
The Coffea Development Team:
M. Cremonesi, L. Gray, A. Hall, I. Mandrichenko, N. Smith [FNAL]
J. Pivarski [Princeton]

DAWG Technology and Innovation Survey - Feb 13, 2019

The Coffea Project: Introduction and Experience with
Different Data Delivery Systems

2

Detector
Data

Simulation

Reconstruction
Algorithms

Analysis
Software

3

Detector
Data

Simulation

Central Chaotic

Reconstruction
Algorithms

Analysis
Software

Data Volume
• Extract physics results will require

to handle/analyze a lot more data
- Must optimize further

4

20k

CMS

Current CMS Analysis Workflow
• MiniAOD:

- Centrally produced output of reconstruction software

- O(100 TB), ROOT (C++) format, nested structure with branches

• Ntupling:

- disk-to-disk copy, to modify the event content

- duplicate immutable, add needed, and remove unused branches

• Group ntuples:

- O(100 TB), ROOT (C++) format, nested structure with branches

- dump of the content of the original files into a moderately specialized version

• Skimming & Slimming:

- disk-to-disk copy, to limit latencies

- dropping events/branches

• Analysis ntuples:

- O(10 TB), ROOT (C++) format, flat

5

On grid, ~1 week

on gridIn batch, ~2/3 days

Current Limitations
The current file-based data representation and data management systems do not allow:

- To add/remove branches from the original data representation (therefore we ntuple)

- To extract branches efficiently from nested ROOT files (therefore we skim&slim)

6

Current Limitations
The current file-based data representation and data management systems do not allow:

- To add/remove branches from the original data representation (therefore we ntuple)

- To extract branches efficiently from nested ROOT files (therefore we skim&slim)

As a result we have:

• convoluted approach that limits interactivity

• Group/analysis-specific, often hardware-specific, limits portability

• unneeded duplication of immutable branches with significant storage space

7

Current Limitations
The current file-based data representation and data management systems do not allow:

- To add/remove branches from the original data representation (therefore we ntuple)

- To extract branches efficiently from nested ROOT files (therefore we skim&slim)

As a result we have:

• convoluted approach that limits interactivity

• Group/analysis-specific, often hardware-specific, limits portability

• unneeded duplication of immutable branches with significant storage space

Additional limitations are introduced by manual bookkeeping:

• Tedious and time-consuming

• Results in an inefficient job splitting, with suboptimal parallelization

8

Solutions
• Develop a system that:

- adopt a columnar database concept for input data representation

- physics quantities are columns

- Add/remove columns to modify the event content, no ntupling

- Allow for "structural sharing" of immutable data, no duplication

9

Solutions
• Develop a system that:

- adopt a columnar database concept for input data representation

- physics quantities are columns

- Add/remove columns to modify the event content, no ntupling

- Allow for "structural sharing" of immutable data, no duplication

- Does caching and indexing of the inputs to replace skimming/slimming

- No stage-out of intermediate steps

=> Produce plots directly from the inputs, is fully portable and use-case independent

10

• Develop a system that:

- adopt a columnar database concept for input data representation

- physics quantities are columns

- Add/remove columns to modify the event content, no ntupling

- Allow for "structural sharing" of immutable data, no duplication

- Does caching and indexing of the inputs to replace skimming/slimming

- No stage-out of intermediate steps

=> Produce plots directly from the inputs, is fully portable and use-case independent

• Use Apache-Spark/Striped as general-purpose engines for large-scale data processing to deliver columns

- Solves by construction the problem of the manual bookkeeping

Solutions

11

Coffea
Columnar Object Framework For Efficient Analysis

• CoffeaHarvester: delivers HEP data in columnar form

• coffeabeans: columnar datasets and metadata

• CoffeaGrinder: fast, understandable columnar analysis code

• coffeapods: histograms aggregated into plots or fitting ntuples

• CoffeaMaker: interface to CMS Combine fitting package

12

https://github.com/CoffeaTeam

= in this talk

= next talk from Nick

Spark experience: the CMS Big Data Project

• Group created end of 2015

- tight collaboration with Diana-HEP at Princeton and CERN-IT

- website: https://cms-big-data.github.io

• Partnerships with industry through CERN openlab:

- Fermilab joined CERN openlab in 2017

- Intel actively taking part in the project

- CERN fellow sponsored by Intel

13

https://cms-big-data.github.io

CHEP 2016: Proof of Principle
• Usability Study using Apache

Spark:
- Analyzer code in Scala

- Input converted in Avro: https://

github.com/diana-hep/rootconverter

• Improved user experience with
optimized bookkeeping

14

arXiv:1711.00375

https://github.com/diana-hep/rootconverter
https://github.com/diana-hep/rootconverter

ACAT 2017: Steps Forward
Several technical advancements:

• stability to read root files in Spark: https://github.com/diana-hep/spark-root,
eliminating the need to convert in a more suitable format

• Capability to read input files remotely using XRootD (e.g. from EOS at
CERN): https://github.com/cerndb/hadoop-xrootd , eliminating the need to
store files on HDFS

15

arXiv:1703.04171

https://github.com/diana-hep/spark-root
https://gitlab.cern.ch/awg/hadoop-xrootd-connector

CERN Infrastructure
• Spark cluster:
- analytix @ CERN: shared infrastructure with ~1300 cores, 7 TB RAM

• Storage:
- Remote EOS Public

• Simple physics analysis use case is applied to select events and reduce the
datasets

16

Scalability Test
Increasing the input size while maintaining the same amount of resources

17

Initial configuration: 804 logical cores, and 8 logical cores per Spark executor

The Striped Server
• HEP data rearranged into

stripes, stored in a noSQL

database, served to worker

nodes

• Only the columns requested for

the analysis are sent

• Input data are cached for quick

re-use, and columns may be

updated

18

19

Striped Performances

100 kHz per core, > 4 MHz total throughput with 280 workers from CERN
At FNAL, ~10 MHz with network overhead

Conclusions
• Spark

- Scale as expected with the resources, proved the ability to reduce 1 PB of input in <4hrs

- Slowness in talking to the JVM is the major bottleneck, there are solutions available

• Striped

- 4 MHz with 280 cores from CERN, up to 10MHz from FNAL

- Dataset uploading to the database requires significant time and manual bookeeping, a striped

upload module for CMSSW can solve this

We will explore different data delivery systems to accomplish the “harvesting” step, working in tight

connection with data engineers both from academia and industry

• Evaluating the possibility of a partnership with Databricks

20

Summary
• Developing a columnar analysis framework for HEP analysis
- New analysis style (array programming, more in Nick’s talk)

- Fits nicely with big data processing engines

• In this talk, Spark and Striped

• Currently exploring multiple solutions to find the optimal data delivery system
for the Coffea framework

21

22

Backup

Analysis Use-case @ Vanderbilt/Padova
Analysis workflow:

• Load standard ROOT files as Spark

DataFrames (DFs)

• Open files over XRootD

• Use Spark to transform DFs

• Aggregate DFs into histograms

• Produce plots, tables, etc.. from histograms

23

Infrastructure:

• Padova

• ~1000 cores with 5 TB of RAM

• Vanderbilt

• 40 cores and 16 GB of RAM

Identical physics use cases, using similar strategy, same tools,

but different infrastructure

Usability Test
• Make a first-year CS undergraduate student run the workflow

- No knowledge of physics whatsoever, limited computing knowledge

- Able to make the Vanderbilt workflow run in one day

• Portability

- Run the Padova code at Vanderbilt

- Major showstopper: environment setup

=> Solutions:

• shared library with site configuration towards full generalization

• packaging of the Hadoop-XRootD connector in order to make the tool more automatically

deployable, avoiding manual configuration

24

Running Through VC3
• Virtual Clusters for Community Computation

(VC3) is a service that:
- shares custom software across multiple sites

- creates a virtual cluster of the desired size

• Able to run Padova workflow on the UChicago
Midwest Tier 2 cluster
- 2 executors, 8 cores, 12GB RAM

25

Need to test with resources from other remote sites

