
Nick Smith, on behalf of the Coffea team
Lindsey Gray, Matteo Cremonisi, Bo Jayatilaka, Oliver Gutsche, Nick Smith, 
Allison Hall, Kevin Pedro (FNAL); Jim Pivarski (Princeton); and others

DAWG Technology and Innovation Survey
13 Feb. 2019

The Case for Columnar Analysis



5 Feb. 2019 Nick Smith | Columnar analysis12

From K. Pedro

Terminology

• Event loop analysis:
- Load relevant values for a specific event into local variables
- Evaluate several expressions
- Store derived values
- Repeat (explicit outer loop)

• Columnar analysis:
- Load relevant values for many events into contiguous arrays
• Nested structure (array of arrays) → flat content + offsets
- Evaluate several array programming expressions
• Implicit inner loops
- Store derived values

• Array programming:
- Simple, composable operations
- Extensions to manipulate offsets

�2

12

From K. Pedro

Event loop

Columnar



5 Feb. 2019 Nick Smith | Columnar analysis

Theoretical Motivation

• Ease of use:
- Event loop is very imperative
• User writes all nested loops, aggregations, filters by hand
• Notable exceptions: std::max(), TTreeFormula, RDataFrame, …
- Columnar analysis is a higher-level description of manipulations

• Performance benefits:
- Aligned with strengths of modern CPUs
• Simple instruction kernels aid pipelining, branch prediction, and pre-fetching
• Event loop = input data controlling instruction pointer = less likely to exploit all three!
• Unnecessary work is cheaper than unusable work
- Inherently SIMD*-friendly
• Event loop cannot leverage SIMD unless inter-event data sufficiently large
- In-memory data structure exactly matches on-disk serialized format
• Event loop must transform data structure - significant overhead
• Memory consumption managed by chunking (event groups, or baskets)
- Array programming kernels form computation graph
• Could allow query planning, automated caching, non-trivial parallelization schemes

�3 *Single-Instruction Multiple-Data



5 Feb. 2019 Nick Smith | Columnar analysis

Scope

• Domain of applicability depends on:
- Complexity of algorithms
- Size of per-event input state
• Examples:
- JEC (binned parametric function): use binary search, masked evaluation: columnar ok
- Object gen-matching, cross-cleaning: min(metric(pairs of offsets)): columnar ok
- Deterministic annealing PV reconstruction: large input state, iterative: probably not
• How far back can columnar go?
- Missing array programming primitives not a barrier, can always implement our own
-

�4

Event Reconstruction
1 MB/evt

Complex algorithms 
operating on large per-

event input state

Inter-event SIMD

Analysis Objects
40-400 kB/evt

Fewer complex 
algorithms, smaller per-

event input state

Filtering & Projection
(skimming & slimming)

1 kB/evt

Few complex 
algorithms, O(1 column) 

input state

Empirical PDFs
(histograms)

No event scaling

Trivial operations

Event loop Columnar



5 Feb. 2019 Nick Smith | Columnar analysis

The Coffea framework
• COmpact Framework For Effective Analysis:
- Prototype analysis framework utilizing columnar approach
- Provides object-class-style view of underlying arrays
- Implements typical recipes needed to operate on NANOAOD-like nTuples
- Currently in fnal-column-analysis-tools
• Functionality will be factorized into targeted packages as it matures

• Realized using:
- Scientific python ecosystem:
• numpy, numba, scipy, matplotlib
- Awkward-array:
• array programming primitives to handle “Jagged Arrays” (e.g. Muon_pt) 

• Factorized data delivery:
- Uproot: direct conversion from TTree to numpy arrays
- Striped: NoSQL database of column chunks, caching layer, job scheduler
- In discussion with other interested parties, any column chunk delivery 

mechanism is viable

Coffea 
• COmpact Framework For Elaborate Algorithms

• Consist in:

- Custom-made version of CMSSW to produce private NanoAOD with 
crab (this step may be needed to add information) => 
CoffeaHarvester

- List of output NanoAOD => coffeabeans

- Striped analysis code => CoffeaGrinder

- Fitting Ntuples => coffeapods

- Fitting code, interface with Combine => CoffeaMaker

18

https://github.com/CoffeaTeam

�5

https://github.com/CoffeaTeam/fnal-column-analysis-tools


5 Feb. 2019 Nick Smith | Columnar analysis

User experience

• Two analyses being ported to columnar style
- End-to-end: nTuple to templates + control plots
- We export TH1s and use combine…for now
- Dark Higgs search
• Starting from private NanoAOD (w/addl. DeepAK8 info)
- Boosted SM Hbb
• Starting from BaconProd (similar to NanoAOD)
• Already providing useful input into analysis strategy

• Alpha testers!
- One student was given setup script, and three days later had a 

2D S/sqrtB optimization plot
• Fast learning curve for scientific python stack
- Excellent ‘google-ability’
- The quality and quantity of off-the-shelf components is 

impressive—many analysis tool implementations contain very 
little original code

�6



5 Feb. 2019 Nick Smith | Columnar analysis

Code samples

�7

• Idea of what it might look like (heavily biased by our experiences and tastes)
• Python allows very flexible interface, under-the-hood data structure is columnar

• Select good candidates (per-entry selection)

• Pair combinatorics (creates new pairs array, also jagged)

• Select good events, partitioning by type (per-event selection)

• Select good pairs, partitioning by type (per-entry selection on pairs array)



5 Feb. 2019 Nick Smith | Columnar analysis

Eye candy

�8

ee



5 Feb. 2019 Nick Smith | Columnar analysis

Performance
• Z peak example
- Includes lumimask, PU correction, ID scale factors, 

electron & muon categorized
- 8 µs/evt/thread (125 kHz) wall time
• ROOT C++ SetBranchAddress: ~1.5x faster

• Boosted Hbb prototype
- Includes recursive gen parent finding, gen matching, 

binned corrections, parametric corrections, systematics
- 30 µs/evt/thread
• More inefficiencies can be removed

�9

Fill
2%

Other array
15%

Lumi data
20%

Distinct pairs
16%

Uproot parsing
7%

LZMA
40%

Z peak

https://github.com/nsmith-/coffea/blob/master/notebooks/zpeak.ipynb


5 Feb. 2019 Nick Smith | Columnar analysis

Future Directions

• As Coffea (& underlying libraries) matures, invite beta testers
- I encourage everyone to try uproot+numpy now, it can be very effective for small checks
• Target first release this summer
- Two full analysis implemented
- Data delivery mechanisms fully separated
- User interface improvements and documentation

• Far future: analysis facility
- This feeds towards the dream of a “short time-to-insight” “analysis as a service” facility
• Tendering bids for additional buzzwords
- Array programming allows easier construction of computation graphs
• Query planning can detect common patterns and execute them once
• By removing manual cache management, we can optimize throughput and storage

• First, lets see if we are happy and productive with the columnar approach
- So far, the answer appears to be yes

�10


