resonator length (ring diameter) - the
smaller the ring the bigger the FSR

Resonance occurs when the optical path
length is a whole number of wavelengths:

Neffrl
Ares =—2=, m=123..

Resonance wavelength is strongly
dependent on temperature

Ring waveguide
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Ring Modulator (RM)

* Ring resonator structure including a phase shifter

Phase modulation
g section contact

S

—’ —b
Optical in Optical out

buried oxide (Si0,)

Si substrate

-

o

g Resonance wavelengths are shifted

S by applying a reverse voltage to the

§ phase shifter due to change in

§ : refractive index = same effect as in
'_\7 Wavelen;th MZM



Advantages of Ring Modulator?

©Same phase shifter mechanism as MZM—> should have
similar radiation behavior

©More efficient 2 lower driving voltages needed

©Much smaller structure = negligible optical loss and
smaller systems

©Can be used very efficiently in WDM systems = multi
channel integration

©Also from foundry site there are a lot of new
publications in this direction = general interest
Increased

®Disadvantages: resonance wavelength strongly
dependent on temperature and process variations =
for compensation a heater is necessary

* So far we only have one RM without heater
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MZM vs RM
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X-ray test - Ring Modulator

Even without heater we were able to keep the temperature stable

enough to do a online irradiation measurement
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X-ray test - Rlng Modulator

contact

norm. AA / norm phase shift
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Annealing Ring Modulator
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Annealing setp 1: after two days of measurement (no forward bias)

Annealing step 2: 1 min 50 uA forward current
Annealing step 3: 1 min 200 uA forward current
Annealing step 4: 10 min 200 uA forward current



Annealing Ring Modulator
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* No forward bias during irradiation

* Annealing step 0: measurement after 2 month of unbiased storage @ RT
* Annealing setp 1: after two days of measurement (no forward bias)

* Annealing step 2: 1 min 50 uA forward current

/w/ * Annealing step 3: 1 min 200 uA forward current

* Annealing step 4: 10 min 200 uA forward current



High speed response Ring Modulator

Optical Power [mW]
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Optical power, dBm
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RM in Wavelength Division Multiplexing
(WDM) systems

* Due to the big FSR, the possibility of tuning the resonant
frequency and the small size, RM are very attractive for WDM
systems

* RM of varying radii and/or tuned by heater can be cascaded
along a waveguide bus to generate WDM optical modulation

Using of a heater to shift the
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Next steps

* Only a fraction of measurements are done so far

* Right now we are working on a new test chip
» Stronger focus on ring modulators
e Structures on system level
* WDM test structure

* In order to understand the radiation effects better
more intensive focus on the radiation model and
the device simulations is needed
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Tuning of ring modulators - heaters

» Use of resistive structures = nichrome, titanium or doped
silicon = running current through these structures creates
heat

* Most common configuration = heater on top of ring
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Separation between heater and ring to protect optical mode
— not optimal tuning efficiency



