
Containers for HEP

!1

Lukas Heinrich 2019/05/17

Foundational Principle: repeated experiment, i.e. proton collisions
•each event is independent of the other
•to zero-th order HEP computing is  

embarassingly parallel - great for distributed computing

!2

HEP Computing — In a Nutshell

Three Scopes of Computing

1. Online Software:

Main Problem: too much data from collisions → real-time, distributed
computed compute ("Trigger") to decide what to store persistently.

Software-based Compute Clusters need to be provisioned fast. Looking 
at Kubernetes, Mesos, etc...

2. Offline Software

The data we do write out needs to be pre-processed. "Reconstruct" what
happened in the event (which particles went in what direction?) from raw
readout data

3. Analysis Sofware

code that looks at reconstructed data to derive physics results

!3

HEP Computing — In a Nutshell

Three Scopes of Computing

1. Online Software:

Main Problem: too much data from collisions → real-time, distributed
computed compute ("Trigger") to decide what to store persistently.

Software-based Compute Clusters need to be provisioned fast. Looking 
at Kubernetes, Mesos, etc...

2. Offline Software

The data we do write out needs to be pre-processed. "Reconstruct" what
happened in the event (which particles went in what direction?) from raw
readout data

3. Analysis Sofware

code that looks at reconstructed data to derive physics results

!4

HEP Computing — In a Nutshell

highly stable, mission-critical code

bugs = data forever lost

core software written 

by physisict / sw-eng hybrids

grad student bashochism

Idea: easier to send code to data than vice versa.

Worldwide LHC Computing Grid (WLCG)

Federation of Independent Compute Clusters  
from Universities, Research Labs, etc

• necessarily heterogeneous
• small univ. clusters
• leadership class HPCs

 Misssion:

Keep it all working for all  
use-cases from well-oild 
s/w to one-off users

!5

HEP Computing — In a Nutshell

!6

Distributed Computing ↔ Software Distribution

Idea: easier to send code to data than vice versa.

We need to materialize the software stack on the remote machines
somehow.

Our traditional Stack Operating 
System

Experiment specific  
software

Application 
specific  

s/w

CERN flavored Linux experiment 
software stack 
(ATLAS, CMS) 
~5M lines C++

user analysis 
code

not your cloud-native static go bin.. 20GB stack

!7

Distributed Computing ↔ Software Distribution

Idea: easier to send code to data than vice versa.

We need to materialize the software stack on the remote machines
somehow.

On a compute node...

 Operating 
System

Experiment specific  
software

Application 
specific  

s/w

immutable for 
provisioned node 

global read-only 
filesystem (CVMFS)
few have update rights

app layer downloaded 
on demand by payload

works very reliably for bulk workloads

!8

Distributed Computing ↔ Software Distribution

Idea: easier to send code to data than vice versa.

We need to materialize the software stack on the remote machines
somehow.

On a compute node

 Operating 
System

Experiment specific  
software

Application 
specific  

s/w

immutable for 
provisioned node 

global read-only 
filesystem (CVMFS)
few have update rights

app layer downloaded 
on demand by payload

Challenge: keep in sync across three
parties to assemble filesystem view
needed by analysis

remote  
sysadmins

experiment 
core sw

analysing 
physicists

!9

Distributed Computing ↔ Software Distribution

Idea: easier to send code to data than vice versa.

We need to materialize the software stack on the remote machines
somehow.

Alternative of course: distribute software with as few assumptions
as possible, i.e. kernel and just let user specify full rootfs

Sounds good .. but can we do it?

 Operating 
System

Experiment specific  
software

Application 
specific  

s/w

Application rootfs

!10

user laptop  
local dev

unit & integration  
tests (CI) 
image building

registry

GRID

Kubernetes

LXBATCH

!11

Distributed Computing ↔ Software Distribution

Benefits of Containers clear:

• rootfs reproducibility
• simplified Ops on site admin site
• looser coupling between teams
• allow use of shared compute resources for non-traditional

workloads. Prime ex: Machine Learning (incl hw acceleration)...

!12

Distributed Computing ↔ Software Distribution

... but we need a few ingredients to make this work within an
academic setting.

• Users must be able to build & run images in their normal env:
• containers on multi-tenant systems (rootless!)
• dito: image building

• We must find an efficient way to distribute out  
software stacks globally

!13

Rootless Containers

Vast Majority of HEP computing (interactive and batch) happens
on shared resources:
• shared clusters to which users have ssh-logins.
• either interactive work on "login nodes" or submit to batch

systems (SLURM, HTCondor)

!14

Building Container Images

Currently Image Building is not supported on shared clusters
• rely on users building images

• in GItLab CI / their laptop
• also not solved in academic runtimes (singularity)

• RHEL7-based distro.
• user-namespaces enabled
• needs newuidmap / newguidmap / updated shadow-utils

!15

User Namespaces

Shared Systems have managed logins (LDAP, ...)

• how can we assign uid ranges to users automatically?
• uid exhaustion?

!16

Running Containers

• Currently best bet for Container Runtime is Singularity
• deep penetration / install base in academia
• however rootless mode of singularity afaik  

not OCI compatible
• from 3.0 requires expensive translation into SIF image format 
 

• Container Execution ~same issues as img building
• PoCs of rootless runc, containerd etc working but need to

get into prod  
 

• With current kernels in production we don't have overlay in
userspace

• what's needed for FUSE overlay (4.19? ...)

!17

Image Distribution

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 4

La
ye

r 5

La
ye

r 6

La
ye

r 7

La
ye

r 8

View the "image" not as a monolithic blob of layer data
• rather treat its manifest as a declaration of 

"intent" of what rootfs the user desires

• what's the best way to realize this filesystem  
on a remote host

• can we leverage the tech / experience we have?

Application rootfs

=

!18

Image Distribution

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 4

La
ye

r 5

La
ye

r 6

La
ye

r 7

La
ye

r 8

We know that images that users built will have significant overlap
in the middle layers

• 90% of image size is in that middle part
• usually this layer is provided through a global read-only

filesystem /cvmfs
• instead of exposing /cvmfs directly to users, can we

distribute image files through /cvmfs?
• best of both worlds: if /cvmfs available, use it as a CDN
• if not available, pull full image

Application rootfs

=

Experiment Software

!19

Image Distribution Using a Global Read-only FS

When constructing rootfs, container runtimes needs first acquire
image data locally on the host and unpack

Idea: instead of downloading layer tarballs just use directories
on global read-only filesystem

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 4

La
ye

r 5

La
ye

r 6

La
ye

r 7

La
ye

r 8

lyr1.tgz lyr5.tgzlyr4.tgz lyr8.tgz

deduped file storage

!20

Image Distribution Using a Global Read-only FS

When constructing rootfs, container runtimes needs first acquire
image data locally on the host and unpack

Idea: instead of downloading layer tarballs just use directories
on global read-only filesystem

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 4

La
ye

r 5

La
ye

r 6

La
ye

r 7

La
ye

r 8

lyr1.tgz lyr5.tgzlyr4.tgz lyr8.tgz

deduped file storage

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 4

La
ye

r 5

La
ye

r 6

La
ye

r 7

La
ye

r 8

Tr
an

si
en

t

overlay

!21

!22

We're not alone

!23

Conclusions

• Containers huge opportunity for HEP / Academia
• just a few bits missing to get broad adoption

