
The NA62 GigaTracker

CERN EP-ESE Electronics Seminars

Mathieu PERRIN-TERRIN on behalf of the GTK Group

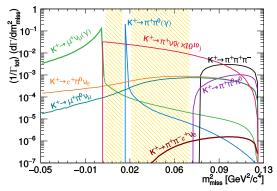
CERN, UCL Louvain, Università/INFN Ferrara, Università/INFN Torino

Outline

The NA62 Experiment

The GigaTracker

- Overview
- Pixel Matrix
- Electro-Mechanical Integration
- Cooling


Performances

- Kinematics
- Time resolution

Full description of the detector in [JINST 14 (2019), p. P07010., arXiv:1904.12837]

The NA62 Experiment: measure $\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ with 10% precision

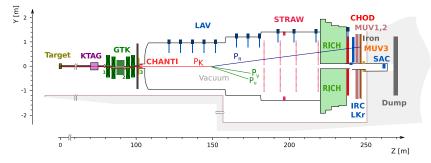
- Probe New Physics at energy scales as high as few 100 TeV
- Experimentally challenging:
 - 2 neutrinos in the final state
 - $\mathcal{B} = (8.4 \pm 1.0) \times 10^{-11}$ in SM
- Kinematics very important to control background, $m_{miss}^2 = |p_K p_\pi|^2$
- Previous dedicated experiments (BNL) used stopped beam

P_n

PK

The NA62 Experiment

The NA62 Experiment [JINST 12.5 (2017), P05025]



Decay in flight technique at CERN-SPS

- Continuous beam 750 MHz (6% K^+ , 24% p, 70% π^+) at 75 GeV/c
- Beam being **not bunched**, all detectors must provide **timing** information
- As K do not decay at rest, \vec{p}_K has to be measured to compute m_{miss}^2 :

A (time resolved) beam spectrometer is needed: the GigaTracker (GTK)

The NA62 Experiment [JINST 12.5 (2017), P05025]

Decay in flight technique at CERN-SPS

- \blacktriangleright Continuous beam 750 MHz (6% $K^+,$ 24% p, 70% $\pi^+)$ at 75 ${\rm GeV/c}$
- Beam being not bunched, all detectors must provide timing information
- As K do not decay at rest, \vec{p}_K has to be measured to compute m_{miss}^2 :

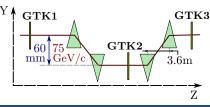
A (time resolved) beam spectrometer is needed: the GigaTracker (GTK)

The NA62 Experiment

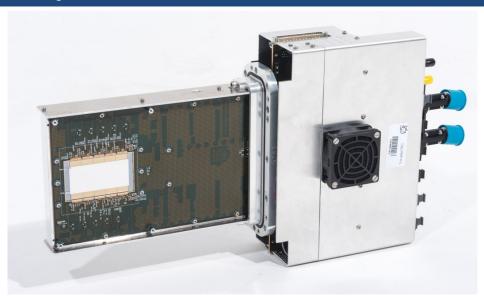
2 The GigaTracker

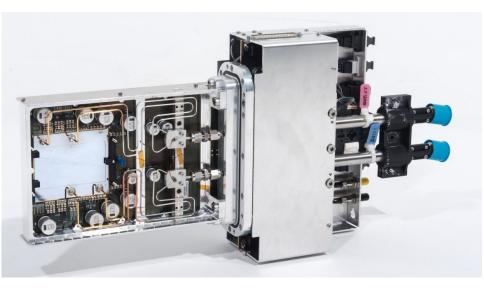
3 Performances

4 Conclusions and Prospects


The GigaTracker (GTK)

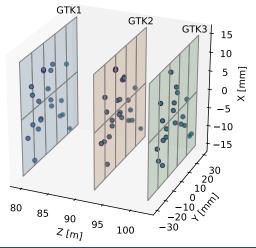
Beam Spectrometer


- Measures momentum, angle and time coordinate of all beam particles
- Sustains high particle flux
- Minimizes material budget

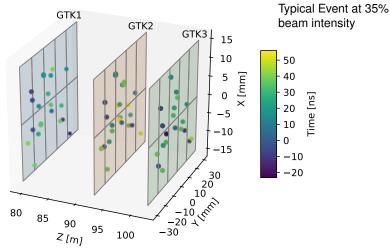

Design

- Three planes of Si hybrid pixels
- ▶ Installed in beam pipe vacuum: 10⁻⁶ mbar
- Replaced after 1 year at full intensity

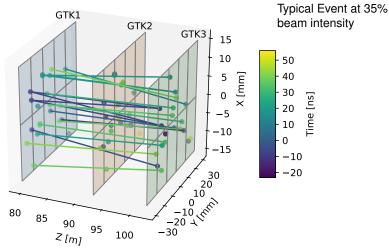
Beam Rate	750 MHz	
Peak Flux	$2.0 \mathrm{MHz}/\mathrm{mm}^2$	
Peak Radiation	4.5×10^{14} 1MeV n _{eq.} /cm ²	
	for 200 days	
Efficiency	99%	
Momentum Resol.	0.2%	
Angular Resol.	16 μrad	
Pixel Time Resol.	< 200 ps RMS	
Material Budget	0.5% X ₀	



The need of timing


- Association with other detectors based on time-stamps
- Minimise material: only three tracking planes despite large occupancy
- Tracking in GTK relies on hit time-stamp (4D Tracking)

Typical Event at 35% beam intensity


The need of timing

- Association with other detectors based on time-stamps
- Minimise material: only three tracking planes despite large occupancy
- Tracking in GTK relies on hit time-stamp (4D Tracking)

The need of timing

- Association with other detectors based on time-stamps
- Minimise material: only three tracking planes despite large occupancy
- Tracking in GTK relies on hit time-stamp (4D Tracking)

The Pixel Matrix

Hybrid Pixels

- $\blacktriangleright~$ 18'000 pixels of 300 $\times~$ 300 μm^2
- Single sensor bonded to 10 chips; enlarged (400 × 300 µm²) pixels at chip edges
- Bump-Bonding: Sn-Ag bumps + deposition of 2 × 3μm of BCB to avoid discharges
- Sensor Type: n-in-p and p-in-n

A Material Budget of $0.5\% X_0$:

- 200 µm of sensor
- 100 µm of asic
- 200 µm of support & cooling (Silicon microchannels)
- Wire bonding outside beam footprint

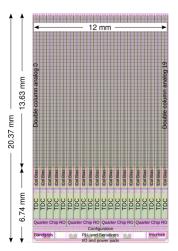
27 mn

The Pixel Matrix

Hybrid Pixels

- $\blacktriangleright~$ 18'000 pixels of 300 $\times~$ 300 μm^2
- Single sensor bonded to 10 chips; enlarged (400 × 300 µm²) pixels at chip edges
- Bump-Bonding: Sn-Ag bumps + deposition of 2 × 3μm of BCB to avoid discharges
- Sensor Type: n-in-p and p-in-n

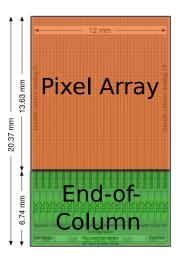
A Material Budget of $0.5\% X_0$:


- 200 µm of sensor
- 100 µm of asic
- 200 µm of support & cooling (Silicon microchannels)
- Wire bonding outside beam footprint

27 mm

60 ml

The TDCPix ASIC


_					
C.	$n \sim c$	sifiz	cat	ion	0
	Dec	51110	Jal	υn	IS I

Time Resol	< 200 ps
TDC bin	97 ps
Peaking Time	5 ns
Peak Dose	15 MRad/y
Max Pixel Hit Rate	180 kHz
Chip Max. Hit Rate	$212 \mathrm{MHz}, 130 \mathrm{MHz}/\mathrm{cm}^2$
Data Ouput Rate	12.8 Gb/s
Power	4.1 W
	4.8 W/cm ² in EoC
	$0.32 \mathrm{W/cm^2}$ in Px Array
Dynamic Range	$0.6 - 10 {\rm fC}$
Efficiency	> 99%

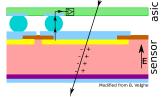
Architecture

IBM 130nm CMOS technology

The TDCPix ASIC

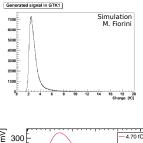
Specifications

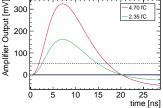
opeenioaliene	
Time Resol	< 200 ps
TDC bin	97 ps
Peaking Time	5 ns
Peak Dose	15 MRad/y
Max Pixel Hit Rate	180 kHz
Chip Max. Hit Rate	$212 \mathrm{MHz}, 130 \mathrm{MHz}/\mathrm{cm}^2$
Data Ouput Rate	12.8 Gb/s
Power	4.1 W
	4.8 W/cm ² in EoC
	0.32 W/cm ² in Px Array
Dynamic Range	0.6 – 10 fC
Efficiency	> 99%


Architecture

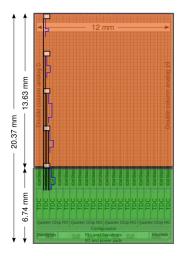
- IBM 130nm CMOS technology
- Digital logic fit in EoC to reduce digital switching noise in pixel array

Pixel Array

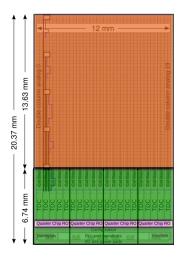

Signal Shaping


 Pre-amplifier (65 mV/fC, peak time: 5 ns) & Discriminator (5 bit DAC trim threshold)

How to reach 200 ps time resolution?


- Sensor over-depleted (100-750 V bias) for fast charge collection (4-2 ns)
- Charge release is stochastic: Landau with Most Prob. Value at 2.4fC
- Time-walk up to 2.2 ns, depends on amplitude: record ToT for TW corrections

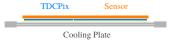
End-Of-Columns: Timing


Time-stamping of rising and falling edges performed at the end-of-columns

- SEU protected by triplicating digital logics
- Digital Signal from pixels are multiplexed (5:1) in 360 time-stamping units
- Collision reduced by grouping non adjacent pixels
- Timing unit locked by first hit and addresses of pile-up hits encoded in hit word
- Time-stamps composed of fine & coarse counters (97 ps & 3.125ns) ranging up to 6.4 µs

End-Of-Columns: Output data

Time-stamping of rising and falling edges performed at the end-of-columns

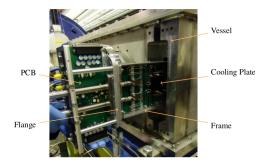


- Hit words are 48 bit long and contain:
 - hit address
 - pile-up hit address
 - leading coarse and fine time
 - ToT coarse and fine time
- Architecture is Self triggered
- All hit are sent out at 12.8 Gb/s with four serialisers
- Frame words are inserted every 6.4 µs to extend time-stamp up to 1718 s

 Detector is glued onto 200 µm silicon micro-channel Cooling Plate

 Detector is glued onto 200 µm silicon micro-channel Cooling Plate

- Detector is glued onto 200 µm silicon micro-channel Cooling Plate
- Cooling Plate is clamped onto PCB (isostatic)


- Detector is glued onto 200 µm silicon micro-channel Cooling Plate
- Cooling Plate is clamped onto PCB (isostatic)
- PCB is mounted into frame and glued in flange

- Detector is glued onto 200 µm silicon micro-channel Cooling Plate
- Cooling Plate is clamped onto PCB (isostatic)
- PCB is mounted into frame and glued in flange
- Flange closes the vacuum vessel
- Fast mounting/dismounting for station replacements

10/12/2019, CERN

Electrical Integration

Wire Bonding

- TDCPix wired bonded to PCB
- Dense bonding scheme with 73 µm pitch on TDCPix
- Power, Clock, Config, Data transmitted

PCB

- 14 layers
- 40 differential 3.2 Gb/s signals over 30cm

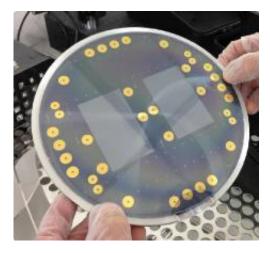
Trigger and Data Acquisition

- Data sent triggerless to 30 DAQ boards called GTK-RO
- Each GTK-RO is connected to one TDCPix through $4 \times 3.2 \, \mathrm{Gb/s}$ links
- GTK-RO installed in surface (no radiation) & connected with 200 m long fibers to the detector
- Triggers and clock received on daugther card
- Trigger matching logic implemented with FPGA Altera Stratix IV GX110
 - DAQ Board buffers data for 1ms..
 - .. and retrieves 75ns slices upon each trigger request

The NA62 GigaTracker

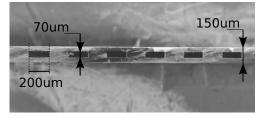
Detector Cooling

Constraints

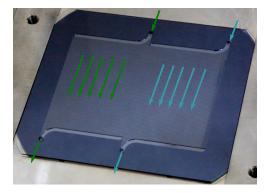

- Physics performances require to minimise material budget
- Detector in vacuum
- ~40W power is dissipated per station

Constraints

- Physics performances require to minimise material budget
- Detector in vacuum
- ~40W power is dissipated per station


Micro-channel cooling matches the constraints

- Etch channels in a 200 350 µm thin Si plate glued on TDCPix
- Circulate coolant (C₆F₁₄) in micro-channels (pressure 3.5 bars, flow 3 g/s, temp. ambient to -15C)
- First implementation in HEP (now also in VELO)



Fabricated by CEA Leti

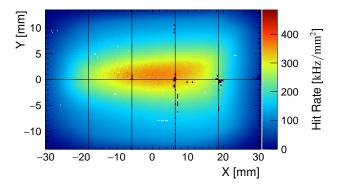
- Fabricated by CEA Leti
- 200 μ m \times 70 μ m channels

- Fabricated by CEA Leti
- 200 μ m \times 70 μ m channels
- Two cooling circuits

- Fabricated by CEA Leti
- 200 μ m \times 70 μ m channels
- Two cooling circuits

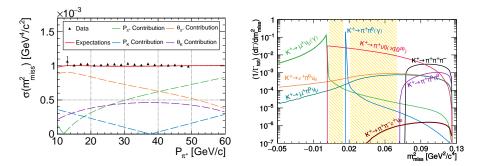
- Fabricated by CEA Leti
- ▶ 200µm× 70µm channels
- Two cooling circuits
- Fluid brought in with capillaries
- Kovar connectors soldered onto cooling plate

The NA62 Experiment


2 The GigaTracker

4 Conclusions and Prospects

GTK fully operational since 2016

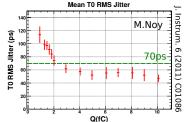

- Fully operational since September 2016
- ▶ Few noisy/dead pixels (< 100 per station) at the end of 2017
- ▶ Beam intensity around 35% (60%) of nominal in 2016 (17)

Kinematics

Kinematics

- Physics performance matches design performance
- ► Resolution of squared missing mass $|p_{K^+} p_{\pi^+}|^2$ of $K^+ \rightarrow \pi^+ \pi^0$

P.,

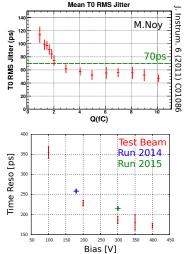

Ρ.,

PK

Early results with TDCPix Demonstrator (p-in-n sensor)

Charge Injection

- Infra-red laser pulse shone at pixel centre
- Sensor bias: 300V
- Time resolution: 70 ps RMS for charged injected equivalent to MIP


Early results with TDCPix Demonstrator (p-in-n sensor)

Charge Injection

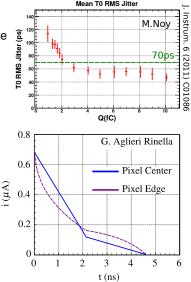
- Infra-red laser pulse shone at pixel centre
- Sensor bias: 300V
- Time resolution: 70 ps RMS for charged injected equivalent to MIP

Beam Test

- π^+ at 10GeV/cat CERN PS in 2012
- Time resolution: 200 ps RMS

Early results with TDCPix Demonstrator (p-in-n sensor)

Charge Injection


- Infra-red laser pulse shone at pixel centre
- Sensor bias: 300V
- Time resolution: 70 ps RMS for charged injected equivalent to MIP

Beam Test

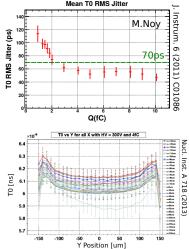
- π^+ at 10GeV/cat CERN PS in 2012
- Time resolution: 200 ps RMS

Difference Beam/Laser

- Weighting field and charge straggling
- Time resol. as function of hit position (Laser, Demonstrator)

Early results with TDCPix Demonstrator (p-in-n sensor)

Charge Injection


- Infra-red laser pulse shone at pixel centre
- Sensor bias: 300V
- Time resolution: 70 ps RMS for charged injected equivalent to MIP

Beam Test

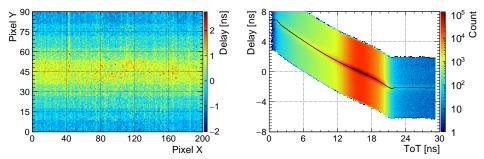
- π^+ at 10GeV/cat CERN PS in 2012
- Time resolution: 200 ps RMS

Difference Beam/Laser

- Weighting field and charge straggling
- Time resol. as function of hit position (Laser, Demonstrator)

Time resolution breakdown

Testing the **TDCPix Demonstrator** with laser and beam, the contributions to the time resolution are:


- 75 ps from the chip
- 85 ps from weighting field variation at pixel edge
- 60 ps charge straggling

Eventually, the GigaTracker showed much better performances...

Time Resolution GigaTracker – Time Calibration

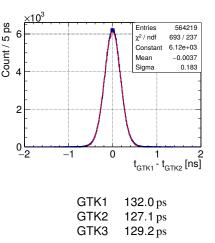
Time corrections

- Individual pixel delay (54k)
- Chip time walk (1 delay per ToT bin)
- Reference time: KTAG (70 ps resolution)

The NA62 GigaTracker

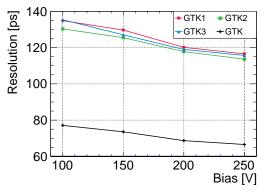
Time Resolution at Sensor bias of 100 V

Conditions


- At detector installation in 2016
- Sensor Type: n-in-p
- Operation bias: 100 V

Two Measurement Methods

- Time difference between GTKs KTAG RICH (σ_t < 100 ps)
- Time difference between the 3 GTK stations

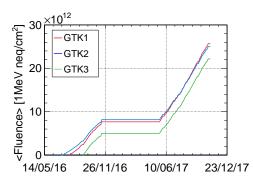

Results

- Hit resolution: 130 ps
- Track resolution: 75 ps
- Design resolution matched

Bias Voltage Scan

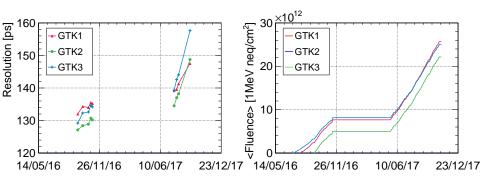
- Data collected at end of 2016 run, with n-in-p sensor
- 65 ps track time resolution at 250 V!

- Weak improvement (15%) of the time resolution from 100 V to 250 V
- Charges collected faster but TDCPix pre-amplifier peaking time is fixed (5 ns) and larger than collection time

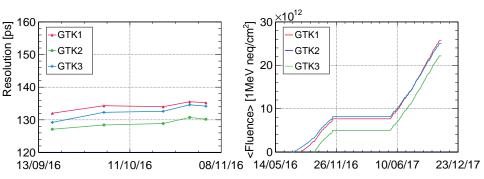

Stability over 2016 and 2017

Conditions

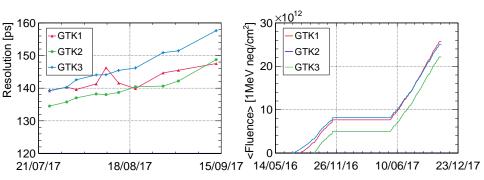
- New detectors installed during the 2016 run
- Dismounted and stored at -25 C between 2016 and 2017 runs
- Re-installed for 2017 run


Irradiation

- Average Integrated Fluence: 2.5 × 10¹³ 1 MeV eq. n/cm²
- Peak Fluence 5 times higher (1.25 × 10¹⁴ 1 MeV eq. n/cm²)

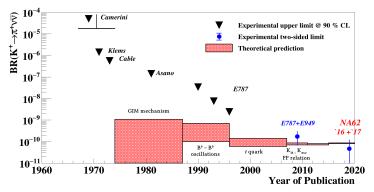

Time Resolution Stability over 2016 and 2017

- Degradation of time resolution of up to 25 ps (20%)
- Performances still better than design ones
- Origin not fully understood as many even occurred over 1.5 year
- Radiation is certainly a degradation factor


Time Resolution Stability over 2016 and 2017

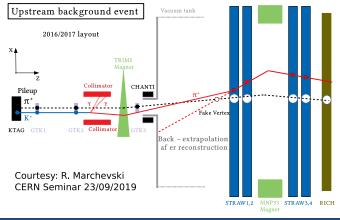
- Degradation of time resolution of up to 25 ps (20%)
- Performances still better than design ones
- Origin not fully understood as many even occurred over 1.5 year
- Radiation is certainly a degradation factor

Time Resolution Stability over 2016 and 2017


- Degradation of time resolution of up to 25 ps (20%)
- Performances still better than design ones
- Origin not fully understood as many even occurred over 1.5 year
- Radiation is certainly a degradation factor

NA62 Physics Results for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

2016 and 2017 NA62 data analysed


- For 2016 analysis, see [Phys. Lett. B 791, 156 (2019)]
- For 2017 analysis, see CERN seminar and press release:
 2 evts observed (expected: 2.16 ± 0.29 SM Signal and 1.5 ± 0.28 Bkg)
- 2016+2017 puts very strong constraints on new physics

Developments for 2021

A fourth station for NA62

- Upstream K decays generate background events
- 4th station will reduce mis-association between up and downstream tracks

The NA62 Experiment

2 The GigaTracker

3 Performances

Conclusions

Summary

- The GigaTracker is the NA62 4D beam tracker and is essential to measure B(K⁺→π⁺νν̄)
- First physics results validate the experiment design and strongly constrain new physics
- The detector is fully operational since 2016
- Excellent time resolution are achieved: 130 ps for single hit, small degradation over time
- Innovative low mass cooling plate with silicon micro-channel was implemented for the first time

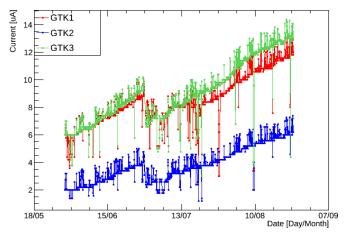
Prospects

- NA62 is preparing to run after LS2 with an additional GTK station
- GTK production keeps going
- More studies needed to better understand time resolution

- Efficiency evaluation is not obvious
- Overall Efficiency is 96%:
- 3% due to GTK-RO: data sent by frame of 6.4 μs. When hit rate is high, hits words are send in the next frame. GTK-RO performs trigger matching on one frame only
- 1 to 1.5% due to the 3 GTK Stations

Noise

- In 2015, intermittent noise (250 kHz) developed on many pixels (max nominal hit pixel rate expected at 140kHz)
- TDCPix X-ray irradiation unable to reproduce it
- Not reproduced either with 2016 detectors
- 3 differences (n-in-p vs p-in-n, BCB, sensor dicing)
- Occurred again in 2018 on one station equipped with p-in-n sensor!
- Cause is not clear, certainly related to sensor type (charge build up)



IV trends

Temperature between -10 and -5 C

Unfortunately large surface current already at the beginning, not easy to interpolate with predictions based on Non Ionising Energy Loss scaling