
Rootless Containers &
Unresolved Issues

Akihiro Suda / NTT (@_AkihiroSuda_)

May 17, 2019

1

Agenda
• Introduction to Rootless Containers

• How it works

• Adoption status

• Unresolved issues

• containerd dev plan
2

Introduction

3

Rootless Containers
• Run containers, runtimes, and orchestrators as a non-root

user

• Don’t confuse with:
– usermod -aG docker penguin
– docker run --user
– dockerd --userns-remap

4

Motivation of Rootless Containers
• To mitigate potential vulnerability of container runtimes and

orchestrator (the primary motivation)

• To allow users of shared machines (e.g. HPC) to run
containers without the risk of breaking other users
environments
– Still unsuitable for “multi-tenancy” where you can’t really

trust other users

• To isolate nested containers, e.g. “Docker-in-Docker”
5

Runtime vulnerabilities
• Docker “Shocker” (2014)

– A malicious container was allowed to access the host file system,
as CAP_DAC_READ_SEARCH was effective by default

• Docker CVE-2014-9357
– A malicious docker build container could run arbitrary binary on

the host as the root due to an LZMA archive issue

• containerd #2001 (2018)
– A malicious container image could remove /tmp on the host when

the image was pulled (not when actually launched!)

6

Runtime vulnerabilities
• Docker “Shocker” (2014)

– A malicious container was allowed to access the host file system,
as CAP_DAC_READ_SEARCH was effective by default

• Docker CVE-2014-9357
– A malicious docker build container could run arbitrary binary on

the host as the root due to an LZMA archive issue

• containerd #2001 (2018)
– A malicious container image could remove /tmp on the host when

the image was pulled (not when actually launched!)

7

Vulnerability of daemons, not containers per se
So --userns-remap is not effective

Runtime vulnerabilities
• runc #1962 (2019)

– Container break-out via
/proc/sys/kernel/core_pattern or
/sys/kernel/uevent_helper

– Hosts with the initrd rootfs (DOCKER_RAMDISK) were
affected (e.g. Minikube)

• runc CVE-2019-5736
– Container break-out via /proc/self/exe

8

Other vulnerabilities
• Kubernetes CVE-2017-1002101, CVE-2017-1002102

– A malicious container was allowed to access the host filesystem via
vulnerabilities related to volumes

• Kubernetes CVE-2018-1002105
– A malicious API call could be used to gain cluster-admin (and

hence the root privileges on the nodes)

• Git CVE-2018-11235 (affected Kubernetes gitRepo volumes)
– A malicious repo could execute an arbitrary binary as the root when

it was cloned

9

Other vulnerabilities
• Kubernetes CVE-2017-1002101, CVE-2017-1002102

– A malicious container was allowed to access the host filesystem via
vulnerabilities related to volumes

• Kubernetes CVE-2018-1002105
– A malicious API call could be used to gain cluster-admin (and

hence the root privileges on the nodes)

• Git CVE-2018-11235 (affected Kubernetes gitRepo volumes)
– A malicious repo could execute an arbitrary binary as the root when

it was cloned

10

--userns-remap might not be effective

Play-with-Docker.com vulnerability
• Play-with-Docker.com: Online Docker playground,

implemented using Docker-in-Docker with custom
AppArmor profiles

• Malicious kernel module was loadable due to AppArmor
misconfiguration (revealed on Jan 14, 2019)
– Not really an issue of Docker

11https://www.cyberark.com/threat-research-blog/how-i-hacked-play-with-docker-and-remotely-ran-code-on-the-host/

https://www.cyberark.com/threat-research-blog/how-i-hacked-play-with-docker-and-remotely-ran-code-on-the-host/

What Rootless Containers can
• Prohibit accessing files owned by other users

• Prohibit modifying firmware and kernel (→ undetectable
malware)

• Prohibit other privileged operations like ARP spoofing,
rebooting,...

12

What Rootless Containers cannot
• If a container was broke out, the attacker still might be able

to
– Mine cryptocurrencies
– Springboard-attack to other hosts

• Not effective for kernel / VM/ HW vulns
– But we could use gVisor together for mitigating some of

them

13

How it works

14

User Namespaces
• User namespaces allow non-root users to pretend to be the

root

• Root-in-UserNS can have “fake” UID 0 and also create other
namespaces (MountNS, NetNS..)

15

User Namespaces

16

$ id -u
1001
$ ls -ln
-rw-rw---- 1 1001 1001 42 May 1 12:00 foo

$ docker-rootless run -v $(pwd):/mnt -it alpine
/ # id -u
0
/ # ls -ln /mnt
-rw-rw---- 1 0 0 42 May 1 12:00 foo

User Namespaces

17

$ docker-rootless run -v /:/host -it alpine
/ # ls -ln /host/dev/sda
brw-rw---- 1 65534 65534 8, 0 May 1 12:00
/host/dev/sda
/ # cat /host/dev/sda
cat: can’t open ‘/host/dev/sda’: Permission denied

Sub-users (and sub-groups)
• Put users in your user account so you can be a user while

you are being a user

• Sub-users are used as non-root users in a container
– USER in Dockerfile
– docker run --user

18

Sub-users (and sub-groups)
• If /etc/subuid contains “1001:100000:65536”

• Having 65536 sub-users should be enough for most
containers

19

0 1001 100000 165535 232 Host

UserNS

primary user sub-users
start

sub-users
length

0 1 65536

Sub-users (and sub-groups)
• Sub-users are configured via SUID binaries
/usr/bin/{newuidmap, newgidmap}

• SETUID binary can be dangerous; newuidmap &
newgidmap had two CVEs so far:
– CVE-2016-6252 (CVSS v3: 7.8): integer overflow issue
– CVE-2018-7169 (CVSS v3: 5.3): supplementary GID issue

20

Sub-users (and sub-groups)
• Also hard to maintain sub-users

– LDAP / AD
– Nesting user namespaces might need huge number of

sub-users

21

Sub-users (and sub-groups)
• Alternative way: Single-mapping mode

• Does not require newuidmap/newgidmap

• Ptrace and/or Seccomp can be used for intercepting
syscalls to emulate sub-users
– user.rootlesscontainers xattr can be used for

chown emulation

22

Network Namespaces
• An unprivileged user can create network namespaces along

with user namespaces

• With network namespaces, the user can
– isolate abstract (pathless) UNIX sockets

• important to prevent container breakout
– create iptables rules
– set up overlay networking with VXLAN
– run tcpdump
– ...

23

Network Namespaces
• But an unprivileged user cannot set up veth pairs across

the host and namespaces, i.e. No internet connection

24

The Internet

Host

UserNS + NetNS

Network Namespaces

25

• lxc-user-nic SUID binary allows unprivileged users to
create veth, but we are not huge fun of SUID binaries

• Our approach: use completely unprivileged usermode
network (“Slirp”) with a TAP device

TAP

“Slirp” TAPFD

send fd as
a SCM_RIGHTS cmsg

The Internet

Host

UserNS + NetNS

Network Namespaces
Benchmark of several “Slirp” implementations:

• slirp4netns (our own implementation based on QEMU Slirp) is the
fastest because it avoids copying packets across the namespaces

MTU=1500 MTU=4000 MTU=16384 MTU=65520

vde_plug 763 Mbps Unsupported Unsupported Unsupported

VPNKit 514 Mbps 526 Mbps 540 Mbps Unsupported

slirp4netns 1.07 Gbps 2.78 Gbps 4.55 Gbps 9.21 Gbps
cf. rootful veth 52.1 Gbps 45.4 Gbps 43.6 Gbps 51.5 Gbps

Benchmark: iperf3 (netns -> host), measured on Travis CI. See rootless-containers/rootlesskit#12 26

https://github.com/rootless-containers/rootlesskit/pull/12

Multi-node networking
• Flannel VXLAN is known to work

– Encapsulates Ethernet packets in UDP packets
– Provides L2 connectivity across rootless containers on

different nodes

• Other protocols should work as well, except ones that
require access to raw Ethernet

27

Snapshotting
• OverlayFS is currently unavailable in UserNS (except on

Ubuntu kernel)

• FUSE-OverlayFS can be used instead with kernel 4.18+

• XFS reflink can be also used to deduplicate files (but slow)

28

Cgroup
• pam_cgfs can be used for delegating permissions to

unprivileged users, but considered insecure by systemd
folks https://github.com/containers/libpod/issues/1429

• cgroup2 provides proper support for delegation, but not
adopted by OCI at the moment

29

https://github.com/containers/libpod/issues/1429

Rootless Containers in Containers
• Urge demand for building images on Kubernetes cluster

• Seccomp and AppArmor needs to be disabled for the parent
containers

• To allow the children to mount procfs (pid-namespaced),
maskedPaths and readonlyPaths for /proc/* for the
parent needs to be removed (weird!)
– Same applies to sysfs (net-namespaced)

30

Rootless Containers in Containers
• So --privileged had been typically required anyway :(

– Or at least --security-opt
{seccomp,apparmor}=unconfined

• Docker 19.03 supports --security-opt
systempaths=unconfined for allowing procfs & sysfs
mount (Kube: securityContext.procMount, but no
sysMount yet)
– Make sure to lock the root in the container!

 (passwd -l root, Alpine CVE-2019-5021)
31

Adoption status

32

Adoption status: runtimes

33

Docker v19.03
containerd

runc

Podman
(≈ CRI-O)

crun
LXC Singularity

NetNS isolation
with Internet
connectivity

● VPNKit
● slirp4netns
● lxc-user-nic

(SUID)

slirp4netns lxc-user-nic
(SUID) No support

Supports
FUSE-OverlayFS No Yes No No

Cgroup No Limited support
for cgroup2 pam_cgfs No

Adoption status: runtimes::GPU
• nvidia-container-runtime is known to work

• Need to disable cgroup manually

• Rootful nVIDIA container needs to be executed on every
system startup

• Probably, other devices such as FPGA should work as well
(untested)

34

Adoption status: runtimes::single-mapping
mode
• udocker does not need subuid configuration, as it can

emulate subuser with ptrace (based on PRoot)
– but no persistent chown

• runROOTLESS (Don’t confuse with upstream rootless runc)
supports persistent chown as well, using
user.rootlesscontainers xattr
– the xattr value is a pair of UID and GID in protobuf

encoding
– the xattr convention is compatible with umoci

35

Adoption status: runtimes::single-mapping
mode
• Ptrace is slow https://github.com/rootless-containers/runrootless/issues/14

• seccomp can be used for acceleration but hard to
implement correctly

36

https://github.com/rootless-containers/runrootless/issues/14

Adoption status: image builders
• BuildKit / img / Buildah supports rootless mode

– Works in containers as well as on the host
– Does not need --privileged but Seccomp and

AppArmor needs to be disabled

37

Adoption status: image builders
• Similar but different work: Kaniko & Makisu

– Rootful
– But no need to disable seccomp and AppArmor,

because they don’t create containers for RUN
instructions in Dockerfile

38

Adoption status: Kubernetes
• Usernetes project provides patches for rootless Kubernetes,

but not proposed to the upstream yet
– Supports all major CRI runtimes: dockershim, containerd,

CRI-O
– Flannel VXLAN is known to work
– Lack of cgroup might be huge concern

• But Usernetes is already integrated into k3s!
(5 less than k8s)

39
$ k3s server --rootless

You can rootlesify your own project easily!

• RootlessKit does almost all things for rootlessifying your
container project (or almost any rootful app)
– Creates UserNS with sub-users and sub-groups
– Creates MountNS with writable /etc, /run but without

chroot
– Creates NetNS with VPNKit/slirp4netns/lxc-user-nic
– Provides REST API on UNIX socket for port forwarding

management

40

You can rootlesify your own project easily!

41

$ rootlesskit --net=slirp4netns --copy-up=/etc \
 --port-driver=builtin bash
id -u
0
touch /etc/here-is-writable-tmpfs
ip a
...
2: tap0: <BROADCAST,MULTICAST,UP,LOWER_UP>
 inet 10.0.2.100/24 scope global tap0
...
rootlessctl add-ports 0.0.0.0:8080:80/tcp

You can rootlesify your own project easily!

• With RootlessKit, you just need to work on disabling cgroup
stuff, sysctl stuff, and changing the data path from /var/lib
to /home

• Used by Docker, BuildKit, k3s

42

Unresolved Issues

43

Kernel has vulns
• UserNS tends to have priv escalation vulns

– CVE 2013-1858: UserNS + CLONE_FS
– CVE-2014-4014: UserNS + chmod
– CVE-2015-1328: UserNS + OverlayFS (Ubuntu-only)

• So rootless OverlayFS is still not merged in upstream
– CVE-2018-18955: UserNS + complex ID mapping

44

Kernel has vulns
• A bunch of code paths that can hang up the kernel

– e.g. CVE-2018-7191 (unpublished published today):
creating a tap device with illegal name

– And more, see
https://medium.com/@jain.sm/security-challenges-with-kubernetes-818fad4a89f2

• Unlimited resources e.g.
– Pending signals
– Max user process
– Max FDs per user

(see the same URL above)
45

https://medium.com/@jain.sm/security-challenges-with-kubernetes-818fad4a89f2

Kernel has vulns
• So I’ve never suggested using rootless containers for real

multi-tenancy ¯_(ツ)_/¯

46

Kernel has vulns
• gVisor might be able to mitigate them but significant

overhead and syscall incompatibility

• UML (20 yo, still alive!) is almost compatible with real Linux
but it even lacks support for SMP

• linuxd: similar to UML but accelerated with host kernel
patches
– Still no public code

https://schd.ws/hosted_files/ossna18/db/Containerize%20Linux%20Kernel.pdf
47

https://schd.ws/hosted_files/ossna18/db/Containerize%20Linux%20Kernel.pdf

Cgroups
• cgroup2 is not adopted in OCI
• crun is trying to support cgroup2 without changing OCI spec

48

Mount
• Only supports:

– tmpfs
– bind
– procfs (PID-namespaced)
– sysfs (net-namespaced)
– FUSE (since kernel 4.18)
– Overlay (Ubuntu only)

• No support for mounting any block devices (even loopback
devices)

49

Landlock
• landlock: unprivileged sandbox LSM

• Not merged in the upstream kernel, but promising as
AppArmor-alternative

50

LDAP / Active Directory
• /etc/sub{u,g}id configuration is painful for LDAP/AD

• Alternatively, implementing NSS module is under
discussion, but no code yet https://github.com/shadow-maint/shadow/issues/154

51

https://github.com/shadow-maint/shadow/issues/154

Single-mapping mode
• runROOTLESS / PRoot could be accelerated with seccomp

but implementation is broken

• Kernel 5.0 seccomp could be used for getting rid of ptrace
completely

52

containerd dev plan

53

containerd dev plan
• Implement FUSE-OverlayFS snapshotter plugin

– Probably in a separate repo
– Should not be difficult

• Support cgroup2
– Probably we want to wait for OCI Runtime Spec and runc

to be revised
– But we can also consider beginning support cgroup2

right now with crun

54

containerd dev plan
• Support running containerd inside gVisor

– So as to allow running rootless containers in a container
without disabling seccomp & apparmor

– And to mitigate potential kernel vulns
– Currently MountNS is not working

https://github.com/google/gvisor/issues/221

55

https://github.com/google/gvisor/issues/221

