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Data Volume
• Extract physics results will require 

to handle/analyze a lot more data
- Must optimize further
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Current CMS Analysis Workflow
• MiniAOD:

- Centrally produced output of reconstruction software

- O(100 TB), ROOT (C++) format, nested structure with branches

• Ntupling:

- disk-to-disk copy, to modify the event content

- duplicate immutable, add needed, and remove unused branches

• Group ntuples:

- O(100 TB), ROOT (C++) format, nested structure with branches

- dump of the content of the original files into a moderately specialized version

• Skimming & Slimming:

- disk-to-disk copy, to limit latencies

- dropping events/branches

• Analysis ntuples:

- O(10 TB), ROOT (C++) format, flat
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On grid, ~1 week

on gridIn batch, ~2/3 days



Current Limitations
The current file-based data representation and data management systems do not allow:

- To add/remove branches from the original data representation (therefore we ntuple)

- To extract branches efficiently from nested ROOT files (therefore we skim&slim)
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Current Limitations
The current file-based data representation and data management systems do not allow:

- To add/remove branches from the original data representation (therefore we ntuple)

- To extract branches efficiently from nested ROOT files (therefore we skim&slim)

As a result we have:

• convoluted approach that limits interactivity

• Group/analysis-specific, often hardware-specific, limits portability

• unneeded duplication of immutable branches with significant storage space

Additional limitations are introduced by manual bookkeeping:

• Tedious and time-consuming

• Results in an inefficient job splitting, with suboptimal parallelization 
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Solutions
• Develop a system that:

- adopt a columnar database concept for input data representation

- physics quantities are columns

- Add/remove columns to modify the event content, no ntupling 

- Allow for "structural sharing" of immutable data, no duplication
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• Develop a system that:

- adopt a columnar database concept for input data representation

- physics quantities are columns

- Add/remove columns to modify the event content, no ntupling 

- Allow for "structural sharing" of immutable data, no duplication

- Does caching and indexing of the inputs to replace skimming/slimming

- No stage-out of intermediate steps

=> Produce plots directly from the inputs, is fully portable and use-case independent

• Use Apache-Spark/Striped as general-purpose engines for large-scale data processing to deliver columns

- Solves by construction the problem of the manual bookkeeping 

Solutions
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Coffea
Columnar Object Framework For Efficient Analysis

• CoffeaHarvester: delivers HEP data in columnar form

• coffeabeans: columnar datasets and metadata

• CoffeaGrinder: fast, understandable columnar analysis code

• coffeapods: histograms aggregated into plots or fitting ntuples

• CoffeaMaker: interface to CMS Combine fitting package
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https://github.com/CoffeaTeam

= in this talk

= next talk from Nick



Spark experience: the CMS Big Data Project

• Group created end of 2015

- tight collaboration with Diana-HEP at Princeton and CERN-IT

- website: https://cms-big-data.github.io

• Partnerships with industry through CERN openlab:

- Fermilab joined CERN openlab in 2017

- Intel actively taking part in the project

- CERN fellow sponsored by Intel
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https://cms-big-data.github.io


CHEP 2016: Proof of Principle 
• Usability Study using Apache 

Spark:
- Analyzer code in Scala

- Input converted in Avro: https://

github.com/diana-hep/rootconverter

• Improved user experience with 
optimized bookkeeping  
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arXiv:1711.00375

https://github.com/diana-hep/rootconverter
https://github.com/diana-hep/rootconverter


ACAT 2017: Steps Forward 
Several technical advancements:

• stability to read root files in Spark: https://github.com/diana-hep/spark-root, 
eliminating the need to convert in a more suitable format

• Capability to read input files remotely using XRootD (e.g. from EOS at 
CERN): https://github.com/cerndb/hadoop-xrootd , eliminating the need to 
store files on HDFS
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arXiv:1703.04171

https://github.com/diana-hep/spark-root
https://gitlab.cern.ch/awg/hadoop-xrootd-connector


CERN Infrastructure
• Spark cluster:
- analytix @ CERN: shared infrastructure with ~1300 cores, 7 TB RAM

• Storage:
- Remote EOS Public

• Simple physics analysis use case is applied to select events and reduce the 
datasets
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Scalability Test
Increasing the input size while maintaining the same amount of resources 
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Initial configuration: 804 logical cores, and 8 logical cores per Spark executor 



The Striped Server
• HEP data rearranged into 

stripes, stored in a noSQL 

database, served to worker 

nodes 

•  Only the columns requested for 

the analysis are sent

• Input data are cached for quick 

re-use, and columns may be 

updated 
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Striped Performances

100 kHz per core, > 4 MHz total throughput with 280 workers from CERN
At FNAL, ~10 MHz with network overhead



Conclusions
• Spark

- Scale as expected with the resources, proved the ability to reduce 1 PB of input in <4hrs

- Slowness in talking to the JVM is the major bottleneck, there are solutions available

• Striped

- 4 MHz with 280 cores from CERN, up to 10MHz from FNAL

- Dataset uploading to the database requires significant time and manual bookeeping, a striped 

upload module for CMSSW can solve this 

We will explore different data delivery systems to accomplish the “harvesting” step, working in tight 

connection with data engineers both from academia and industry

• Evaluating the possibility of a partnership with Databricks
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Summary
• Developing a columnar analysis framework for HEP analysis
- New analysis style (array programming, more in Nick’s talk)

- Fits nicely with big data processing engines

• In this talk, Spark and Striped

•  Currently exploring multiple solutions to find the optimal data delivery system 
for the Coffea framework
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Analysis Use-case @ Vanderbilt/Padova
Analysis workflow:

• Load standard ROOT files as Spark 

DataFrames (DFs)

• Open files over XRootD

• Use Spark to transform DFs

• Aggregate DFs into histograms

• Produce plots, tables, etc.. from histograms
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Infrastructure:

• Padova 

• ~1000 cores with 5 TB of RAM 

• Vanderbilt 

• 40 cores and 16 GB of RAM 

Identical physics use cases, using similar strategy, same tools, 

but different infrastructure



Usability Test
• Make a first-year CS undergraduate student run the workflow

- No knowledge of physics whatsoever, limited computing knowledge

- Able to make the Vanderbilt workflow run in one day

• Portability

- Run the Padova code at Vanderbilt

- Major showstopper: environment setup

=> Solutions:

• shared library with site configuration towards full generalization

• packaging of the Hadoop-XRootD connector in order to make the tool more automatically 

deployable, avoiding manual configuration 
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Running Through VC3
• Virtual Clusters for Community Computation 

(VC3) is a service that: 
- shares custom software across multiple sites 

- creates a virtual cluster of the desired size

• Able to run Padova workflow on the UChicago 
Midwest Tier 2 cluster
- 2 executors, 8 cores, 12GB RAM
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Need to test with resources from other remote sites


