Measuring the skew-sextupolar component of a crab-cavity from turn-by-turn observations

Michele Carlà, Lee Robert Carver, Androula Alekou, Hannes Bartosik With the help of the SPS OP group

29 Jan 2019

Non-linear effects in a crab-cavity

LONG TERM DYNAMICS OF THE HIGH ...

PHYS. REV. ACCEL. BEAMS 19,

TABLE II. Values of the multipolar rf multipoles for the crab cavity prototypes at nominal deflecting voltage V $_{cc}$ ½ 10 MV in units of mTm=m¹⁻¹.

		Lorentz method		Panofsky-Wenzel		Helmholtz decom-
		@10 mm	@20 mm	@10 mm	@20 mm	position @20 mm
4RCAV	b ₂	-0.06	-0.05	-0.06	-0.06	-0.10
2012	b ₃	1159	1159	1161	1161	1156
	b ₄	-4	100	65	27	57
RWCAV	b ₂	0.01	0.00	0.00	0.01	0.02
2012	b3	4511	4511	4495	4495	4518
	b ₄	-4	-7	-21	7	10
QWCAV	b ₂	111.42	111.40	111.43	111.48	113.06
2011	b ₃	1266	1267	1257	1260	1279
	ba	1776	1776	1401	1836	2102
QWCAV	b ₂	0.29	0.29	0.29	0.29	0.24
2012	b3	1074	1073	1078	1078	1073
	b ₄	50	67	6	64	22

- b3 is the multipole (sextupole) with the strongest impact on the non-linear beam-dynamic
- In the SPS crab cavities have been installed rotated by 90°. Therefore: b3 → a3 (sextupole → skew sextupole)

Can we measure A_3 ?

Transverse beam dynamics in presence of a skew-sextupole

500

(日)

If we excite the horizontal betatron motion with a kick...

・ロト ・西ト ・ヨト ・ヨー うへぐ

The skew sextupole couples horizontal and vertical motion

(日)

Э

Sac

- ▶ V_{20} : Spectral line with frequency $2Q_x \rightarrow$ Damps following the horizontal decoherence
- V₀₀: Static offset of the orbit → No damping (?)

BPMs can measure the beam motion as long as the beam move rigidly. With multiple bunches decoherence plays an important role!

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Spectral analysis of V_{20}

For each acquisition:

- 1. \mathbf{Q}_{x} : average over each horizontal BPM (à la Laskar)
- 2. H_{10} amplitude, phase and damping (damping: average over each horizontal BPM)

э

- 3. Undamp the vertical signal
- 4. Evaluate amplitude and phase of V_{20} for each vertical BPM

Analysis of V_{00}

For each acquisition:

- 1. Orbit is obtained from the average of 1000 turns before the kick
- 2. V_{00} is the difference of the orbit and the average of $\ 100 \ turns \ after \ the \ kick$

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

3. ...Damping?

Typical BPM signal... no averaging, no filtering

► Amplitude and phase of 50Hz is evaluated using 3000 turns before the kick

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

50Hz is purged from the signal

Measurements/Experimental results

► 20/10/2017 test with a static skew-sextupole

- No skew sextupoles is present in SPS, a 5 mm vertical bump in an octupole (LOE.33002) was used to produce a feed-down.
- ▶ The measurement was repeated for an octupole strength of K3 = \pm 2, \pm 5 and a vertical bump of \pm 5mm

- Q20 optics was used.
- ▶ 10/10/2018 measurement was repeated with the crab cavity
 - ► The measurement was repeated for a crab cavity voltage of: 0.1 and ±1 MV
 - Q26 optics was used.

Skew sextupole strength from V_{00}

ર્ જેટલ

Skew sextupole strength from V_{20} (Octupole)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Summary

▶ Measurements of V₀₀ and V₂₀ with a static skew sextupole (vertical bump in an octupole) shows agreement with theory

V_{00}	V_{20}	Model	
1.88e-2	1.66e-2	1.63e-2	m^{-2}

Measurements of the skew-sextupolar component of the crab cavity are higher than expected (results do not take into account for BPM response):

Cavity setting	V_{00}	V ₂₀	Model	
+1MV	1.35e-2	1.62e-2	0.27e-2	m ⁻²
-1MV	-0.99e-2	-1.20e-2	-0.27e-2	m ⁻²

- In the case of the crab cavity a phase not expected, appears in the spectral line V_{20}
- The damping of the V_{00} is also not understood
- ► A SixTrack multiparticle tracking has been set-up to shed some light on these issues.

SPS multibunch detuning (what lucky coincidence!)

Vertical plane

イロト イポト イラト イラト

Horizontal plane

- 72 bunches in the ring
- Horizontal plane is ok up to $\sim 4\cdot 10^{12}$
- Vertical plane exhibits a strong tuneshift
- ► No excitation on the vertical plane allowed! ...but we don't need it

Induced vertical motion at turn 'n' induced by kick 't': $A_3 \cdot x^2(t) \cdot \theta(s_{\rm bpm} - s_{\rm skew} + (n-t)C) \cdot \sqrt{\beta_y^{\rm bpm} \beta_y^{\rm skew}} \sin(\Delta \psi_y + 2\pi (n-t)Q_y)$

 $y(n) = \sum_{t=0}^{n} A_{3} \sqrt{\beta_{y}^{\text{bpm}} \beta_{y}^{\text{skew}}} \sin(\Delta \psi_{y} + 2\pi(n-t)Q_{y}) \times \left[\sqrt{\beta_{x}^{\text{skew}} J_{x}} \sin(\psi_{x}^{\text{skew}} + 2\pi tQ_{x}) \right]^{2} \sum_{y \in Q_{y}} \left[\sqrt{\beta_{y}^{\text{skew}} - \beta_{y}^{\text{skew}} - \beta_{y}^{\text{skew}}} \right]^{2} \sum_{y \in Q_{y}} \left[\sqrt{\beta_{y}^{\text{skew}} - \beta_{y}^{\text{skew}} - \beta_{y}^{\text{skew}}} \right]^{2} \sum_{y \in Q_{y}} \left[\sqrt{\beta_{y}^{\text{skew}} - \beta_{y}^{\text{skew}} - \beta_{y}^{\text{skew}}} \right]^{2} \sum_{y \in Q_{y}} \left[\sqrt{\beta_{y}^{\text{skew}} - \beta_{y}^{\text{skew}} - \beta_{y}^{\text{skew}}} \right]^{2} \sum_{y \in Q_{y}} \left[\sqrt{\beta_{y}^{\text{skew}} - \beta_{y}^{\text{skew}} - \beta_{y}^{\text{skew}} - \beta_{y}^{\text{skew}}} \right]^{2} \sum_{y \in Q_{y}} \left[\sqrt{\beta_{y}^{\text{skew}} - \beta_{y}^{\text{skew}} - \beta$

$$y(n) = \sum_{t=0}^{n} A_3 \sqrt{\beta_y^{\text{bpm}} \beta_y^{\text{skew}}} \sin(\Delta \psi_y + (n-t)\nu_y) \times \left[\sqrt{\beta_x^{\text{skew}} J_x} \sin(\psi_x^{\text{skew}} + t\nu_x)\right]^2$$

$$\bigvee \sum_{t=0}^{n} e^{it\nu} = \frac{1 - e^{i(n+1)\nu}}{1 - e^{i\nu}}$$

$$y(n) = \mathbf{V_{20}} + V_{02} + V_{01} + V_{00}$$

$$V_{20} = A_3 J_x \frac{\beta_x^p \sqrt{\beta_y^o \beta_y^p}}{8i} \cdot \left[\frac{e^{i(2\nu_x + \nu_y - \Delta\psi_y + 2\psi_x^p)}}{e^{i(2\nu_x + \nu_y)} - 1} - \frac{e^{i(2\nu_x - \nu_y + \Delta\psi_y + 2\psi_x^p)}}{e^{i(2\nu_x - \nu_y)} - 1} \right] e^{2i\nu_x n} - \text{c.c.}$$

The skew-sextupole drives an oscillation with frequency $2 {\it Q}_{\rm x}$ on the vertical plane $\propto {\it A}_3 \cdot {\it J}_{\rm x}$

No skew-sextupoles in SPS: Octupole + vertical bump

- LOE.33002 was used
- ▶ ±5mm vertical bump
- $K_3 = \pm 5$ & ± 2 m⁻⁴ ($K_3 = \pm 2$ produces an A_3 very close to the C.C. one $\simeq 0.013 m^{-3}$)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Time dependent A_3 + longitudinal beam emittance

- Standard operation: head and tail of the bunch see opposite $A_3 \rightarrow$ average to 0
- Running the crab-cavity on-crest $\rightarrow A_3$ does not average to zero

• Bunch length(4σ): 3ns • Energy spread(1σ): 1.5%

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Time dependent A_3 + longitudinal beam emittance

- ▶ Standard operation: head and tail of the bunch see opposite $A_3 \rightarrow$ average to 0
- Running the crab-cavity on-crest $\rightarrow A_3$ does not average to zero

Bunch length(4σ): 3ns Energy spread(1σ): 1.5% C.C.: 680kV