Data analysis in high-energy physics

Search for top—anti-top quark resonances in proton-proton collisions with ATLAS data

CSU NUPAC Tutorials 2018

Gabriel Palacino

Tuesday, April 10, 2018
In order to do physics in ATLAS we need to reconstruct some physics objects that represent those found in nature.

http://atlas.physicsmasterclasses.org/videos/teilchenidentifikation.swf
Electrons

- Produce Inner Detector (ID) hits from which their trajectories can be reconstructed —> Momentum measurement
- Produce electromagnetic showers in the electromagnetic calorimeter
- Two processes are dominant in EM showers: pair production (photons) and bremsstrahlung (electrons)
- Linear extent of EM shower depends on the calorimeter material (radiation length)

\[X_0 = \frac{716.4 \cdot A}{Z(Z + 1) \ln \frac{287}{\sqrt{2}}} \text{ g cm}^{-2} \]

- An Inner Detector track and energy deposition in the EM calorimeter are needed for identifying an electrons
Photons

- Photons are neutral = no interaction with Inner Detector
- Produce **electromagnetic showers** in the electromagnetic calorimeter
- Reconstruction techniques for photons are similar to those used for electrons
- Photons can give rise to electron pairs: photon conversion
Muons

- Produce Inner Detector hits from which their trajectories can be reconstructed
- Muons are heavier than electrons and thus lose little energy (~GeV) in the EM and hadronic calorimeters. **Minimum ionizing particles.**
- Produce hits in the Muon Spectrometer (MS)
- Muons can be reconstructed from different combinations of signatures in the ATLAS detector, e.g, Calorimeter+MS, MS only, etc.
- Muons in ATLAS can come from cosmic rays too!
Jets

Basically a spray of particles that can be contained in a given catchment area

Origin

- Initiate from the hadronization process of partons from decaying quarks and gluons

In ATLAS

- Electrically charged hadrons (π^\pm, K^\pm) leave tracks in the ID
- Photons from neutral hadron decays (π^0) are detected in the EM calorimeter
- All hadrons are start a hadronic shower in the Hadronic calorimeter
- Hadronic showers originate from strong interactions between hadrons and nuclei of the detector material
- Hadronic showers are wider than EM showers
Jets
Reconstructing jets

- Energy deposition in calorimeters is reconstructed as cluster: for example the energy deposited by a single pion.
- Clusters are combined into a single object. Ideally cone-like
- Different recombination algorithms use different metrics for jet reconstruction

Reconstructed jets in ATLAS
- Preferred algorithm is Anti-kT
- Produces conical shapes in ideal cases
- Performs well in case of jet overlap
- It is infrared (soft gluon emission) and collinear (collimated particles) safe
- Jets are usually classified based on a distance parameter \(R \)
 - \(R=0.4 \): most common jets
 - \(R=1.0 \): Large-R jets or fat jets
Tau leptons can decay leptonically or hadronically

Leptonic decays
• Due to their mass, taus decay before reaching the ID
• Electrons and muons from tau decays look as if they came directly from the interaction point

Hadronic decays
• Taus usually decay to one to four pions of which one or three are electrically charged
• Each charged pion has an associated ID track
• Tau identification, in broad terms, looks for narrow jets associated with one or three ID tracks

Taus usually decay to one to four pions
Primary and Secondary Vertices

Primary vertex

- Roughly speaking, a primary vertex is found by associating reconstructed tracks to vertex candidates
- In a given event, only one primary vertex is chosen as the interaction of interest
- Vertex of interest is often chosen as that with the highest sum of the transverse momentum of the tracks associated to it

Secondary vertex

- Mainly used for identification of jets from b-quarks
- Applicable to searches for long-lived particles that decay far from the interaction point
- Extrapolation of tracks associated with secondary vertices show impact parameters of ~mm
• The transverse momentum of colliding partons is negligible

• Ideally the momentum of all objects associated to the primary vertex should balance in the transverse plane

• This is not always the case:
 ‣ Escaping neutrinos
 ‣ Reconstruction inefficiencies
 ‣ New physics!

• The momentum imbalance in the transverse plane is know as Missing Transverse Energy or Missing E_T (MET)
Jets from b-quarks

• Jets from b-quarks contain displaced vertices
• Displaced vertices come from the decay of b-hadrons from the b-quark hadronization
• Insertable b-layer (new) and Pixel detector contribute greatly to the measurement of the displaced tracks’ impact parameter
• The MV1 algorithm used a Neural Network (NN) to classify jets: the NN response is available in the ROOT ntuples

Why is it so important to identify b-jets?
• The LHC is a tt production machine
• Top quarks decay ~100% to Wb
• The Higgs boson decays mostly to b-quark pairs
Selecting Interesting Collision Events

• In an analysis we want to select only the collision events that are of our interest
 ‣ If my signal process contains an electron or a muon, I would like to select events that have an electron or a muon
 ‣ I would not like to select events that contain jets

• Appropriate trigger thresholds have to be selected in order not to lose any signal
 ‣ Often in terms of transverse energy or momentum

• Triggers can be "tricked" by objects they are not designed for
 ‣ Electron and photon triggers can be fired by jets
 ‣ Undesired background processes may enter in the category of selected events

• Triggers select signal events, but also select background events with the same final state
The efficiency of a trigger for selecting events is not ideal
 ‣ The turn-on is not a step function

Trigger efficiency also depends on detector geometry and may have additional requirements

It is desirable to work on the plateau of the trigger efficiency
 ‣ That’s when the trigger efficiency reaches it’s (near) maximum

Example

- It is inevitable to lose some signal due to trigger inefficiencies.
- It is important to select the appropriate trigger so that most of the signal is kept
How good is our trigger for our purpose?

…or how do we choose a trigger?

- We want to maximize signal acceptance, i.e., select the lagers number of events possible
- Things that affect the trigger acceptance:
 - Trigger object transverse momentum: $p_T > 40 \text{ GeV}$
 - Trigger Object multiplicity: 2 muons, 4 jets, etc.
 - Kinematic acceptance: $|\eta| < 2$

Example

- We have a signal process in which a particle X of mass m_X decays into six jets
- For mass $\leq 1000 \text{ GeV}$, the "multijet trigger" is the best choice
- For higher masses, the fat jet trigger is the best
- A logical OR of all the triggers would be the best (not always possible)
• We have reviewed the ATLAS physics objects. We will go into them in a more detailed way as it becomes necessary.

• We have reviewed some basic concepts on trigger acceptance and efficiency.
Thanks!