Data analysis in high-energy physics

Search for top—anti-top quark resonances in proton-proton collisions with ATLAS data

CSU NUPAC Tutorials 2019

Gabriel Palacino

Tuesday, April 11, 2019
Implementing Analysis Code

• AnalysisCode is package where you can implement your analyses, i.e., ZprimeAnalysis

• ZprimeAnalysis has three main running components
 ‣ Initialization: everything that has to be done before looping over all the events (initialize(), histInitialize())
 ‣ Execution: what is done every event. Basically the data analysis code (execute())
 ‣ Finalization: what is done after looping over all the events (finalize(), histFinalize())

• ZprimeAnalysis is a class: you can implement your own functions members of ZprimeAnalysis or you can simply use what’s already there
• Often we create individual classes for each physics object
 ‣ These classes hold a large amount of information such as MC generator level, detector information and reconstructed object info
 ‣ Since we deal with several objects per event, we store them in "containers"
 ‣ In our case containers are vectors
• We will use C++ structures within AnalysisCode instead of C++ classes for the physics objects
Implementing Analysis Code

- We can use the new functions to construct the objects (structures) and store them in containers (std::vectors)

```cpp
void getLeptons();
void getJets();
void getMET();
void getEventInfo();
```

- Note than there is a structure for the event information
 - Although the event itself is not a physics object, we analyse the data on an event-by-event basis
 - We need the event information

Each structure represents a physics object and carries at least its kinematic information using TLorentzVectors

Physics objects of which more than one is expected can be stored in std::vectors
The actual implementation of the new functions is done in the source file ZprimeAnalysis.cxx

This function will be called every event. Make sure you clear the container or you will end up storing the leptons from all events

Set the TLorentzVector

Is it an electron or a muon

Does it pass the Tight lepton identification criteria?

Isolation information

Fill the lepton container
The functions that fill the containers should be called at the beginning of `execute()`.
Why implement structures (or classes) for analysis objects?
• Many things can be stored in simple TH1 histograms: trigger information

```cpp
h_trigger_pass = new TH1("h_trigger_pass","",7, 0, 7);
wkc)->addOutput(h_trigger_pass);

h_trigger_pass->GetXaxis()->SetBinLabel(1, "fail egamma");
h_trigger_pass->GetXaxis()->SetBinLabel(2, "pass egamma");
h_trigger_pass->GetXaxis()->SetBinLabel(3, "fail muon");
h_trigger_pass->GetXaxis()->SetBinLabel(4, "pass muon");
h_trigger_pass->GetXaxis()->SetBinLabel(5, "fail both");
h_trigger_pass->GetXaxis()->SetBinLabel(6, "pass both");
h_trigger_pass->GetXaxis()->SetBinLabel(7, "events processed");
```

```cpp
// Trigger Acceptance code
if(!eventInfo.passEgamma) h_trigger_pass->Fill(0);
else h_trigger_pass->Fill(1);
if(!eventInfo.passMuon) h_trigger_pass->Fill(2);
else h_trigger_pass->Fill(3);
if(!eventInfo.passEgamma && !eventInfo.passMuon) h_trigger_pass->Fill(4);
if(eventInfo.passEgamma && eventInfo.passMuon) h_trigger_pass->Fill(5);
h_trigger_pass->Fill(6);
```
Does the trigger select other processes?

\[Z'(2500 \text{ GeV}) \rightarrow tt \]

\[WW \rightarrow l \nu q q' \]

\[W^+ \rightarrow l \nu \]

\[W^- \rightarrow q q' \]

\[b \rightarrow t l \]

\[t \rightarrow W^+ b \]

\[Z \rightarrow t t \]

\[W \rightarrow l q \]

\[Z \rightarrow b b \]

\[W \rightarrow \mu q \]

\[Z \rightarrow \tau \tau \]
Event selection

- The event has one good vertex (hasGoodVertex)
- Exactly one good lepton
 - Tight lepton ID
 - $p_T > 25 \text{ GeV}$
 - Track isolation: $\text{lep}_\text{ptcone30}/\text{lep}_\text{pt} < 0.15$
 - Calorimeter isolation: $\text{lep}_\text{etcone20}/\text{lep}_\text{pt} < 0.15$
- At least four good jets
 - $p_T > 25 \text{ GeV}$
 - $|\eta| < 2.5$
 - if $p_T < 50 \text{ GeV}$ and $|\eta|<2.4$, JVF > 0.5
- At least one b-jets
 - MV1 output ≥ 0.7892
- MET $> 30 \text{ GeV}$
- Transverse mass of the leptonic W: $m_T(\text{lep, MET}) > 30 \text{ GeV}$
Event selection

• The event has one good vertex (hasGoodVertex)

• Exactly one good lepton
 ‣ Tight lepton ID
 ‣ $p_T > 25$ GeV
 ‣ Track isolation: lep_ptcone30/lep_pt < 0.15
 ‣ Calorimeter isolation: lep_etcone20/lep_pt < 0.15

• At least four good jets
 ‣ $p_T > 25$ GeV
 ‣ $|\eta| < 2.5$
 ‣ if $p_T < 50$ GeV and $|\eta|<2.4$, JVF > 0.5

• At least one b-jets
 ‣ MV1 output ≥ 0.7892

• MET > 30 GeV

• Transverse mass of the leptonic W: $m_T(\text{lep, MET}) > 30$ GeV
Event selection

- The event has one good vertex (hasGoodVertex)
- Exactly one good lepton
 - Tight lepton ID
 - $p_T > 25$ GeV
 - Track isolation: $\text{lep_ptcone30/lep_pt} < 0.15$
 - Calorimeter isolation: $\text{lep_etcone20/lep_pt} < 0.15$
- At least four good jets
 - $p_T > 25$ GeV
 - $|\eta| < 2.5$
 - if $p_T < 50$ GeV and $|\eta|<2.4$, JVF > 0.5
- At least one b-jets
 - MV1 output ≥ 0.7892
- MET > 30 GeV
- Transverse mass of the leptonic W: $m_T(\text{lep, MET}) > 30$ GeV
Event selection

- The event has one good vertex (hasGoodVertex)
 - Exactly one good lepton
 ‣ Tight lepton ID
 ‣ $p_T > 25$ GeV
 ‣ Track isolation: $\text{lep}_{\text{ptcone30}}/\text{lep}_{\text{pt}} < 0.15$
 ‣ Calorimeter isolation: $\text{lep}_{\text{etcone20}}/\text{lep}_{\text{pt}} < 0.15$
 - At least four good jets
 ‣ $p_T > 25$ GeV
 ‣ $|\eta| < 2.5$
 ‣ if $p_T < 50$ GeV and $|\eta| < 2.4$, JVF > 0.5
 - At least one b-jets
 ‣ MV1 output >= 0.7892
 - MET > 30 GeV
 - Transverse mass of the leptonic W: $m_T(\text{lep}, \text{MET}) > 30$ GeV
Event selection

- The event has one good vertex (hasGoodVertex)
- Exactly one good lepton
 - Tight lepton ID
 - $p_T > 25$ GeV
 - Track isolation: $\text{lep}_\text{ptcone30}/\text{lep}_\text{pt} < 0.15$
 - Calorimeter isolation: $\text{lep}_\text{etcone20}/\text{lep}_\text{pt} < 0.15$
- At least four good jets
 - $p_T > 25$ GeV
 - $|\eta| < 2.5$
 - if $p_T < 50$ GeV and $|\eta| < 2.4$, JVF > 0.5
- At least one b-jets
 - MV1 output ≥ 0.7892
- MET > 30 GeV
- Transverse mass of the leptonic W: $m_T(\text{lep, MET}) > 30$ GeV
Event selection

• The event has one good vertex (hasGoodVertex)
• Exactly one good lepton
 ‣ Tight lepton ID
 ‣ $p_T > 25$ GeV
 ‣ Track isolation: $\text{lep}_\text{ptcone30}/\text{lep}_\text{pt} < 0.15$
 ‣ Calorimeter isolation: $\text{lep}_\text{etcone20}/\text{lep}_\text{pt} < 0.15$
• At least four good jets
 ‣ $p_T > 25$ GeV
 ‣ $|\eta| < 2.5$
 ‣ if $p_T < 50$ GeV and $|\eta|<2.4$, JVF > 0.5
• At least one b-jets
 ‣ MV1 output $>= 0.7892$
• MET > 30 GeV
• Transverse mass of the leptonic W: $m_T(\text{lep}, \text{MET}) > 30$ GeV

// WmT
double WmT = -999999;
if (goodLeptons.size() == 1) WmT = (goodLeptons.at(0).tlv + MET.tlv).Mt();
The event has one good vertex (hasGoodVertex)
Exactly one good lepton
At least four good jets
At least one b-jets
MET > 30 GeV
Transverse mass of the leptonic W: $m_T(\text{lep, MET}) > 30 \text{ GeV}$

You can store this in a TH1 as it was done for the trigger information!
Event selection: signal vs. background

- Although the trigger would select event from both processes, the event selection focuses on the signal.

- Some backgrounds won’t be rejected as nicely as WW. For instance, tt.
Event selection efficiency

- Can be defined in terms of absolute or relative efficiency
- Absolute event selection efficiency
 - Number of events that passed a given cut X with respect to the total (initial) number of events
 - $\varepsilon_X = \frac{N_X}{N_{\text{total}}}$
- Relative event selection efficiency
 - Relative to another cut: often the previous
 - $\varepsilon_X = \frac{N_X}{N_{X-1}}$
- Applying a cut can be considered a binomial process
 - The only possibilities are "pass" or "fail"
- Let’s assume that the uncertainty on the efficiency can be described using binomial errors
 - $\delta \varepsilon = \sqrt{\varepsilon (1-\varepsilon)/N}$
Homework 2 (due Tuesday, April 23)

• Make the object selection plots as in slides 10 to 15 in here for ttbar (9 plots!)
 • Each plot has to be made before the cut on that variable has been applied

• Make an event selection efficiency table for Z'(2500 GeV), ttbar and WW
 ‣ Relative and absolute efficiencies
 ‣ Include binomial errors
Thanks!