# Beyond the Standard Model and Supersymmetry

#### Alberto Mariotti





HASCO Summer School 2019

21 -- 26 July 2019

## Plan of the lectures

- ★Introduction and motivation for Beyond Standard Model
  - \*Force Unification
  - \*Hierarchy Problem
  - \*Dark Matter
- **★Supersymmetry primer**
- ★Properties of Supersymmetric extension of the SM
- **★SM Effective Field Theory (**if time permits**)**
- **★**Conclusions and references

## **The Standard Model**

# Describes fundamental particles and their interactions Quantum field theory with gauge symmetries

$$SU(3)_{QCD} \times SU(2)_L \times U(1)_Y$$

- \* Elementary particles: fermions and bosons
- \* Fundamental interactions: strong, weak, electromagnetic



## **Units and scales**

#### Units of fundamental constants

$$[c] = LT^{-1}$$

$$[\hbar] = L^2 M T^{-1}$$

$$[G] = L^3 M^{-1} T^{-2}$$

#### Natural Units in Particle Physics

$$[M] = [E] = [L^{-1}] = [T^{-1}]$$
  $c = \hbar = 1$ 

#### Dimension is "mass dimension"

**Examples:** 
$$[m^2] = 2$$
  $[\tau] = -1$   $[\hbar] = [c] = 0$   $[G_N] = -2$ 

Fields: 
$$[\psi] = \frac{3}{2}$$
  $[A_{\mu}] = [H] = 1$ 

$$[\mathcal{L}] = 4$$

$$[ensity]$$

#### Typical mass scales in the SM

| Particle                    | Mass                          |
|-----------------------------|-------------------------------|
| neutrinos                   | $\sim 10^{-2} \; \mathrm{eV}$ |
| electron                    | $0.5~{ m MeV}$                |
| Muon                        | $100~{ m MeV}$                |
| Pions                       | $140~{ m MeV}$                |
| Proton, Neutron             | $1  \mathrm{GeV}$             |
| Tau                         | 2  GeV                        |
| W,Z Bosons                  | 80-90 GeV                     |
| Higgs Boson                 | $125~{ m GeV}$                |
| $ ightharpoonup M_{Planck}$ | $10^{19} \mathrm{GeV}$        |

#### couplings are dimensionless

Electromagnetic 
$$\mathcal{L} \supset eA_{\mu}\bar{\psi}\gamma^{\mu}\psi$$
 coupling constant  $\alpha_{EM} = \frac{e^2}{4\pi} \simeq \frac{1}{137}$ 

# **SM** shortcomings

SM is not explaining all ...

Many fundamental questions still open ...



? Beyond Standard Model physics ?

## **Force Unification**

Q: Can we provide a unique description of all fundamental forces?

★ Unification with gravity is hard ... String Theory



- ★ SM unified framework for strong, weak, electromagnetic forces
- ★ In SM Electroweak (EW) theory unifies weak and electromagnetism
- ★ Can unify all forces in the SM?

... first recap strength and force carriers properties ...

| Interaction     | Relative strength | Exchange             | Mass<br>(GeV) | Charge  | Spin |
|-----------------|-------------------|----------------------|---------------|---------|------|
| Strong          | 1                 | Gluon                | 0             | 0       | 1    |
| Electromagnetic | 1/137             | Photon               | 0             | 0       | 1    |
| Weak            | $10^{-6}$         | W+,W-,Z <sup>0</sup> | 80.4, 91.2    | +e,-e,0 | 1    |



# Running of couplings

- ★ Coupling constants in QFT are functions of the probe energy
- ★ Variation with energy is "running of coupling"
- ★ Running depends on type of force and amount of matter







QCD asymptotic

freedom

# Running in the SM



# Running in the SM



The coupling constants almost unify at GUT scale !!!

Q: Is there new physics to lead to precise unification?

# Hierarchy problem

\*Enormous hierarchy between EW scale and Planck scale

$$m_h = 125 \text{ GeV} \ll M_{Planck} = 10^{19} \text{ GeV}$$





#### **Assuming desert**

$$\Lambda_{UV} = M_{Planck}$$

$$m_h^2 =$$

$$m_{h(0)}^2$$







# Hierarchy problem

#### ★Standard Model Lagrangian



potential

**★Dimensions in natural units** 

$$[\mathcal{L}_{SM}] = 4 \quad [F_{\mu\nu}] = 2 \quad [\Psi] = 3/2 \quad [H] = 1$$



!!! Higgs mass only dimensionfull parameter !!!

"Natural" size for Higgs mass is UV scale  $\Lambda_{UV}$  e.g.  $M_{Planck}$  fundamental

# HP: the pion example

... We already know a spin-0 particle (not fundamental) ...

★Pion mesons Lagrangian

$$\mathcal{L}_{\pi} = \frac{1}{2} (\partial_{\mu} \pi_0)^2 + |(\partial_{\mu} + ieA_{\mu})\pi^+|^2 - \frac{1}{2} m_{\pi}^2 \pi_0^2 - m_{\pi}^2 \pi^+ \pi^-$$

$$\text{Neutral pion} \qquad \text{Charged pion} \qquad \text{Mass terms}$$

**\*Observed masses** 
$$m_{\pi_0} = 135 \text{ MeV}$$
  $m_{\pi^{\pm}} = 140 \text{ MeV}$ 

igstarQuantum corrections assuming theory valid up to  $\Lambda_{IUV}$ 

$$\Delta m_{\pi^{\pm}}^2 \sim \frac{3e^2}{(4\pi)^2} \Lambda_{UV}^2 \qquad \Delta m_{\pi^0}^2 \sim 0$$

If  $\Lambda_{UV} > 850~{
m MeV}$  one would need fine tuning to get



Nature: No Fine-tuning !!!

There is actually "new physics" lighter than 850 GeV: the rho meson etc... that stabilize the quantum corrections!

# Hierarchy problem reload

#### Higgs mass gets quadratic divergent corrections

$$(125 \text{GeV})^2 = m_h^2 = m_{h(0)}^2 + \delta m_h^2$$



\* Fine-tuned cancellation between  $~m_{h(0)}^2$  and  $~\delta m_h^2$  to get  $~m_h \ll \Lambda_{UV}$ 

E.g. Assuming desert 
$$\Lambda_{UV} = M_{Planck} \qquad \frac{\delta m_h^2}{(125~{\rm GeV})^2} \simeq 10^{32} {\rm cm}^{10} {\rm cm}^{10}$$

\* Demanding no fine-tuning predict scale of new physics

$$\frac{\delta m_h^2}{(125 \text{ GeV})^2} \simeq 1 \qquad \qquad \Lambda_{UV} \simeq 650 \text{ GeV}$$

Supersymmetry Composite Higgs Extra Dimensions

# Status of Hierarchy Problem

... Naturalness principle is already in tension with the LHC ...





## Open questions:

- **★**Maybe it is our bias?
- **★**Do we understand fundamental scalars?
- ★Is there an unknown mechanism to make it "natural"?
- ★Is there an anthropic principle? What about c.c.?

## **Dark Matter evidences**

??? Why it should be there ???



- ★ Galaxy rotation curves (1970)
  - \* Gravitational force

$$F_g = G \frac{Mm}{r^2}$$

They should balance

\* Centrifugal force

$$F_c = m \frac{v^2}{r}$$

Not enough visible mass!!!

Attributed to invisible (hence dark) and unknown form of matter

★ Galaxy rotation curves

**\*** ...



- ★ Galaxy rotation curves
- ★ Gravitational lensing
- ★ Bullet clusters
- **\*** ...







## **Dark Matter?**

#### ? What can it be ?

## New elementary particle

- \* NOT ordinary (baryonic) matter inclunation
- ★ Dark (no absorption or emission of light)
- ★ Neutral (no electric charge)
- ★ Stable (no decay)
- ★ Non relativistic (slow)



## **Dark Matter?**

#### ? What can it be ?

## New elementary particle

- \* NOT ordinary (baryonic) matter including including
- ★ Dark (no absorption or emission of light)
- ★ Neutral (no electric charge)
- ★ Stable (no decay)
- ★ Non relativistic (slow)

Very abundant in the Universe





## **Particle Dark Matter**

**Assume Dark Matter is a new elementary particle** 



## Simplified models of Dark Matter

Inspired by UV complete models e.g. Supersymmetry

Suitable for phenomenological analysis (e.g. collider signatures)





















## **Dark Matter ZOO**

## Possibilities for Dark Matter are extremely vast



Q: what is the Dark Matter?

# **Beyond SM approaches**

Many fundamental questions still open ...

- ★BSM proposals try to address some or few of these
- ★Falsify proposals with experiments (LHC etc ...)
- ★But, no clear indication where BSM physics should be...

## Explore the unknown !!



- \* Use guiding principle to formulate BSM theory
- \* Derive phenomenology and experimental tests



- \*Formulate BSM theory to explain specific observation
- \* Derive other phenomenology and experimentally test it

# **Symmetries**

#### Symmetries plays central role in physics

- \*Symmetries represented by groups
- \*Local action of a symmetry is described by generators
- \* Generators satisfy specific algebra
- \*Symmetry corresponds to conserved charge
- \*Example: rotation in 3 dimensions

SO(3) group

Algebra of generators:  $[J_i,J_j]=i\epsilon_{ijk}J_k$ 

Conserved quantity: angular momentum

\*Example: translation in 4d

Generator:  $P_{\mu}$  Satisfy:  $[P_{\mu}, P_{\nu}] = 0$ 

Translations in orthogonal directions commute

Conserved quantity: energy and spatial momentum

# Standard Model symmetries

#### Spacetime symmetries

- ★Spacetime translations
- **★**Rotations and boosts

Poincare group

#### Internal symmetries

- **\*** Gauge symmetries:  $SU(3)_{QCD} \times SU(2)_L \times U(1)_Y$
- ★Global symmetries: isospin, baryon number, lepton number ....

In the following I will denote with  $T^a$  generator of internal symmetry

# Standard Model symmetries

### Spacetime symmetries

- **★**Spacetime translations
- **★**Rotations and boosts

**Poincare** 

# In that can we add? What can metries

- \*Ga ymmetries:  $SU(3)_{QCD} imes SU(2)_L imes U(1)_Y$
- ★Global symmetries: isospin, baryon number, lepton number ....

In the following I will denote with  $T^a$ generator of internal symmetry

# Supersymmetry (SUSY)

★Only possible extension of Poincare algebra is SUSY

Coleman, Mandula; Haag, Lopuszanski, Sohnius

★SUSY is necessary ingredient in String Theory

## New symmetry relating fermions and bosons

Matter

Forces and Higgs

SUSY generator Q

Exchanges fermions with bosons

 $Q|\text{fermion}\rangle = |\text{boson}\rangle$   $Q|\text{boson}\rangle = |\text{fermion}\rangle$ 

Q carries spinor index

Theory should be invariant under exchange fermion <--> boson

## SUSY

## SUSY algebra schematically

Please look the references for complete superalgebra

$$\{Q,Q^{\dagger}\}\sim P^{\mu}$$

$$\{Q,Q\} = \{Q^{\dagger},Q^{\dagger}\} = 0$$

$$[P^{\mu},Q] = [P^{\mu},Q^{\dagger}] = 0 \quad [P^{2},Q] = 0 = [P^{2},Q^{\dagger}]$$

$$[T^a, Q] = [T^a, Q^{\dagger}] = 0$$

+ non trivial commutators with rotations and boosts

#### Representation of SUSY are "multiplets" of particles with:

$$[M_{\mu\nu}, Q] \neq 0 \quad \blacksquare$$



Different spin

 $[P^2, Q] = 0$ 

Same mass

$$[T^a, Q] = 0$$

Same quantum numbers

!!! We need to double the SM particle content !!!

## SUSY

#### Every particle of SM has own supersymmetric partner

- \*Fermions have partner with spin 0
- \*Bosons (gauge and Higgs) have partners with spin 1/2





Superparticles typically denoted with tilde  $\sim$  on top

# Minimal SUSY SM (MSSM)

#### Quark and leptons multiplets

| Names                         |                | spin 0                                | spin 1/2        | $SU(3)_C, SU(2)_L, U(1)_Y$           |
|-------------------------------|----------------|---------------------------------------|-----------------|--------------------------------------|
| squarks, quarks               | Q              | $(\widetilde{u}_L \ \widetilde{d}_L)$ | $(u_L \ d_L)$   | $(3, 2, \frac{1}{6})$                |
| $(\times 3 \text{ families})$ | $\overline{u}$ | $\widetilde{u}_R^*$                   | $u_R^\dagger$   | $(\overline{f 3},{f 1},-rac{2}{3})$ |
|                               | $\overline{d}$ | $\widetilde{d}_R^*$                   | $d_R^\dagger$   | $(\overline{3}, 1, \frac{1}{3})$     |
| sleptons, leptons             | L              | $(\widetilde{ u}\ \widetilde{e}_L)$   | $( u \;\; e_L)$ | $(\ {f 1},\ {f 2}\ ,\ -{1\over 2})$  |
| $(\times 3 \text{ families})$ | $\overline{e}$ | $\widetilde{e}_R^*$                   | $e_R^\dagger$   | (1, 1, 1)                            |

Selectron, smuon, stau stop, sbottom ...

- \*Supersymmetric partners indicated with s+SM\_name
- \*One spin-0 particle partner for each helicity state of SM fermion

Two spin-0 superpartners for each of the SM fermion (except the neutrino)

But remind superpartners are spin-0, so no helicity

# **MSSM (2)**

#### Gauge bosons multiplets

| Names           | spin 1/2                                  | spin 1          | $SU(3)_C, SU(2)_L, U(1)_Y$ |
|-----------------|-------------------------------------------|-----------------|----------------------------|
| gluino, gluon   | $\widetilde{g}$                           | g               | (8, 1, 0)                  |
| winos, W bosons | $\widetilde{W}^{\pm}$ $\widetilde{W}^{0}$ | $W^{\pm}$ $W^0$ | (1, 3, 0)                  |
| bino, B boson   | $\widetilde{B}^0$                         | $B^0$           | (1, 1, 0)                  |

#### Higgs multiplets

| Names            |       | spin 0            | spin $1/2$                                | $SU(3)_C, SU(2)_L, U(1)_Y$              |
|------------------|-------|-------------------|-------------------------------------------|-----------------------------------------|
| Higgs, higgsinos | $H_u$ | $(H_u^+ \ H_u^0)$ | $(\widetilde{H}_u^+ \ \widetilde{H}_u^0)$ | $({f 1},{f 2},+{	extstyle rac{1}{2}})$ |
|                  | $H_d$ | $(H_d^0 \ H_d^-)$ | $(\widetilde{H}_d^0 \ \widetilde{H}_d^-)$ | $(\ {f 1},\ {f 2}\ ,\ -{1\over 2})$     |

\*Supersymmetric partners indicated with SM\_name+ino Higgsino Higgsino

Anomaly cancellation

\*Need two Higgses

Tyukawa couplings



In addition to superpartners, in SUSY there are total of 5 ← spin-0 particles in Higgs sector

In SM just one Higgs

# SUSY breaking

## Q: is SUSY an exact symmetry of nature?

... think about e.g. the s-electron mass and interactions ...

# SUSY breaking

Q: is SUSY an exact symmetry of nature?

A: No, SUSY must be broken

★ We add to the Lagrangian masses for superparticles

Not yet observed because too heavy -

★ Masses constitute a SOFT breaking of SUSY

Soft such that SUSY still address the hierarchy problem (See Jater)

★SUSY breaking terms introduce a lot of unknown parameter

Topic for lecture!!! Study SUSY breaking and the way it is achieved to predict them

\*Remind: Broken symmetries are still very useful to describe physics

# SUSY spectrum

## Mass eigenstates differ from gauge eigenstates

| Names        | Spin | $P_R$ | Gauge Eigenstates                                                           | Mass Eigenstates                                                        |
|--------------|------|-------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Higgs bosons | 0    | +1    | $H_u^0 \ H_d^0 \ H_u^+ \ H_d^-$                                             | $h^0~H^0~A^0~H^\pm$                                                     |
|              |      |       | $\widetilde{u}_L \ \widetilde{u}_R \ \widetilde{d}_L \ \widetilde{d}_R$     | (same)                                                                  |
| squarks      | 0    | -1    | $\widetilde{s}_L \ \widetilde{s}_R \ \widetilde{c}_L \ \widetilde{c}_R$     | (same)                                                                  |
|              |      |       | $\widetilde{t}_L \ \widetilde{t}_R \ \widetilde{b}_L \ \widetilde{b}_R$     | $\widetilde{t}_1 \ \widetilde{t}_2 \ \widetilde{b}_1 \ \widetilde{b}_2$ |
|              |      |       | $\widetilde{e}_L \ \widetilde{e}_R \ \widetilde{ u}_e$                      | (same)                                                                  |
| sleptons     | 0    | -1    | $\widetilde{\mu}_L  \widetilde{\mu}_R  \widetilde{ u}_\mu$                  | (same)                                                                  |
|              |      |       | $\widetilde{	au}_L \ \widetilde{	au}_R \ \widetilde{ u}_	au$                | $\widetilde{	au}_1 \ \widetilde{	au}_2 \ \widetilde{ u}_{	au}$          |
| neutralinos  | 1/2  | -1    | $\widetilde{B}^0$ $\widetilde{W}^0$ $\widetilde{H}_u^0$ $\widetilde{H}_d^0$ | $\widetilde{N}_1 \ \widetilde{N}_2 \ \widetilde{N}_3 \ \widetilde{N}_4$ |
| charginos    | 1/2  | -1    | $\widetilde{W}^{\pm}$ $\widetilde{H}_{u}^{+}$ $\widetilde{H}_{d}^{-}$       | $\widetilde{C}_1^{\pm}$ $\widetilde{C}_2^{\pm}$                         |
| gluino       | 1/2  | -1    | $\widetilde{g}$                                                             | (same)                                                                  |

EW symmetry
breaking and
breaking breaking

# SUSY spectrum

Mass eigenstates differ from gauge eigenstates

| Names        | Spin | $P_R$ | Gauge Eigenstates                                                           | Mass Eigenstates                                                        |
|--------------|------|-------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Higgs bosons | 0    | +1    | $H_u^0 \ H_d^0 \ H_u^+ \ H_d^-$                                             | $h^0~H^0~A^0~H^\pm$                                                     |
|              |      |       | $\widetilde{u}_L \ \widetilde{u}_R \ \widetilde{d}_L \ \widetilde{d}_R$     | (same)                                                                  |
| squarks      | 0    | -1    | $\widetilde{s}_L \ \widetilde{s}_R \ \widetilde{c}_L \ \widetilde{c}_R$     | (same)                                                                  |
|              |      |       | $\widetilde{t}_L \ \widetilde{t}_R \ \widetilde{b}_L \ \widetilde{b}_R$     | $\widetilde{t}_1 \ \widetilde{t}_2 \ \widetilde{b}_1 \ \widetilde{b}_2$ |
|              |      |       | $\widetilde{e}_L \ \widetilde{e}_R \ \widetilde{ u}_e$                      | (same)                                                                  |
| sleptons     | 0    | -1    | $\widetilde{\mu}_L  \widetilde{\mu}_R  \widetilde{ u}_\mu$                  | (same)                                                                  |
|              |      |       | $\widetilde{	au}_L \ \widetilde{	au}_R \ \widetilde{ u}_	au$                | $\widetilde{	au}_1 \ \widetilde{	au}_2 \ \widetilde{ u}_{	au}$          |
| neutralinos  | 1/2  | -1    | $\widetilde{B}^0$ $\widetilde{W}^0$ $\widetilde{H}_u^0$ $\widetilde{H}_d^0$ | $\widetilde{N}_1$ $\widetilde{N}_2$ $\widetilde{N}_3$ $\widetilde{N}_4$ |
| charginos    | 1/2  | -1    | $\widetilde{W}^{\pm}$ $\widetilde{H}_{u}^{+}$ $\widetilde{H}_{d}^{-}$       | $\widetilde{C}_1^{\pm}$ $\widetilde{C}_2^{\pm}$                         |
| gluino       | 1/2  | -1    | $\widetilde{g}$                                                             | (same)                                                                  |

EW symmetry breaking and breaking susy breaking

## Higgs sector

\* States with same charge can mix



## SUSY spectrum

### Mass eigenstates differ from gauge eigenstates

| Names        | Spin | $P_R$ | Gauge Eigenstates                                                           | Mass Eigenstates                                                        |
|--------------|------|-------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Higgs bosons | 0    | +1    | $H_u^0 \ H_d^0 \ H_u^+ \ H_d^-$                                             | $h^0~H^0~A^0~H^\pm$                                                     |
|              |      |       | $\widetilde{u}_L \ \widetilde{u}_R \ \widetilde{d}_L \ \widetilde{d}_R$     | (same)                                                                  |
| squarks      | 0    | -1    | $\widetilde{s}_L \ \widetilde{s}_R \ \widetilde{c}_L \ \widetilde{c}_R$     | (same)                                                                  |
|              |      |       | $\widetilde{t}_L \ \widetilde{t}_R \ \widetilde{b}_L \ \widetilde{b}_R$     | $\widetilde{t}_1 \ \widetilde{t}_2 \ \widetilde{b}_1 \ \widetilde{b}_2$ |
|              |      |       | $\widetilde{e}_L \ \widetilde{e}_R \ \widetilde{ u}_e$                      | (same)                                                                  |
| sleptons     | 0    | -1    | $\widetilde{\mu}_L  \widetilde{\mu}_R  \widetilde{ u}_\mu$                  | (same)                                                                  |
|              |      |       | $\widetilde{	au}_L \ \widetilde{	au}_R \ \widetilde{ u}_	au$                | $\widetilde{	au}_1 \ \widetilde{	au}_2 \ \widetilde{ u}_{	au}$          |
| neutralinos  | 1/2  | -1    | $\widetilde{B}^0$ $\widetilde{W}^0$ $\widetilde{H}_u^0$ $\widetilde{H}_d^0$ | $\widetilde{N}_1$ $\widetilde{N}_2$ $\widetilde{N}_3$ $\widetilde{N}_4$ |
| charginos    | 1/2  | -1    | $\widetilde{W}^{\pm}$ $\widetilde{H}_{u}^{+}$ $\widetilde{H}_{d}^{-}$       | $\widetilde{C}_1^\pm$ $\widetilde{C}_2^\pm$                             |
| gluino       | 1/2  | -1    | $\widetilde{g}$                                                             | (same)                                                                  |

EW symmetry
breaking and
breaking breaking

### Squark and sleptons

\* First and second generation assumed no mixing



\* Third generations have R-L mixing

Listed from lighter to heavier

physics constraints

# SUSY spectrum

Mass eigenstates differ from gauge eigenstates

| Names        | Spin | $P_R$ | Gauge Eigenstates                                                           | Mass Eigenstates                                                                           | EW symmetric<br>breaking and<br>breaking<br>susy breaking |  |
|--------------|------|-------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|
| Higgs bosons | 0    | +1    | $H_u^0 \ H_d^0 \ H_u^+ \ H_d^-$                                             | $h^0~H^0~A^0~H^\pm$                                                                        | break break                                               |  |
| squarks      | 0    | -1    | $\widetilde{u}_L  \widetilde{u}_R  \widetilde{d}_L  \widetilde{d}_R$        | (same)                                                                                     |                                                           |  |
|              |      |       | $\widetilde{s}_L \ \widetilde{s}_R \ \widetilde{c}_L \ \widetilde{c}_R$     | (same)                                                                                     |                                                           |  |
|              |      |       | $\widetilde{t}_L  \widetilde{t}_R  \widetilde{b}_L  \widetilde{b}_R$        | $\widetilde{t}_1 \ \widetilde{t}_2 \ \widetilde{b}_1 \ \widetilde{b}_2$                    |                                                           |  |
| sleptons     | 0    | -1    | $\widetilde{e}_L \ \widetilde{e}_R \ \widetilde{ u}_e$                      | (same)                                                                                     |                                                           |  |
|              |      |       | $\widetilde{\mu}_L  \widetilde{\mu}_R  \widetilde{ u}_\mu$                  | (same)                                                                                     |                                                           |  |
|              |      |       | $\widetilde{	au}_L \ \widetilde{	au}_R \ \widetilde{ u}_	au$                | $\widetilde{	au}_1 \ \widetilde{	au}_2 \ \widetilde{ u}_{	au}$                             | Also denoted with                                         |  |
| neutralinos  | 1/2  | -1    | $\widetilde{B}^0$ $\widetilde{W}^0$ $\widetilde{H}_u^0$ $\widetilde{H}_d^0$ | $\widetilde{N}_1 \ \widetilde{N}_2 \ \widetilde{N}_3 \ \widetilde{N}_4 \blacktriangleleft$ | $$ $\tilde{\chi}^0_{1,2,3,4}$                             |  |
| charginos    | 1/2  | -1    | $\widetilde{W}^{\pm}$ $\widetilde{H}_{u}^{+}$ $\widetilde{H}_{d}^{-}$       | $\widetilde{C}_1^\pm$ $\widetilde{C}_2^\pm$                                                | _,_, _, _                                                 |  |
| gluino       | 1/2  | -1    | $\widetilde{g}$                                                             | (same)                                                                                     |                                                           |  |

### Neutralinos and Charginos

- \* Neutralinos are mixture of Bino, Neutral Wino and Higgsinos
- \* Chargino are mixture of charged Wino and Higgsino

Listed from lighter to heavier

otry

# SUSY spectrum

Mass eigenstates differ from gauge eigenstates

|   | Names        | Spin | $P_R$ | Gauge Eigenstates                                                           | Mass Eigenstates                                                        |
|---|--------------|------|-------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|
|   | Higgs bosons | 0    | +1    | $H_u^0 \ H_d^0 \ H_u^+ \ H_d^-$                                             | $h^0~H^0~A^0~H^\pm$                                                     |
| ( |              |      |       | $\widetilde{u}_L \ \widetilde{u}_R \ \widetilde{d}_L \ \widetilde{d}_R$     | (same)                                                                  |
|   | squarks      | 0    | -1    | $\widetilde{s}_L \ \widetilde{s}_R \ \widetilde{c}_L \ \widetilde{c}_R$     | (same)                                                                  |
|   |              |      |       | $\widetilde{t}_L  \widetilde{t}_R  \widetilde{b}_L  \widetilde{b}_R$        | $\widetilde{t}_1 \ \widetilde{t}_2 \ \widetilde{b}_1 \ \widetilde{b}_2$ |
|   |              | 0    | -1    | $\widetilde{e}_L \ \widetilde{e}_R \ \widetilde{ u}_e$                      | (same)                                                                  |
|   | sleptons     |      |       | $\widetilde{\mu}_L  \widetilde{\mu}_R  \widetilde{ u}_\mu$                  | (same)                                                                  |
|   |              |      |       | $\widetilde{	au}_L  \widetilde{	au}_R  \widetilde{ u}_	au$                  | $\widetilde{	au}_1 \ \widetilde{	au}_2 \ \widetilde{ u}_{	au}$          |
|   | neutralinos  | 1/2  | -1    | $\widetilde{B}^0$ $\widetilde{W}^0$ $\widetilde{H}_u^0$ $\widetilde{H}_d^0$ | $\widetilde{N}_1$ $\widetilde{N}_2$ $\widetilde{N}_3$ $\widetilde{N}_4$ |
|   | charginos    | 1/2  | -1    | $\widetilde{W}^{\pm}$ $\widetilde{H}_{u}^{+}$ $\widetilde{H}_{d}^{-}$       | $\widetilde{C}_1^\pm$ $\widetilde{C}_2^\pm$                             |
|   | gluino       | 1/2  | -1    | $\widetilde{g}$                                                             | (same)                                                                  |

EW symmetry breaking and breaking susy breaking

\* Octet of fermions (degenerate) charged under color (QCD)

Gluinos

# **Example of SUSY spectrum**



## **SUSY virtues**

- **★Solve Hierarchy Problem**
- ★Lead to gauge coupling unification
- **★Contain Dark Matter candidates**



... and many others that I will not discuss ...

Copyright: STFC/Ben Gilliland

# SUSY and hierarchy problem

### Inspect Higgs mass quantum corrections in SUSY

Now there is also contribution from superpartners!



- $\star$  Two contributions cancel because of SUSY (same coupling  $y_t$ )
- ★SUSY breaking effects lead to an extra term but NOT quadratically divergent with cutoff

$$(\delta m_h^2)_{top} + (\delta m_h^2)_{stop} \simeq \frac{3y_t^2}{8\pi^2} m_{\tilde{t}}^2 \log \frac{\Lambda_{UV}^2}{m_{\tilde{t}}^2}$$

Also Gluino, Higgsino enters Significantly

Stop is main responsible for solving HP in SUSY!

# Little Hierarchy Problem

Also Gluino, Higgsino enters Significantly

Stop is main responsible for solving HP in SUSY!

Q: Given bound of LHC, what is status?



### SUSY Fine-Tuning

$$\frac{\delta m_h^2}{(125~{\rm GeV})^2} \geq 25$$
 Little Hierarchy Problem

- \*Compare with Pion example ...
- \*Compare with only SM up to M\_Planck ...

## SUSY and gauge coupling unification

Superparticles modify running of gauge couplings in MSSM



In MSSM gauge coupling unifies at ~MGUT



# **R-parity**

**★SUSY** interactions could have Baryon or Lepton number violation



### ★Impose symmetry to solve this issue

R-parity 
$$R = (-1)^{3(B-L)+2S}$$

$$B = Baryon number$$

$$L = Lepton number$$

$$S = Spin$$

# Ordinary particles R=+1

$$R = +1$$

### Supersymmetric partners

$$R = -1$$

Q: What are the consequences of R-parity?

# Consequence of R-parity

★ Supersymmetric particles produced in pairs at colliders



★ Lightest SUSY particle (LSP) is stable



If LSP is neutral, could be Dark Matter

Typical example: lightest neutralino



# Why SUSY?

#### **Pre LHC**

\* Solve hierarchy problem and naturalness

\* Necessary in unified description with gravity



\* Gauge coupling unification



\* Dark matter candidate (LSP)



\* Admit a low energy SM limit (including EWPT and flavour)

# Why still SUSY?

### After/During LHC era

\* Address hierarchy problem and naturalness (little fine-tuning)

\* Necessary in unified description with gravity



\* Gauge coupling unification



dark matter 27%

dark matter 27%

dark savergy 66%

\* Dark matter candidate (LSP)



\* Admit a low energy SM limit (including also *SM-like H boson*)

### SUSY is a broad framework

... We discussed only the *Minimal* SUSY SM (MSSM) ...

but SUSY provides a framework for more general/extended BSM proposals with different phenomenology



# ... but no sign of BSM physics ...

- ★No new physics at the LHC
- ★No new physics at Dark Matter exp
- ★No new physics in rare processes

# ... but no sign of BSM physics ...

- ★No new physics at the LHC
- ★No new physics at Dark Matter exp
- **★No new physics in rare processes**



# ... but no sign of BSM physics ...

- ★No new physics at the LHC
- ★No new physics at Dark Matter exp
- ★No new physics in rare processes



- ★No clear indications of where BSM physics should be
- ★ We proceed exploring novel/unusual models/signatures!
- ★ We look for deviations!

## Resonances

- ★ Powerful probe for new physics: "look for a bump"
- ★ Breit Wigner resonance



Cross section maximum (peak) when c.o.m. energy is on Z mass

**★** Led to great discoveries

 $J/\Psi, \Upsilon, Z, BEH boson ...$ 



## Resonances vs deviations





Maybe new physics is beyond the energy reach of the LHC

- **★We can still capture deviations in tail of distributions**
- **★Need precise measurements of differential distributions**

**★**How do me parameterise possible new physics effects?



... let's review a familiar example of EFT ...

## Fermi EFT

### Fermi Theory is basic example of EFT

**★Four fermions interactions** 

$$\mathcal{L}\supsetrac{1}{\Lambda_{UV}^2}ar{\psi}_{\mu}\gamma^{
ho}\psi_{
u_{\mu}}ar{\psi}_{e}\gamma_{
ho}\psi_{
u_{e}}$$



**★Not fundamental:** *effective description* for exchange of W boson

$$\frac{1}{\Lambda_{UV}^2} = G_F = \frac{\sqrt{2}}{8} \frac{g^2}{M_W^2}$$

$$\frac{\mu^-}{W^*} \qquad e^-$$

$$\bar{\nu}_e$$

$$E \ll M_W$$

$$\bar{\nu}_e$$

$$\bar{\nu}_e$$

 $_{\rm arameterisa}$  +Higher dimensional operator suppressed by  $1/M_W^2$  for new physics

 $\star$  Valid description for  $E \ll M_W$ 

## SMEFT @ LHC

### Consider SM as EFT valid up to scale

 $\star$ Add to SM higher dimensional operators suppressed by  $\Lambda$ 

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} O_i^{(6)} \qquad \text{(dimensionless couplings)}$$
 
$$\bigstar \text{They affect distributions at } E \lesssim \Lambda \qquad \qquad \text{(e.g. 4 fermions)}$$

- $*Start\ with\ lowest\ dimension\ operators$
- \*Dim5: one "Weinberg" operator (neutrino masses)
- \*Dim6: basis of 59 operators (O(2000) without flavour assumptions)

### SMEFT program

Constrain the "size" of SMEFT operators by precise LHC measurements

## SMEFT @ LHC

### **Example of two operator constraint at the LHC**



- \*Constraint combination of Wilson coefficient C and new scale  $\Lambda$
- \*In interpretation often taken  $\Lambda=1{\rm TeV}$  for convenience, but careful with validity of EFT another talk

★Powerful strategy to look for new physics in a model-independent way

★Profit from large amount of data and precise measurements (HL-LHC)

# Take home messages

- ★SM shortcomings need Beyond SM physics
- ★SUSY still well motivated BSM proposal
- ★SUSY addresses many open issues

Dark Matter
Hierarchy problem

Inflation

Force unification

Matter-Antimatter

No sign of BSM at the LHC and in other Exp

- \* Where is SUSY? Where is BSM physics?
- \*New model building needed (also within SUSY)
- \*New strategies to search for BSM (e.g. SMEFT)
- ... many options open ... search for the unknown !!!

### References

### **★For Supersymmetry:**

S.P.Martin, "A Supersymmetry primer,", hep-ph/9709356

H.Murayama, "Supersymmetry Phenomenology", arXiv:hep-ph/0002232

A.Bilal, "Introduction to supersymmetry," hep-th/0101055 (FORMAL)

#### **★For BSM and EFT**

M.McCullough, "Lectures on Physics Beyond the Standard Model"

W. Skiba, "TASI lectures on EFT", arXiv:1006.2142

### **★For Quantum Field Theory**

M.E.Peskin and D.V.Schroeder, "An Introduction to quantum field theory," (BOOK)

<u>D.Tong, "Lectures on Quantum Field Theory"</u>

\* Credits to previous HASCO SUSY/BSM lecturers: C. Clément, T. Lari, F. Meloni

I'm here until Thursday for questions!