Containers for HEP

Lukas Heinrich 2019/05/17

HEP Computing — In a Nutshell

Foundational Principle: repeated experiment, i.e. proton collisions
e each event is independent of the other
e to zero-th order HEP computing is

embarassingly parallel - great for distributed computing

—

ATLAS

_\ EXPERIMENT

i Candidate Event:
I pp—H(—=bb) + W(—pvV)
[;Z:” "‘.‘ = — . == Run: 338712 Event: 335908183

v — g 2017-10-19 23:31:18 CEST

HEP Computing — In a Nutshell

Three Scopes of Computing
1. Online Software:

Main Problem: too much data from collisions — real-time, distributed
computed compute ("Trigger") to decide what to store persistently.

Software-based Compute Clusters need to be provisioned fast. Looking
at Kubernetes, Mesos, etc...

2. Offline Software

The data we do write out needs to be pre-processed. "Reconstruct” what
happened in the event (which particles went in what direction?) from raw

readout data

3. Analysis Sofware

code that looks at reconstructed data to derive physics results

CE/RW
\

N/ S

HEP Computing — In a Nutshell

Three Scopes of Computing

1. Online Software:

.t
Main Problem: too much data N distributed
computed compute ("Trie ’

Software-based C¢
at Kubernetes, Me

2. Offline Software

The data we do write out nes & ed. "Reconstruct" what
happened in the evep .acll ©weént in what direction?) from raw

readout data

3. Analysis Sofware

HEP Computing — In a Nutshell

Idea: easier to send code to data than vice versa.

Worldwide LHC Computing Grid (WLCGQG)

Federation of Independent Compute Clusters
from Universities, Research Labs, etc

- necessarily heterogeneous
- small univ. clusters
- leadership class HPCs

MW dashbaard

Misssion: \ \ ‘
| /A

Keep it all working for all WORLOWIDE Luc
use-cases from well-oild ol

s/w to one-off users fl I | . 1O THE GRID

9)

N/ S

Distributed Computing < Software Distribution

send code

We need to materialize the software stack on the remote machines

' i
A

user analysis
code

- Oberat
Our traditional Stack St

CERN flavored Linux experiment
software stack
(ATLAS, CMS)
~5M lines C++

\/\//

not your cloud-native static go bin.. 20GB stack

Distributed Computing < Software Distribution

send code

We need to materialize the software stack on the remote machines
somehow.

On a compute node...

works very reliably for bulk workloads

immutable for .
. . d d Operating

global read-only
filesystem (CVMFS)
few have update rights

app layer downloaded

on demand by payload -

cﬁw
\

NS

Distributed Computing < Software Distribution

send code

We need to materialize the software stack on the remote machines

somehow. Challenge: keep in sync across three
parties to assemble filesystem view
On a compute node needed by analysis
remote

sysadmins

experiment

immutable for _
Operating core sw

provisioned node System

analysing

- o
app layer downloaded
on demand by payload

global read-only
filesystem (CVMFS)
few have update rights

CE/RW
\

NS

Distributed Computing < Software Distribution

send code

We need to materialize the software stack on the remote machines
somehow.

Alternative of course: distribute software with as few assumptions
as possible, i.e. kernel and just let user specify full rootfs

Sounds good .. but can we do it?

Operating

System
T |_|

16443956 task: user.lheinric.scweek.v1/ aipanda167 | 12-13 02:55:02, Reload

16443956 task: user.lheinric.scweek.v1/

HS06*sec
E Ni il
Working L Task Nevents LI |-n|-)utf| es .
Task ID Jobset | Type User Destination Total | finished | | Created | Modified | C
Group status | | used i
done failed
failed
Lukas None 2018- 2018-12-
920 11|11
16443956 = 3800 analy Alexander 0]0 (%) 12-13 13 1
L 920 | (100%)
Heinrich 02:18:14 02:36:07

0

Job parameters

” Open pIOt

--containerlmage docker://busybox

obs Switch to nodrop mode

-a jobO.d4e92bca-3544-496a-b03a-bf2299a61d40.tar.gz
ted starting | running transferring = finished failed
-j "" --sourceURL https://aipanda078.cern.ch:25443
1
-0 "{'out.json': 'user.lheinric. 5JEDITASKID._${SN/P}.out.json'}" KU bernetes
E GitLab

user laptop unit & integration registry
local dev tests (Cl)
image building

LXBATCH

Distributed Computing < Software Distribution

Benefits of Containers clear:

e rootfs reproducibility

e simplified Ops on site admin site

e looser coupling between teams

e allow use of shared compute resources for non-traditional
workloads. Prime ex: Machine Learning (incl hw acceleration)...

Distributed Computing < Software Distribution

... but we need a few ingredients to make this work within an
academic setting.

e Users must be able to build & run images in their normal env:
e containers on multi-tenant systems (rootless!)
e dito: image building

« We must find an efficient way to distribute out
software stacks globally

Rootless Containers

Vast Majority of HEP computing (interactive and batch) happens
on shared resources:

* shared clusters to which users have ssh-logins.

 either interactive work on "login nodes™ or submit to batch
systems (SLURM, HTCondor)

Building Container Images

Currently Image Building is not supported on shared clusters
* rely on users building images

e in GltLab CI / their laptop
e also not solved in academic runtimes (singularity)

e RHEL7-based distro.
e user-namespaces enabled
* needs newuidmap / newguidmap / updated shadow-utils

User Namespaces

Shared Systems have managed logins (LDAP, ...)

 how can we assign uid ranges to users automatically?
e uid exhaustion?

Running Containers

e Currently best bet for Container Runtime is Singularity
* deep penetration / install base in academia
 however rootless mode of singularity afaik
not OCI| compatible
* from 3.0 requires expensive translation into SIF image format

e Container Execution ~same issues as img building
 PoCs of rootless runc, containerd etc working but need to
get into prod

 With current kernels in production we don't have overlay in
userspace
e what's needed for FUSE overlay (4.197? ...)

9)

N/ S

Image Distribution

View the "image"” not as a monolithic blob of layer data
e rather treat its manifest as a declaration of
"intent” of what rootfs the user desires

 what's the best way to realize this filesystem
on a remote host
e can we leverage the tech / experience we have?

Image Distribution
Experiment Software

We know that images that users built will have significant overlap
in the middle layers

* 90% of image size is in that middle part
e usually this layer is provided through a global read-only
filesystem /cvmfs
* instead of exposing /cvmfs directly to users, can we
distribute image files through /cvmfs?
e best of both worlds: if /cvmfs available, use it as a CDN
e if not available, pull full image

Image Distribution Using a Global Read-only FS

When constructing rootfs, container runtimes needs first acquire
image data locally on the host and unpack

Idea: instead of downloading layer tarballs just use directories
on global read-only filesystem

il 1

CE/RW
\

NS

Image Distribution Using a Global Read-only FS

When constructing rootfs, container runtimes needs first acquire
image data locally on the host and unpack

Idea: instead of downloading layer tarballs just use directories

on global read-only filesystem IIIIIIIII

IIII I&L

CE/RW
\

NS

L] containerd / containerd ®OWwatchv 234 KUnstar 4,095 YFork 808

Code @® Issues 125 Pull requests 32 Projects 0 Insights

remote filesystem snapshotter #2943 Gll] Vo issue |

lukasheinrich opened this issue on 22 Jan - 18 comments

lukasheinrich commented on 22 Jan « edited ~ +@ Assignees
No one assigned

This is an issue to track / follow up on a call re: file-level image distribution through remote filesystems.

. . . Labels
Slides for CERN use-case shown during meeting:
https://docs.google.com/presentation/d/1DJIRV9a445567EyRa265uemWv5z0DQ401CK-ZszpFLE/edit? None yet
usp=sharing

Projects
The goal is to support exploiting the existence of unpacked layers on remote filesystems (FUSE N .
one ye
mounted, possibly read-only) to reduce the amount of data transferred during image pull. A candidate y
filesystem could be CVMFS (CERN VM Filesystem: https://github.com/cvmfs/cvmfs)
Milestone

The current approach in containerd has an ordering where

No milestone

We're not alone

IMIANW VIVIO ‘vl\l \J’ LN AVAS VAV
e bradfitz commented on 23 Mar +(@)

We would also like this for https://github.com/google/crfs

® ehotinger referenced this issue on 4 Apr
google / crfs
<> Code Issues 1 Pull requests 0 Insights

CRFS: Container Registry Filesystem

D 21 commits P 2 branches © 0 releases } {

Branch: master ~ New pull request Create new’

bradfitz crfs: populate inodes so we don't confuse overlayfs

Conclusions

e Containers huge opportunity for HEP / Academia
* just a few bits missing to get broad adoption

