
25/07/2019 A. Sidoti - HASCO 2019 1 / 58

ROOT Lecture

HASCO Summer School 2019
Antonio Sidoti

Antonio.sidoti@bo.infn.it

Istituto Nazionale Fisica Nucleare – Sezione di Bologna

mailto:Antonio.sidoti@bo.infn.it

25/07/2019 A. Sidoti - HASCO 2019 2 / 58

Question

25/07/2019 A. Sidoti - HASCO 2019 3 / 58

Introduction

Analysis and visualization are fundamental for particle physics
(experimental and not only)
ROOT is the primary tool for data analysis in high energy physics
(not only collider physics)
May be not the reference tool if you are doing detector R&D,
theory/phenomenology, machine learning → Useful to have an
idea on how to use it since at some point you will use it
In different contexts from HEP (e.g. astrophysics) not the tool
used preferentially → many physicists with particle physics
background are going to astroparticle → ROOT is being uses in
that context too!

25/07/2019 A. Sidoti - HASCO 2019 4 / 58

History

For a nice presentation on ROOT history and development look here
https://indico.cern.ch/event/667648/ (also recording)

~mid 70s ~beginning 80s

~1985

https://indico.cern.ch/event/667648/

25/07/2019 A. Sidoti - HASCO 2019 5 / 58

ROOT Application Domains

From Luca Fiorini slides

In modern HEP experiments

25/07/2019 A. Sidoti - HASCO 2019 6 / 58

What is ROOT?

ROOT is a powerful scientic software framework which is...

Likely older than many of you (1994, a quarter of a century
years old) → Current version is 6.18/00 (frequenet updates)

Developed by CERN (mostly the EP-SFT group)

Written in C++, but with interfaces to other languages (python)

Popular enough to have its own wikipedia page (11
languages)

Widely used in particle physics, but also used externally
(finance, astroparticles)

Also a data format tailored to particle physics needs (large I/O)
S

25/07/2019 A. Sidoti - HASCO 2019 7 / 58

What do you do in ROOT?

● Software framework for data processing, storage, analysis and
visualization

→ Translation:
In modern HEP experiments:

● Data (real or simulated) are saved in ROOT format (writing
ntuples)

● Data re processed (reconstructed, calibrated) in ROOT format
(reading/writing ntuples)

● Data are analyzed using ROOT (reading/writing histograms)
● Understand what you have done (plotting histograms)
● Interpreted using ROOT (histogram fitting)

25/07/2019 A. Sidoti - HASCO 2019 8 / 58

How to start ROOT
● After installing/setup root on your system (cf here)

$> root
(but this takes a loooong
time)
$> root -l (much quicker!)
root [0]
$> root -b (disable graphics when plotting → “b” is for batch)
$> root -n (does NOT execute rootlogon.C and rootlogoff.C)
$> root -e ‘myCommand’ → executes myCommand
$> root file1.root → loads file1.root
$> root file1.C [file2.C … fileN.C] → executes macro[s]
$>root -h → help
Some starting options can be combined (e.g -q -b, ….)

https://root.cern.ch/downloading-root

25/07/2019 A. Sidoti - HASCO 2019 9 / 58

Ways to use ROOT

How to interface to ROOT?

1) GUI (Graphical User Interface)

2) Command line → quick checks and studies

CINT (almost C++)

Python prompt (Python)

3) ROOT macros: simple or moderate programs, in C++

4) PyROOT scripts: simple or moderate programs, in python

5) Compiled ROOT: complex or CPU-intensive programs, in C++

25/07/2019 A. Sidoti - HASCO 2019 10 / 58

Question

25/07/2019 A. Sidoti - HASCO 2019 11 / 58

How to interface to ROOT?

1) GUI (Graphical User Interface)

2) Command line → quick checks and studies

CINT (almost C++)

Python prompt (Python)

3) ROOT macros: simple or moderate programs, in C++

4) PyROOT scripts: simple or moderate programs, in python

5) Compiled ROOT: complex or CPU-intensive programs, in C++

25/07/2019 A. Sidoti - HASCO 2019 12 / 58

The C interpreter (CINT/CLING)
CINT/CLING commands start with “.” :
root[0] .q → exit (in case you were wondering how to exit…)
root[0] .qqqq (→ force quit a` la $> kill -9)
root[0] .L myMacro.cpp (load but don’t execute myMacro.cpp)
root[0] .x myMacro.cpp (load and execute)
root[0] .> file1.log (redirects output to log file)
root[0] .help → (other options)
Note: CINT/CLING is not “really C++”. e.g. pointers and values are
treated in the same way (try to do this in C++!)

Shell command starts with “.!” (note, space between prefix and command
is irrelevant)
root[0] .!ls -la (list files in directory)
root[0] .! cd <some directory>

Other commands are “almost” C++ commands (tab completion)
root[0] TBrowser *b = new TBrowser() (end of line “;” is optional)

25/07/2019 A. Sidoti - HASCO 2019 13 / 58

GUI (TBrowser) root[0] new TBrowser

Browse the TFile

TTree

TDirectory

Histogram (THx)

TBranch

25/07/2019 A. Sidoti - HASCO 2019 14 / 58

What you can do with GUI?
Inspect TFile contents

Draw histograms

Drawing branches and display histograms are NOT EQUIVALENT!

Draw TBranch values

You can perform graphical operations (zoom axis, log axis, change color
line/style/width, etc...) 2

25/07/2019 A. Sidoti - HASCO 2019 15 / 58

From W. Kalderon (HASCO 2017) that was inspired from O. Nackenhorst (2016) slides

25/07/2019 A. Sidoti - HASCO 2019 16 / 58

From W. Kalderon (HASCO 2017) that was inspired from O. Nackenhorst (2016) slides

25/07/2019 A. Sidoti - HASCO 2019 17 / 58

TBranches

● This is where the variables you are interested in are stored.

● TBranches can be primitive types

● ROOT supports primitive types are the types that are native to a
language

● You do not need to include any libraries to use them
● They generally have a fixed interpretation
● In C++, the primitive types are very simple:

– Integer numbers: (unsigned) char, short, int, long, long long

– Real numbers: float, double, long double

– Conditions: bool = true" or false" = 1 or 0

25/07/2019 A. Sidoti - HASCO 2019 18 / 58

Primitive Types
To ensure that a type is machine independent (in some machines int are
16 bit whyle in moder ones thay are 32 bits) → Redefinition of primitive
types

Note: you have
char → not strings!

25/07/2019 A. Sidoti - HASCO 2019 19 / 58

Complex types
● You can store vectors (a` la C++) of primary types or custom

classes
● Even strings are complex types→ you can use std::string or

TString (root-specific native)
● And many other derived types you can define

Complex types look like this in
TBrowser
How to access them? → see
later
In that case this is a std::vector

25/07/2019 A. Sidoti - HASCO 2019 20 / 58

Coding Conventions

25/07/2019 A. Sidoti - HASCO 2019 21 / 58

How to interface to ROOT?

1) GUI (Graphical User Interface)

2) Command line → quick checks and studies

CINT/CLING (almost C++)

Python prompt (Python)

3) ROOT macros: simple or moderate programs, in C++

4) PyROOT scripts: simple or moderate programs, in python

5) Compiled ROOT: complex or CPU-intensive programs, in C++

25/07/2019 A. Sidoti - HASCO 2019 22 / 58

Write you CERN user name (if
you have one)

I’ll share with you my jupyter notebooks

25/07/2019 A. Sidoti - HASCO 2019 23 / 58

Examples: CINT/CLING (C++)

CINT/CLING notebook

https://cernbox.cern.ch/index.php/s/IV9T0LSBdN97HeR

25/07/2019 A. Sidoti - HASCO 2019 24 / 58

Histogram binning

From C. Doglioni and A. Andreazza (2012) slides

Beware when you bin integers!

25/07/2019 A. Sidoti - HASCO 2019 25 / 58

More on Style
Default histogram style gives, in general, awful and unreadable histograms.
We have seen how to modify graphical attributes of histograms etc, but we
find long to do that for all the histograms
rootlogon.C in the directory where you launch ROOT is executed when you
start ROOT → use it to set default.
For tomorrow hands download the hascostyle.tgz file and untar it on your
working directory

To add labels etc..
root>.L HascoLabels.C
root> AtlasLabels(0.6,0.7,”My label”)

25/07/2019 A. Sidoti - HASCO 2019 26 / 58

How to interface to ROOT?

1) GUI (Graphical User Interface)

2) Command line → quick checks and studies

CINT/CLING (almost C++)

Python prompt (Python)

3) ROOT macros: simple or moderate programs, in C++

4) PyROOT scripts: simple or moderate programs, in python

5) Compiled ROOT: complex or CPU-intensive programs, in C++

25/07/2019 A. Sidoti - HASCO 2019 27 / 58

Python in 10 (ehm) minutes From xkcd

High level interpreted programming
language
Object-oriented tool
Some people write entire analyses using
pyROOT and derivatives...can be done!
Threats string in a more straightforward way
Useful properties:
Everything is a reference (no pointers...)
Automatic garbage collection (this
sometimes clashes with ROOT's...)
Built-in help and reference listing
Strongly typed
What I don’t like:
Indentation! (you don’t have {} for delimiting
blocks of instructions)

Caution: Two python versions exist: Python 2.x and Python 3
Many of the exercises rely in Python 2.x (2.7) that will NOT be
supported after 2020Comments start with #

https://xkcd.com/353/

25/07/2019 A. Sidoti - HASCO 2019 28 / 58

Standard Data Types
● Numbers
● Int (signed integers)

Long (long integers, also octal and
hex)
Float
Complex

● Strings
● List
● Tuple
● Dictionary

25/07/2019 A. Sidoti - HASCO 2019 29 / 58

Standard Data Types

Tuple

Lists and tuple look
the same.
Main difference:
Tuple CANNOT be
updated !

List

25/07/2019 A. Sidoti - HASCO 2019 30 / 58

Dictionary (Python)
Dictionaries are hash tables (associative arrays). And are composed by
key:values pairs
keys → can be almost any object
Values → any arbitrary Python objects.
e.g. you can have lists of dictionaries, dictionaries of lists, dictionaries of
dictionaries and so on...
Remind that, unlike C++ maps, dictionaris are not ordered !

25/07/2019 A. Sidoti - HASCO 2019 31 / 58

Functions
Functions should be defined BEFORE they are actually called
Arguments are passed by reference

25/07/2019 A. Sidoti - HASCO 2019 32 / 58

Modules and Packages
Having all functions in a single file (file.py) becomes quickly cumbersome
(thousand of lines of code)
Modules: a file (aModule.py) in python code that contains a function (my_func)
that you can call from another file (file.py)

In file aModule.py
def my_func(par):

do something
return

In file file.py
import aModule
aModule.my_func(my_par)

In file file.py
from aModule import my)func
you can also use
from aModule import *
but use WISELY
my_func(my_par)Python looks for aModule.py in:

● current directory
● directories defined in PYTHONPATH env var
● in /usr/local/lib/python

$> ls -la MyPackage
MyPackage/__init__.py
MyPackage/module1.py
MyPackage/module2.py

In file MyPackage/__init__.py
from module1 import Mod1
from module2 import Mod2

In file.py
import MyPackage
MyPackage.Mod1()
MyPackage.Mod2()

Packages: hyerarchical file directory structure that defines a single Python application
environment consisting of modules

25/07/2019 A. Sidoti - HASCO 2019 33 / 58

And this is the way you can use
Python in ROOT
You need to import package ROOT

PyROOT notebook

https://cernbox.cern.ch/index.php/s/to8x36Zc0S8rHMf
https://cernbox.cern.ch/index.php/s/to8x36Zc0S8rHMf

25/07/2019 A. Sidoti - HASCO 2019 34 / 58

How to interface to ROOT?

1) GUI (Graphical User Interface)

2) Command line → quick checks and studies

CINT/CLING (almost C++)

Python prompt (Python)

3) ROOT macros: simple or moderate complexity programs, in C++

4) PyROOT scripts: simple or moderate programs, in python

5) Compiled ROOT: complex or CPU-intensive programs, in C++

25/07/2019 A. Sidoti - HASCO 2019 35 / 58

Macros

Anonymous macros example:

execute with:
root> .x
scripts/UnNamedMacro.cpp

Named Macros

execute with:
root> .L scripts/NamedMacro.cpp
root> NamedMacro(“lep_pt[1]>>h1")

But you can still use it as an anomymous macro
root> .x scripts/NamedMacro.cpp(“lep_pt[1]>>h1")

Pass argument

25/07/2019 A. Sidoti - HASCO 2019 36 / 58

How to interface to ROOT?

1) GUI (Graphical User Interface)

2) Command line → quick checks and studies

CINT/CLING (almost C++)

Python prompt (Python)

3) ROOT macros: simple or moderate complexity programs, in C++

4) PyROOT scripts: simple or moderate programs, in python

5) Compiled ROOT: complex or CPU-intensive programs, in C++

25/07/2019 A. Sidoti - HASCO 2019 37 / 58

PyROOT Macros
Not very different from executing from command prompt.

$> python scripts/PyRootLoopTree.py 20
Passing argument to script

In principle you can compile also python scripts through py_compile
module but it doesn’t speed up things since Python compiles internally
if it’s convenient

25/07/2019 A. Sidoti - HASCO 2019 38 / 58

How to interface to ROOT?

1) GUI (Graphical User Interface)

2) Command line → quick checks and studies

CINT/CLING (almost C++)

Python prompt (Python)

3) ROOT macros: simple or moderate complexity programs, in C++

4) PyROOT scripts: simple or moderate programs, in python

5) Compiled ROOT: complex or CPU-intensive programs, in C++

25/07/2019 A. Sidoti - HASCO 2019 39 / 58

Compiled Macro
Let’s try to compile the macro with AClic A bunch of errors !

.L macroname++ → Forces recompilation
When running compiled macro is faster !

Include headers!

25/07/2019 A. Sidoti - HASCO 2019 40 / 58

Compiled Macros

You can load your shared library without recompiling
root[0] gSystem→Load("scripts/NamedMacroCompiled_cpp.so")
root[1] NamedMacroCompiled("lep_pt[1]>>h1")

Produced files

25/07/2019 A. Sidoti - HASCO 2019 41 / 58

MakeClass
Remember our example to loop on ROOT-tuple event?
→ You have to figure out which variables are in the ntuple →
tedious/long/and error prone

TTree::MakeClass builds a skeleton
code for you

$>root -l data/mc_147771.Zmumu.root
root[0] mini->MakeClass("MyMini")
Info in <TTreePlayer::MakeClass>:
Files: MyMini.h and MyMini.C generated
from
TTree: mini

25/07/2019 A. Sidoti - HASCO 2019 42 / 58

Snippet of MyMini.h (it’s a class)
Snippet of MyMini.C

Control the Loop()
Here you are accessing the events.

Here goes the stuff you need
Histogram declaration TH1F *h1;
Function declaration
Output file declaration

Here instantiate the histograms
Open the output file etc...

Note! There is no main() !

25/07/2019 A. Sidoti - HASCO 2019 43 / 58

How to Use it?

1) Compile with AcliC (from root command line). RECOMENDED

Root> .L MyMini.C+

Root> MyMini my_ana

Root> my_ana.Loop()

2) Makefile (obsolete) → but will show it

3) cmake (new default) → Will not show it (far from being an expert)

25/07/2019 A. Sidoti - HASCO 2019 44 / 58

Makefile
1) Implement a file (main.cc) with main() that will call the code you’ve
implemented with MakeClass

2) Write a Makefile
Root commands to determine flags and libraries for compiler

3) Execute witn $> ./main

Makefile/cmake starts to become useful if you are
developing a large project with many source files
etc.

25/07/2019 A. Sidoti - HASCO 2019 45 / 58

MakeSelector
Another possibility is to create a Selector

Following slides are from C. Doglioni and A. Andreazza 2012 HASCO Slides

25/07/2019 A. Sidoti - HASCO 2019 46 / 58

25/07/2019 A. Sidoti - HASCO 2019 47 / 58

25/07/2019 A. Sidoti - HASCO 2019 48 / 58

25/07/2019 A. Sidoti - HASCO 2019 49 / 58

25/07/2019 A. Sidoti - HASCO 2019 50 / 58

25/07/2019 A. Sidoti - HASCO 2019 51 / 58

TODO

That’s almost all you need to
know for tomorrow’s hands on

(after social dinner...)

25/07/2019 A. Sidoti - HASCO 2019 52 / 58

References

● Notebook folders

https://cernbox.cern.ch/index.php/s/oTRjgmouHr9Lf4a password:

hasco2019

● Python Crash Course

https://github.com/MrAlex6204/Books/blob/master/python-crash-course.pdf

● Root tutorials at previous HASCO editions

● Root forum (was roottalk in the past)

● Root web site http://www.root.cern.ch/

https://cernbox.cern.ch/index.php/s/oTRjgmouHr9Lf4a
https://github.com/MrAlex6204/Books/blob/master/python-crash-course.pdf
http://www.root.cern.ch/

25/07/2019 A. Sidoti - HASCO 2019 53 / 58

BackUp

25/07/2019 A. Sidoti - HASCO 2019 54 / 58

25/07/2019 A. Sidoti - HASCO 2019 55 / 58

25/07/2019 A. Sidoti - HASCO 2019 56 / 58

25/07/2019 A. Sidoti - HASCO 2019 57 / 58

25/07/2019 A. Sidoti - HASCO 2019 58 / 58

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

