

HL-LHC filling schemes: possible optimization

G. Iadarola

Many thanks to:

C. Schwick and the LPC for filling scheme webtools (ad-hoc features developed for these studies)H. Bartosik, E. Metral, G. Rumolo, R. Tomas

- Constraints
- Standard scheme (72b trains)
 - \circ Can we squeeze in a few more bunches?
- Trains of 48b:
 - o 5x48 vs 6x48
- Mixed schemes
 - $\circ~$ Mixing 25 ns and 8b4e in the SPS and in the LHC
- Final remarks

In the following we assume (as in Run 2):

- Gap between injections into the SPS (T_{MKP}): 200 ns (7 slots)
- Gap between injections into the LHC (T_{MKI}): 800 ns (31 slots)
- Abort gap length: 3.05 µs (121 slots)
- Kicker pulses (MKI, MKE) long enough to inject **4x80b into the LHC**
- The **first injection** consists in a short batch (8b or 12b)
 - These are left **non-colliding** in IP1&5
- All other bunches are colliding in IP1/5
- As close as possible to **four-fold symmetry** to maximize number of collisions in **IP8**

- Constraints
- Standard scheme (72b trains)
 - Can we squeeze in a few more bunches?
- Trains of 48b:
 - o 5x48 vs 6x48
- Mixed schemes
 - Mixing 25 ns and 8b4e in the SPS and in the LHC
- Final remarks

- Constraints
- Standard scheme (72b trains)
 - Can we squeeze in a few more bunches?
- Trains of 48b:
 - o 5x48 vs 6x48
- Mixed schemes
 - Mixing 25 ns and 8b4e in the SPS and in the LHC
- Final remarks

Trains of 48b can be useful to **mitigate different issues**:

- Filling schemes made of trains of 48b produce less e-cloud (-10% w.r.t. 72b)
- Trains of 48b can be produced with BCMS scheme:
 - **25% higher brightness** w.r.t. standard production
 - Backup in case of un-expected emittance blow-up
- Can also be produced with STD scheme using **single-batch transfer from PSB to PS**:
 - Same brightness as baseline
 - Very short injection plateau in PS (no second injection)
 - Shorter injection plateau in SPS
 - Can be used to mitigate issues with losses/blow-up at low-energy in PS/SPS
 - \circ $\,$ Can give slightly shorter injection time $\,$

Optimized (5 x 48b) scheme

25ns_2744b_2736_2246_2370_240bpi_13inj_800ns_bs200ns_5x48b_opt

Scheme name: 25ns_2744b_2736_2246_2370_240bpi_13inj_800ns_bs200ns_5x48b_opt

- Having the possibility of injecting **two different patterns for the injectors** allows increasing the number of bunches in the LHC
- A further increase can be obtained using trains of 80b

Pattern from injectors	N. injections	Unused space	Collisions in IP1/5	Collisions in IP8	Collisions in IP2
(4 x 72b)	13	122 (3.4%)	2748 (ref.)	2560 (ref.)	2495 (ref.)
(4 x 72b) and (24b + 72b)	13	17 (0.5%)	2832 (+3.1%)	2631 (+2.8%)	2560 (+2.6%)
(4 x 80b)	12	126 (3.5%)	2800 (+1.9%)	2658 (+3.8%)	2618 (+4.9%)
(4 x 80b) and (32b + 80b)	12	9 (0.3%)	2896 (+5.4%)	2734 (+6.8%)	2656 (+6.5%)

- Using **injections of 5x48b** it is possible to have **the same number of collisions in IP1&5** as in the baseline (no further optimization possible)
- Injections of **6x48b do not provide any further gain** → 5x48b is preferred

Pattern from injectors	N. injections	Unused space	Collisions in IP1/5	Collisions in IP8	Collisions in IP2
(5 x 48b)	13	12 (0.3%)	2736 (-0.4%)	2370 (-7.4%)	2246 (-10%)
(6 x 48b)	12	32 (0.9%)	2736 (-0.4%)	2378 (-7.1%)	2258 (-9.5%)

- Constraints
- Standard scheme (72b trains)
 - Can we squeeze in a few more bunches?
- Trains of 48b:
 - o 5x48 vs 6x48
- Mixed schemes
 - $\circ~$ Mixing 25 ns and 8b4e in the SPS and in the LHC
- Final remarks

Standard **25 ns** trains and **8b4e** trains can be **combined** in the same filling scheme to **mitigate e-cloud effects**

→ It can be done both starting from 72b and 48b filling scheme

The share between 8b+4e and 25 ns strains can be changed to match the excess of heat load

Reduces heat load by 20% w.r.t. baseline (with 10% less collisions in IP5&5)

Reduces heat load by 40% w.r.t. baseline (with **14%** less collisions in IP5&5)

- Constraints
- Standard scheme (72b trains)
 - Can we squeeze in a few more bunches?
- Trains of 48b:
 - o 5x48 vs 6x48
- Mixed schemes
 - Mixing 25 ns and 8b4e in the SPS and in the LHC
- Final remarks

- Run 1 and Run 2 have shown that **injectors flexibility is a powerful tool to mitigate issues and push performance** (e.g. high-intensity 50 ns, 36b scheme, BCMS, 8b4e)
 - ightarrow These capabilities should be certainly preserved and enhanced for HL-LHC
- For several schemes (both for problem-mitigation and performance enhancement) it would be desirable to inject two kinds of bunch trains within the same filling scheme
 - → Combined with possibility of having trains of 80b, it allows obtaining ~2900b colliding in IP1&5
 - → Allows using mixed 8b4e/25ns schemes to fight e-clouds

(Obvious?) reminder: reliability is equally or more important than beam parameters!

- \rightarrow we can really gain in integrated luminosity from "complex" schemes only if:
 - Injectors availability remains high
 - Beam preparation stays in the shadow of LHC ramp-down and setup
 - Injection process is smooth and efficient