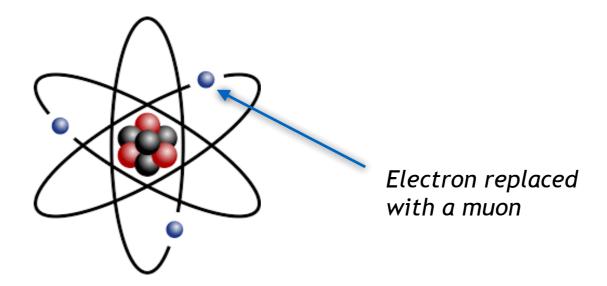
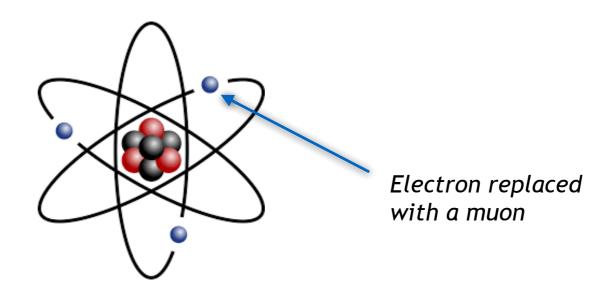


Nuclear structure corrections in light muonic atoms

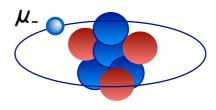

Sonia Bacca

Johannes Gutenberg University, Mainz


Exotic atoms

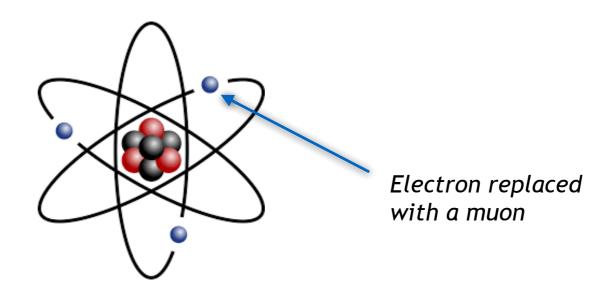
Exotic atoms

Exotic atoms



Hydrogen-like systems

Ordinary atoms


e-

Muonic atoms

muon more sensitive to the nucleus

Exotic atoms

Hydrogen-like systems

Ordinary atoms

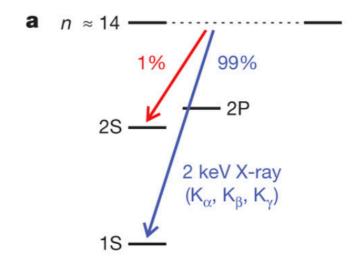
Muonic atoms

muon more sensitive to the nucleus

Can be used as a precision probe for the nucleus

Production and measurements

Lamb Shift:


2S-2P splitting in atomic spectrum

a. prompt X-ray ($t \sim 0$)

- μ^- stopped in H_2 gases
- \bullet 99% \rightarrow 1S
- 1% \rightarrow 2S $(\tau_{2S} \approx 1 \mu s)$

b. delayed X-ray ($t \sim 1 \mu s$)

- laser induced 2S→2P
- measure $K_{\alpha}^{\text{delayed}}/K_{\alpha}^{\text{prompt}}$
- $f_{res} = \Delta E_{LS}$

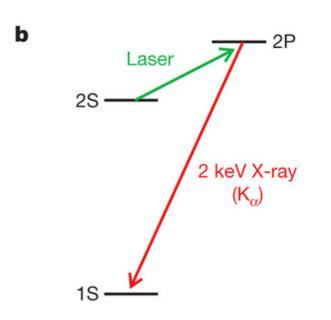
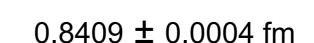



Figure from Pohl et al. Nature (2010)

Proton Radius Puzzle

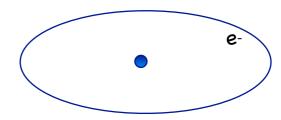
The proton charge radius is measured from:

eH spectroscopy e-p scattering

μH Lamb-shift

Pohl et al., Nature (2010) Antognini et al., Science (2013)

• muonic -proton interactions:



Proton Radius Puzzle

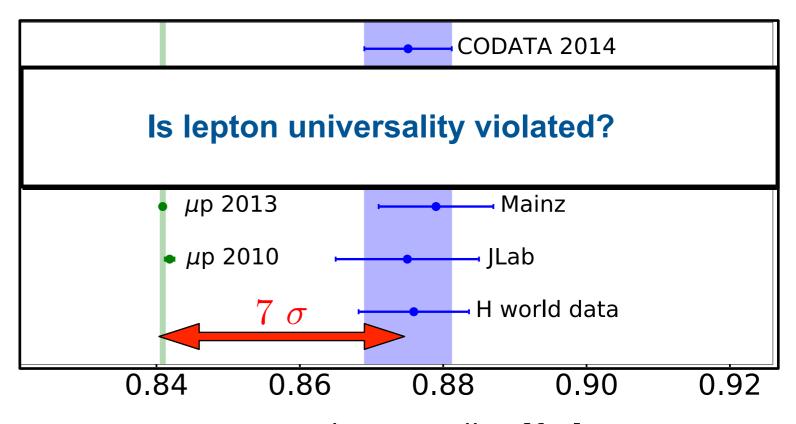
The proton charge radius is measured from:

electron-proton interactions:

 $0.8770 \pm 0.0045 \, \text{fm}$

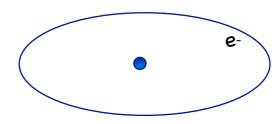
eH spectroscopy e-p scattering

• muonic -proton interactions:


μH Lamb-shift

Pohl et al., Nature (2010) Antognini et al., Science (2013)

 $0.8409 \pm 0.0004 \, \text{fm}$


proton charge radius [fm]

Proton Radius Puzzle

The proton charge radius is measured from:

electron-proton interactions:

 $0.8770 \pm 0.0045 \, \text{fm}$

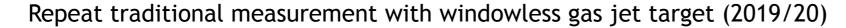
eH spectroscopy e-p scattering

• muonic -proton interactions:

μH Lamb-shift

Pohl et al., Nature (2010) Antognini et al., Science (2013)

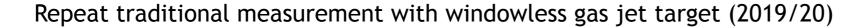
 $0.8409 \pm 0.0004 \, \text{fm}$


proton charge radius [fm]

Higher precision electron scattering experiments

Q² from 10⁻⁴ GeV² to 10⁻² GeV² Jefferson Lab

ISR measurement, not competitive, Phys.Lett. B 771 (2017) 194-198



Higher precision electron scattering experiments

Q² from 10⁻⁴ GeV² to 10⁻² GeV² Jefferson Lab

ISR measurement, not competitive, Phys.Lett. B 771 (2017) 194-198

MUSE collaboration

Measure both e^+/e^- and μ^+/μ^- to reduce uncertainties

Higher precision electron scattering experiments

Q² from 10⁻⁴ GeV² to 10⁻² GeV² Jefferson Lab

ISR measurement, not competitive, Phys.Lett. B 771 (2017) 194-198

MUSE collaboration

Measure both e^+/e^- and μ^+/μ^- to reduce uncertainties

CREMA collaboration

CREMA collaboration currently measuring Lamb shift in light muonic atoms: Deuterium, Helions, etc.

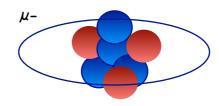
Higher precision electron scattering experiments

Q² from 10⁻⁴ GeV² to 10⁻² GeV² Jefferson Lab

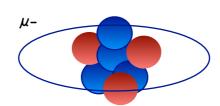
ISR measurement, not competitive, Phys.Lett. B 771 (2017) 194-198

MUSE collaboration

Measure both e^+/e^- and μ^+/μ^- to reduce uncertainties

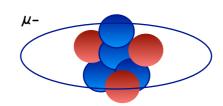

CREMA collaboration

CREMA collaboration currently measuring Lamb shift in light muonic atoms: Deuterium, Helions, etc.


Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the mystery by studying other muonic atoms:

- $\bigcirc \mu D$ (results released)
- $\Theta \mu^4$ He+ (analyzing data)
- Θ μ^3 He+ (analyzing data)
- $\Theta \mu^3 H$ (impossible?)
- $\Theta \mu^6 \text{Li}^{2+}, \ \mu^7 \text{Li}^{2+} \ (\text{future})$

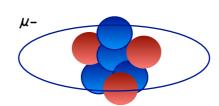
Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the mystery by studying other muonic atoms:


- $\mathbf{Q} \mu D$ (results released)
- $\Theta \mu^4$ He+ (analyzing data)
- Θ μ^3 He+ (analyzing data)
- $\Theta \mu^3 H$ (impossible?)
- Θ $\mu^6 \text{Li}^{2+}$, $\mu^7 \text{Li}^{2+}$ (future)

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the mystery by studying other muonic atoms:

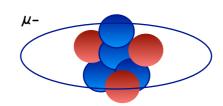
- $\bigcirc \mu D$ (results released)
- $\Theta \mu^4$ He+ (analyzing data)
- $\Theta \mu^3$ He+ (analyzing data)
- $\Theta \mu^3 H$ (impossible?)
- $\Theta \mu^6 \text{Li}^{2+}, \ \mu^7 \text{Li}^{2+} \ (\text{future})$


$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

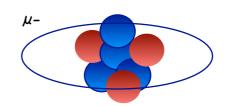
well known

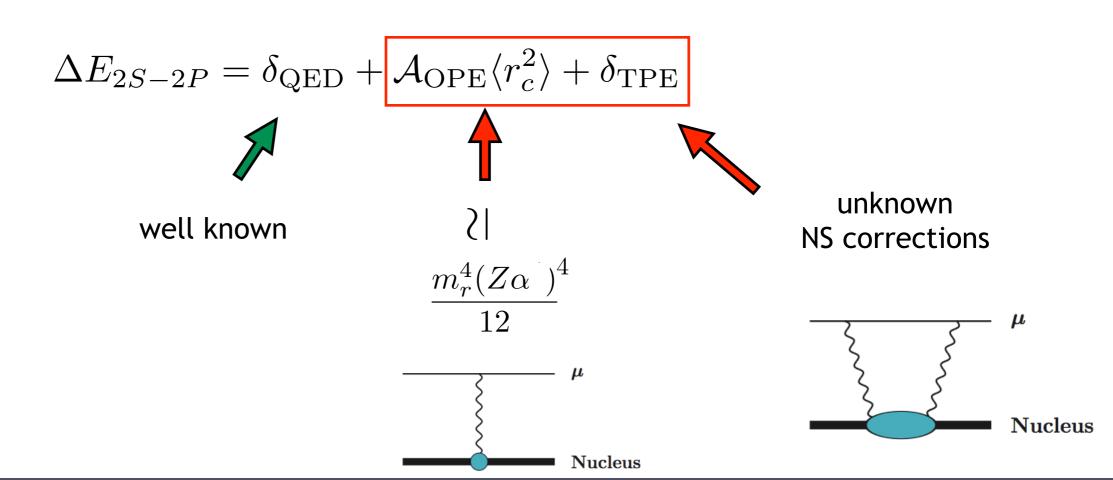
Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the mystery by studying other muonic atoms:

- $\bigcirc \mu D$ (results released)
- $\omega \mu^4$ He+ (analyzing data)
- $\Theta \mu^3$ He+ (analyzing data)
- $\Theta \mu^3 H$ (impossible?)
- Θ $\mu^6 \text{Li}^{2+}$, $\mu^7 \text{Li}^{2+}$ (future)

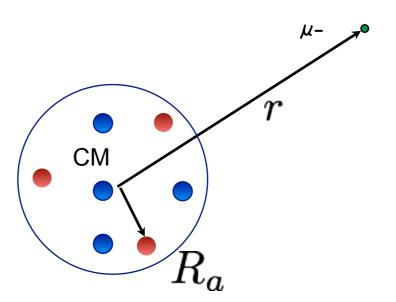

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

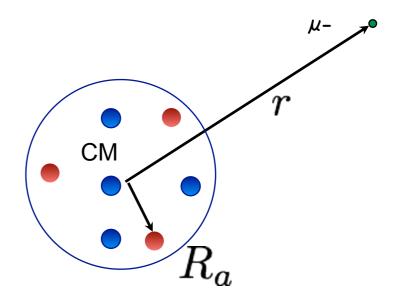
well known


Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the mystery by studying other muonic atoms:


- $\bigcirc \mu D$ (results released)
- $\omega \mu^4$ He+ (analyzing data)
- $\Theta \mu^3$ He+ (analyzing data)
- $\Theta \mu^3 H$ (impossible?)
- Θ $\mu^6 \text{Li}^{2+}$, $\mu^7 \text{Li}^{2+}$ (future)

Strong experimental program at PSI (Switzerland) from the CREMA collaboration to unravel the mystery by studying other muonic atoms:

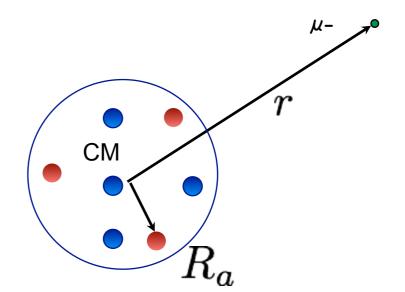

- $\bigcirc \mu D$ (results released)
- $\omega \mu^4$ He+ (analyzing data)
- $\Theta \mu^3$ He+ (analyzing data)
- $\Theta \mu^3 H$ (impossible?)
- Θ $\mu^6 \text{Li}^{2+}$, $\mu^7 \text{Li}^{2+}$ (future)


$$H = H_N + H_\mu + \Delta V$$

$$H_{\mu} = \frac{p^2}{2m_r} - \frac{Z\alpha}{r}$$

$$H = H_N + H_\mu + \Delta V$$

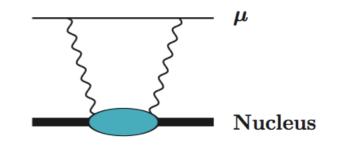
$$H_{\mu} = \frac{p^2}{2m_r} - \frac{Z\alpha}{r}$$


Perturbative potential: correction to the bulk Coulomb

$$\Delta V = \sum_{a}^{Z} \alpha \left(\frac{1}{r} - \frac{1}{|\vec{r} - \vec{R}_a|} \right)$$

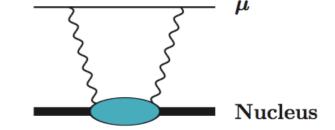
Sonia Bacca JG U

$$H = H_N + H_\mu + \Delta V$$


$$H_{\mu} = \frac{p^2}{2m_r} - \frac{Z\alpha}{r}$$

Perturbative potential: correction to the bulk Coulomb

$$\Delta V = \sum_{a}^{Z} \alpha \left(\frac{1}{r} - \frac{1}{|\vec{r} - \vec{R}_a|} \right)$$


Using perturbation theory at second order one obtains the expression for TPE up to order $(Z\alpha)^5$

8

Non relativistic term

Take non-relativistic kinetic energy in muon propagator Neglect Coulomb force in the intermediate state Expand the muon matrix elements in powers of η

$$\eta = \sqrt{2m_r\omega}|\boldsymbol{R} - \boldsymbol{R}'|$$

$$P \simeq \frac{m_r^3 (Z\alpha)^5}{12} \sqrt{\frac{2m_r}{\omega}} \left[|\mathbf{R} - \mathbf{R}'|^2 - \frac{\sqrt{2m_r\omega}}{4} |\mathbf{R} - \mathbf{R}'|^3 + \frac{m_r\omega}{10} |\mathbf{R} - \mathbf{R}'|^4 \right]$$

Non relativistic term

Take non-relativistic kinetic energy in muon propagator Neglect Coulomb force in the intermediate state Expand the muon matrix elements in powers of η

$$\eta = \sqrt{2m_r\omega}|\boldsymbol{R} - \boldsymbol{R}'|$$

$$P \simeq \frac{m_r^3 (Z\alpha)^5}{12} \sqrt{\frac{2m_r}{\omega}} \left[|\mathbf{R} - \mathbf{R}'|^2 - \frac{\sqrt{2m_r\omega}}{4} |\mathbf{R} - \mathbf{R}'|^3 + \frac{m_r\omega}{10} |\mathbf{R} - \mathbf{R}'|^4 \right]$$

$$\delta^{(0)} \qquad \delta^{(1)} \qquad \delta^{(2)}$$

Non relativistic term

Take non-relativistic kinetic energy in muon propagator Neglect Coulomb force in the intermediate state Expand the muon matrix elements in powers of η

$$\eta = \sqrt{2m_r\omega}|\boldsymbol{R} - \boldsymbol{R}'|$$

$$P \simeq \frac{m_r^3 (Z\alpha)^5}{12} \sqrt{\frac{2m_r}{\omega}} \left[|\mathbf{R} - \mathbf{R}'|^2 - \frac{\sqrt{2m_r\omega}}{4} |\mathbf{R} - \mathbf{R}'|^3 + \frac{m_r\omega}{10} |\mathbf{R} - \mathbf{R}'|^4 \right]$$

$$\delta^{(0)} \qquad \delta^{(1)} \qquad \delta^{(2)}$$

- $\star |R-R'|$ "virtual" distance traveled by the proton between the two-photon exchange
- \star Uncertainty principle $|m{R}-m{R}'|\sim rac{1}{\sqrt{2m_N\omega}}$

$$\star \eta = \sqrt{2m_r\omega}|\mathbf{R} - \mathbf{R}'| \sim \sqrt{\frac{m_r}{m_N}} = 0.17$$

Non relativistic term

$$\star$$
 $\delta^{(0)} \propto |m{R} - m{R}'|^2$

dominant term, related to the energy-weighted integral of the dipole response function

$$\delta_{D1}^{(0)} = -\frac{2\pi m_r^3}{9} (Z\alpha)^5 \int_{\omega_{\rm th}}^{\infty} d\omega \sqrt{\frac{2m_r}{\omega}} S_{D_1}(\omega)$$

Sonia Bacca JG U

Non relativistic term

$$\star$$
 $\delta^{(0)} \propto |m{R} - m{R}'|^2$

dominant term, related to the energy-weighted integral of the dipole response function

$$\delta_{D1}^{(0)} = -\frac{2\pi m_r^3}{9} (Z\alpha)^5 \int_{\omega_{\rm th}}^{\infty} d\omega \sqrt{\frac{2m_r}{\omega}} S_{D_1}(\omega)$$

 \star $\delta^{(1)} \propto |m{R} - m{R}'|^3$ Related to Zemach moment elastic contribution

$$\delta_{Z3}^{(1)} = \frac{\pi}{3} m_r (Z\alpha)^2 \phi^2(0) \iint d^3R d^3R' |\mathbf{R} - \mathbf{R}'|^3 \rho_0^p(\mathbf{R}) \rho_0^p(\mathbf{R}')$$

Sonia Bacca JG U

Non relativistic term

$$\star$$
 $\delta^{(0)} \propto |m{R} - m{R}'|^2$

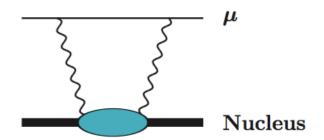
dominant term, related to the energy-weighted integral of the dipole response function

$$\delta_{D1}^{(0)} = -\frac{2\pi m_r^3}{9} (Z\alpha)^5 \int_{\omega_{\rm th}}^{\infty} d\omega \sqrt{\frac{2m_r}{\omega}} S_{D_1}(\omega)$$

 \star $\delta^{(1)} \propto |m{R} - m{R}'|^3$ Related to Zemach moment elastic contribution

$$\delta_{Z3}^{(1)} = \frac{\pi}{3} m_r (Z\alpha)^2 \phi^2(0) \iint d^3R d^3R' |\mathbf{R} - \mathbf{R}'|^3 \rho_0^p(\mathbf{R}) \rho_0^p(\mathbf{R}')$$

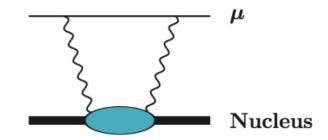
$$\star$$
 $\delta^{(2)} \propto |m{R} - m{R}'|^4$


leads to energy-weighted integrals of three different response functions

$$S_{R^2}(\omega), S_Q(\omega), S_{D1D3}(\omega)$$

Sonia Bacca JG U

Coulomb term

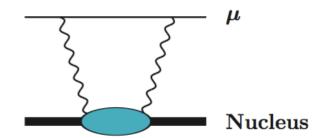

Consider the Coulomb force in the intermediate states Naively $\delta_C^{(0)} \sim (Z\alpha)^6$, actually logarithmically enhanced $\delta_C^{(0)} \sim (Z\alpha)^5 \log(Z\alpha)$ Friar (1977), Pachucki (2011) Related to the dipole response function

11

Coulomb term

Consider the Coulomb force in the intermediate states Naively $\delta_C^{(0)} \sim (Z\alpha)^6$, actually logarithmically enhanced $\delta_C^{(0)} \sim (Z\alpha)^5 \log(Z\alpha)$ Friar (1977), Pachucki (2011) Related to the dipole response function

11


Relativistic terms

Take the relativistic kinetic energy in muon propagator Related to the dipole response function

$$\delta_{L(T)}^{(0)} = \frac{2m_r^3}{9} (Z\alpha)^5 \int_{\omega_{\rm th}}^{\infty} d\omega \, K_{L(T)} \left(\frac{\omega}{m_r}\right) \, S_{D_1}(\omega)$$

Coulomb term

Consider the Coulomb force in the intermediate states Naively $\delta_C^{(0)} \sim (Z\alpha)^6$, actually logarithmically enhanced $\delta_C^{(0)} \sim (Z\alpha)^5 \log(Z\alpha)$ Friar (1977), Pachucki (2011) Related to the dipole response function

Relativistic terms

Take the relativistic kinetic energy in muon propagator Related to the dipole response function

$$\delta_{L(T)}^{(0)} = \frac{2m_r^3}{9} (Z\alpha)^5 \int_{\omega_{\rm th}}^{\infty} d\omega \, K_{L(T)} \left(\frac{\omega}{m_r}\right) \, S_{D_1}(\omega)$$

Finite nucleon-size corrections

Consider finite nucleon-size by including their charge distributions and obtain terms, e.g.,

$$\delta_{R1}^{(1)} = -8\pi m_r (Z\alpha)^2 \phi^2(0) \int \int d^3R d^3R' |\mathbf{R} - \mathbf{R}'| \left[\frac{2}{\beta^2} \rho_0^{pp} (\mathbf{R}, \mathbf{R}') - \lambda \rho_0^{np} (\mathbf{R}, \mathbf{R}') \right]$$

$$\delta_{\mathrm{TPE}} = \delta_{\mathrm{Zem}}^{A} + \delta_{\mathrm{Zem}}^{N} + \delta_{\mathrm{pol}}^{A} + \delta_{\mathrm{pol}}^{N}$$

$$\delta_{\text{TPE}} = \frac{\delta_{\text{Zem}}^{A}}{\delta_{\text{Zem}}^{A}} + \delta_{\text{Zem}}^{N} + \delta_{\text{pol}}^{A} + \delta_{\text{pol}}^{N}$$

$$\delta_{\text{pol}}^{A} = \delta_{D1}^{(0)} + \delta_{R3}^{(1)} + \delta_{Z3}^{(1)} + \delta_{R^{2}}^{(2)} + \delta_{Q}^{(2)} + \delta_{D1D3}^{(2)} + \delta_{C}^{(0)} + \delta_{L}^{(0)} + \delta_{T}^{(0)} + \delta_{M}^{(0)} + \delta_{R1}^{(1)} + \delta_{Z1}^{(1)} + \delta_{NS}^{(2)}$$

$$\delta_{\mathrm{Zem}}^{A}=-\delta_{Z3}^{(1)}-\delta_{Z1}^{(1)}$$
 Friar an Payne ('97)

Need to calculate $\,\delta_{\mathrm{TPE}}\,$ and related uncertainties.

A matter of precision

The uncertainty of the extracted radius depends on the precision of the TPE

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

Roughly:

95% 4%

1%

TPE needs to be know precisely, in order to exploit the experimental precision.

A matter of precision

The uncertainty of the extracted radius depends on the precision of the TPE

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

Roughly:

95% 4%

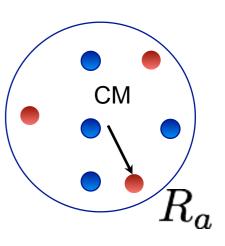
1%

TPE needs to be know precisely, in order to exploit the experimental precision.

Uncertainties comparison

Atom	Exp uncertainty on ΔE _{2S-2P}	Uncertainty on TPE prior to the discovery of the proton radius puzzle
μ^2 H	0.003 meV	0.03 meV*
μ^3 He+	0.08 meV	1 meV
μ ⁴ He ⁺	0.06 meV	0.6 meV
μ ^{6,7} Li++	0.7 meV	4 meV

^{*}Leidemann, Rosenfelder '95 using few-body methods

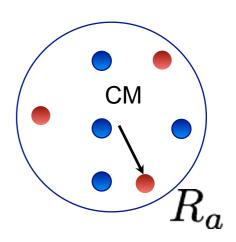

JGU Sonia Bacca

Ab Initio Nuclear Theory

Solve the Schrödinger equation for few-nucleons

$$H_N |\psi_i\rangle = E_i |\psi_i\rangle$$

$$H_N = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + \dots$$



Ab Initio Nuclear Theory

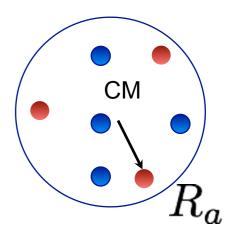
Solve the Schrödinger equation for few-nucleons

$$H_N |\psi_i\rangle = E_i |\psi_i\rangle$$

$$H_N = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + \dots$$

Hyper-spherical harmonics expansions for A=3,4,6,7

Barnea, Leidemann, Orlandini PRC **61** (2000) 054001


For A=2 we use an harmonic oscillator expansion

Ab Initio Nuclear Theory

Solve the Schrödinger equation for few-nucleons

$$H_N |\psi_i\rangle = E_i |\psi_i\rangle$$

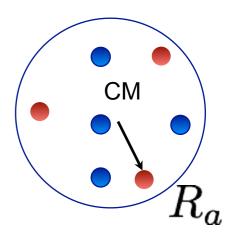
$$H_N = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + \dots$$

Hyper-spherical harmonics expansions for A=3,4,6,7

Barnea, Leidemann, Orlandini PRC **61** (2000) 054001

For A=2 we use an harmonic oscillator expansion

 To compute the response functions, we use the Lorentz integral transform method directly or the Lanczos sum rule method.


Efros, et al., JPG.: Nucl.Part.Phys. 34 (2007) R459

Ab Initio Nuclear Theory

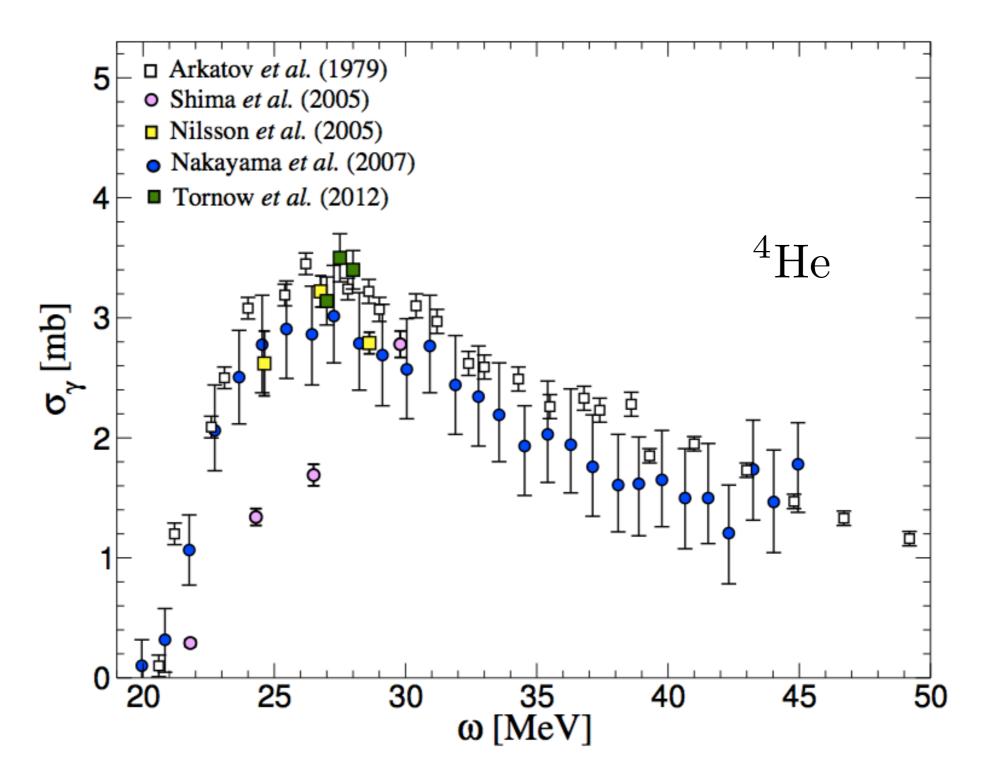
Solve the Schrödinger equation for few-nucleons

$$H_N |\psi_i\rangle = E_i |\psi_i\rangle$$

$$H_N = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + \dots$$

Hyper-spherical harmonics expansions for A=3,4,6,7

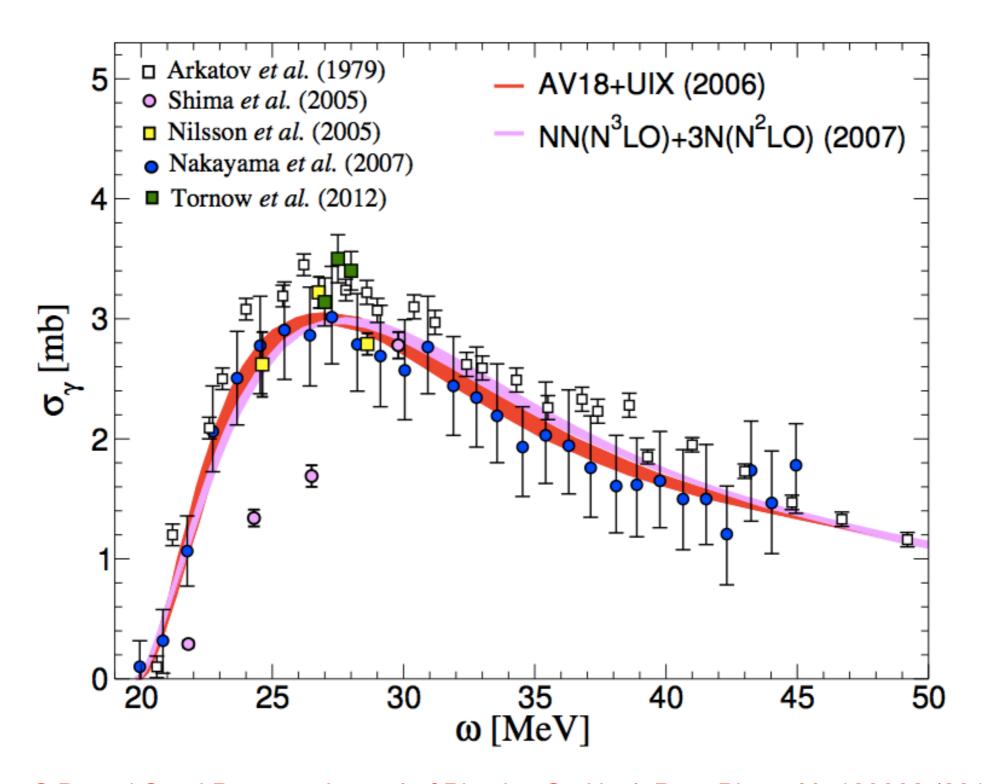
Barnea, Leidemann, Orlandini PRC **61** (2000) 054001


For A=2 we use an harmonic oscillator expansion

 To compute the response functions, we use the Lorentz integral transform method directly or the Lanczos sum rule method.

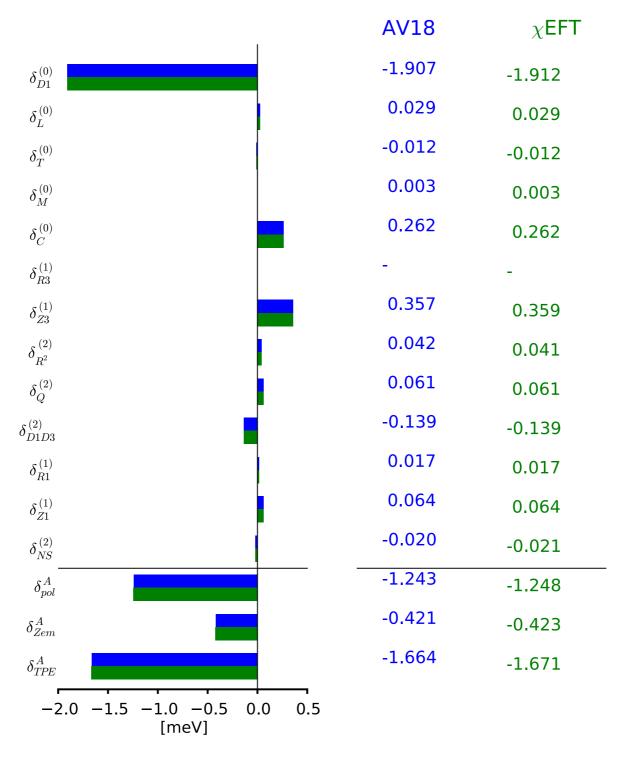
Efros, et al., JPG.: Nucl.Part.Phys. 34 (2007) R459

 We will use nuclear interactions derived from chiral effective filed theory (at various orders) and traditional potentials (AV18+UIX)


An example

S.B. and Saori Pastore, Journal of Physics G.: Nucl. Part. Phys. 41, 123002 (2014)

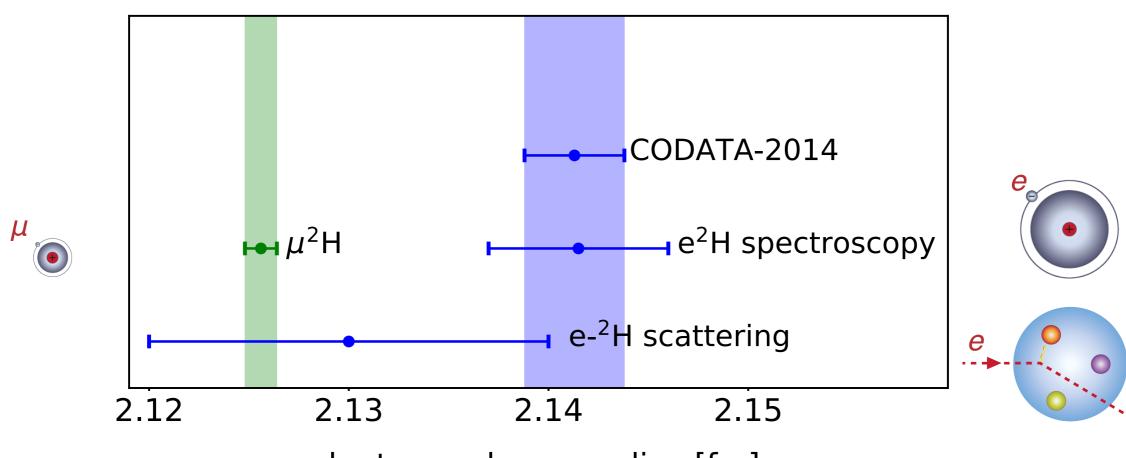
Sonia Bacca JG U


An example

S.B. and Saori Pastore, Journal of Physics G.: Nucl. Part. Phys. 41, 123002 (2014)

Sonia Bacca JG U

Muonic Deuterium



J. Hernandez et al, Phys. Lett. B 736, 344 (2014)

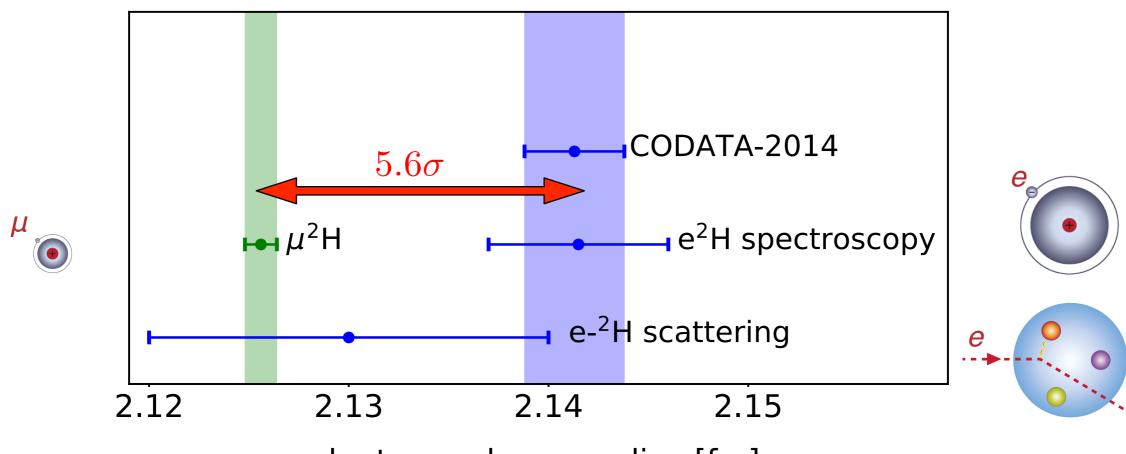
AV18 in agreement with Pachucki (2011)+ Pachucki, Wienczek (2015)

Sonia Bacca JG U

Pohl et al, Science **353**, 669 (2016)

deuteron charge radius [fm]

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$



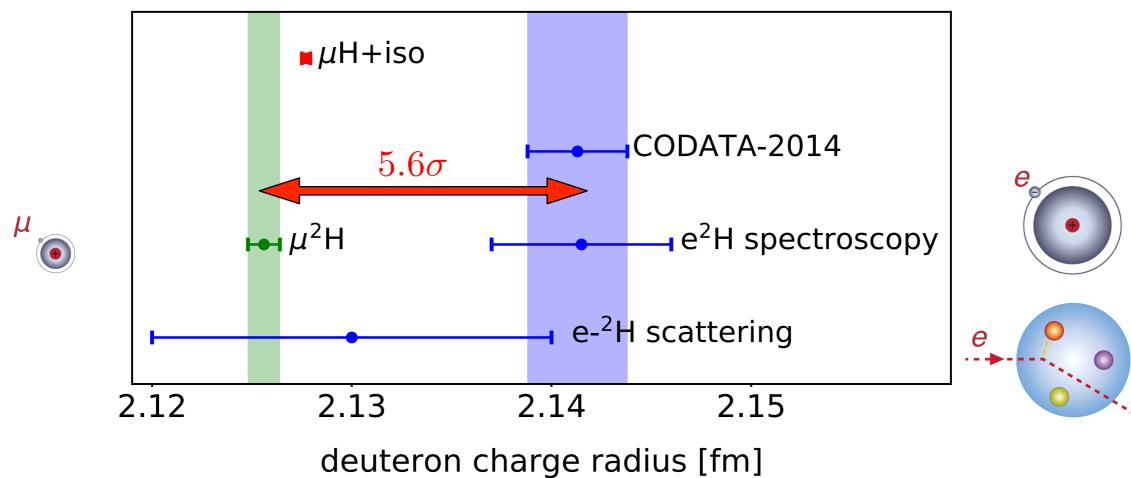
Hernandez et al., PLB **736**, 334 (2014)

Pachucki (2011)+ Pachucki, Wienczek (2015)

18

Pohl et al, Science **353**, 669 (2016)

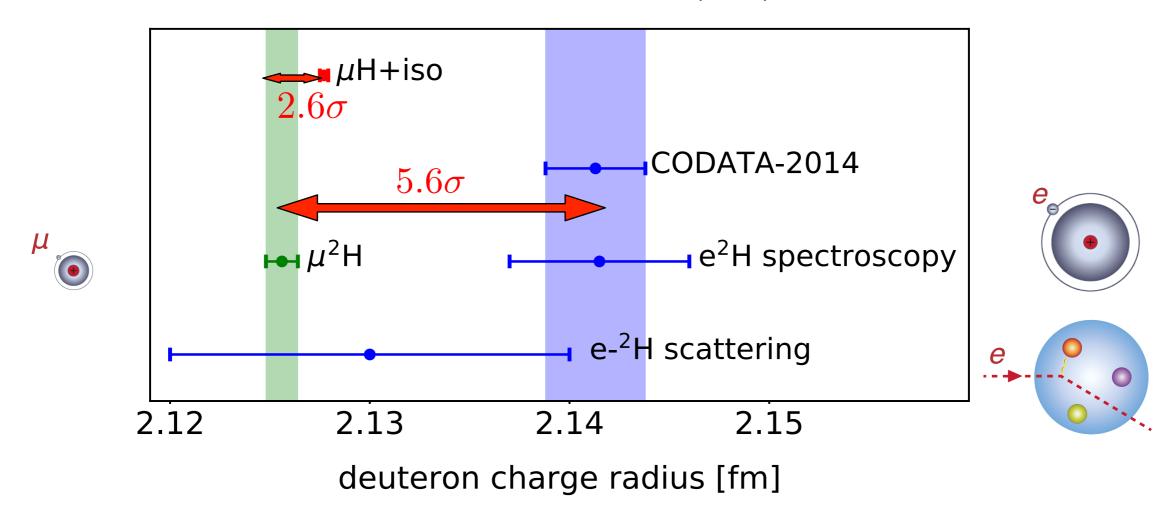
deuteron charge radius [fm]


$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

Hernandez et al., PLB **736**, 334 (2014) Pachucki (2011)+ Pachucki, Wienczek (2015)

18

Pohl et al, Science **353**, 669 (2016)



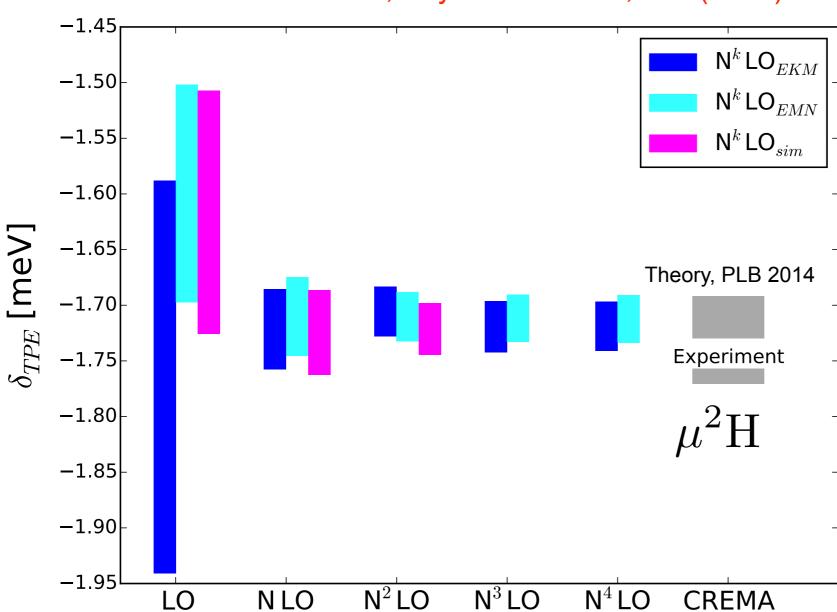
$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

 μ H+iso: r_p from μ H and deuterium isotopic shift r_d^2 - r_p^2 : Parthey et al., PRL **104** 233001 (2010)

JGU Sonia Bacca

Pohl et al, Science **353**, 669 (2016)

 $\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \langle r_c^2 \rangle + \delta_{\text{TPE}}$

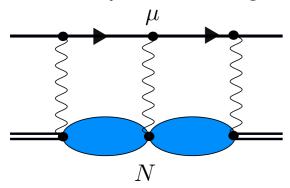

 μ H+iso: r_p from μ H and deuterium isotopic shift r_d^2 - r_p^2 : Parthey et al., PRL **104** 233001 (2010)

Sonia Bacca JG U

Order-by-order chiral expansion

Statistical and systematic uncertainty analysis

J. Hernandez et al, Phys. Lett. B **778**, 377 (2018)

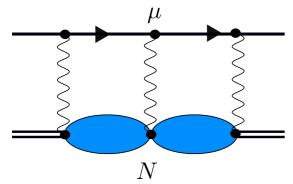


Only sightly mitigate the "small" proton radius puzzle (2.6 to 2 σ)

Sonia Bacca JG U

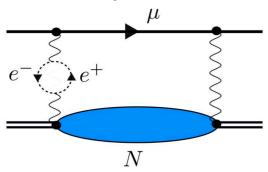
Higher order corrections in α

Three-photon exchange


Pachucki et al., Phys. Rev. A 97 062511 (2018)

 $(Z\alpha)^6$ correction, negligible

Sonia Bacca JG U


Higher order corrections in α

Three-photon exchange

Pachucki et al., Phys. Rev. A **97** 062511 (2018) $(Z\alpha)^6$ correction, negligible

Vacuum polarization

One the many α^6 corrections, supposedly the largest Kalinowski, Phys. Rev. A **99** 030501 (2019)

$$\delta_{\rm TPE} = -1.750^{+14}_{-16}~{\rm meV}$$
 Theory

$$\delta_{\rm TPE} = -1.7638(68) \; {
m meV} \; {
m Exp}$$

Consistent within 1σ solves the small deuteron-radius puzzle

Large deuteron-radius puzzle still unsolved!

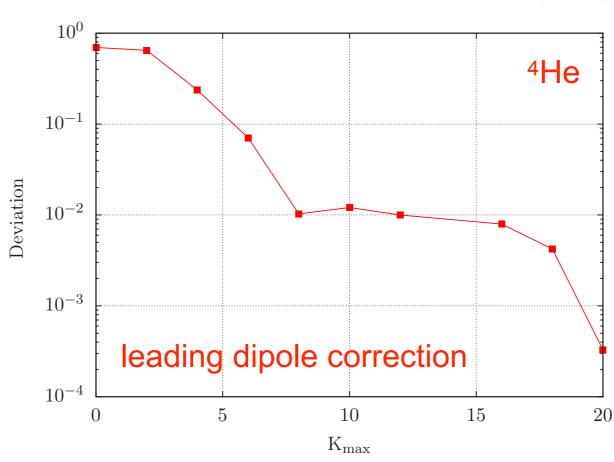
New data on electron scattering expected from MAMI and from the future MESA

Sonia Bacca JG U

Uncertainties quantifications

Uncertainties sources

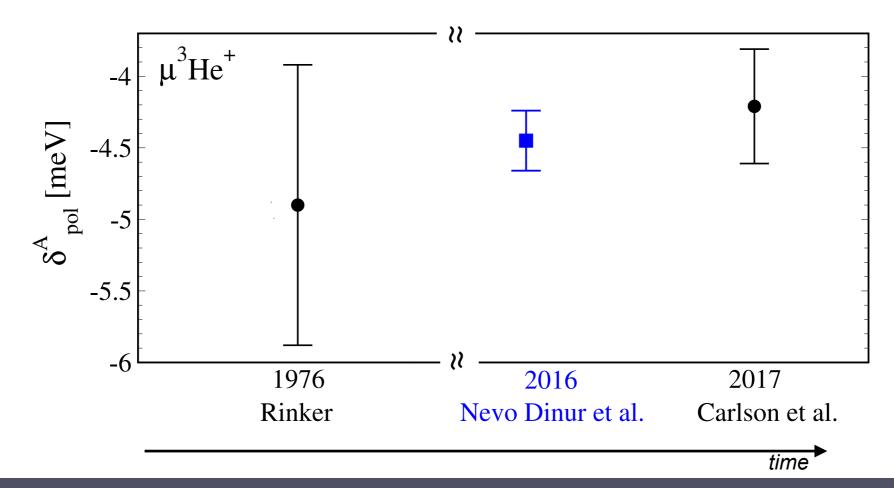
- Numerical
- Nuclear model
- Nucleon-size
- Truncation of multiples
- η-expansion
- expansion in $Z\alpha$


Sonia Bacca JG U

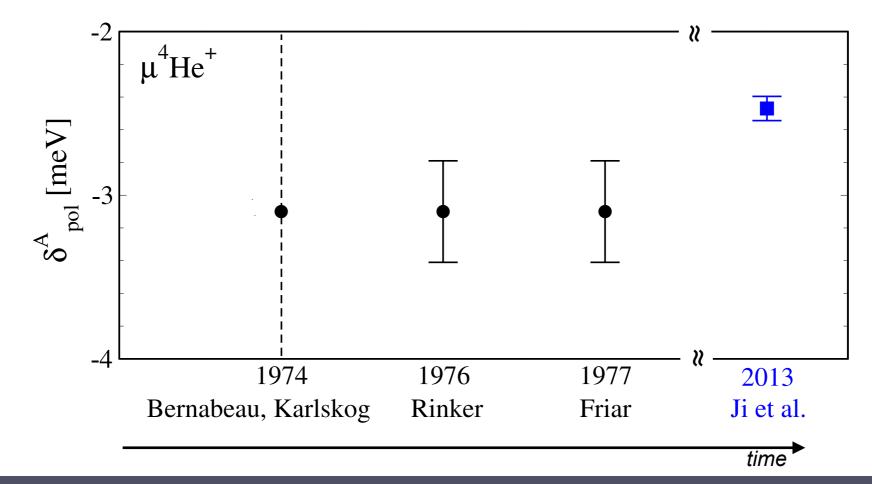
Uncertainties quantifications

Uncertainties sources

- Numerical
- Nuclear model
- Nucleon-size
- Truncation of multiples
- η-expansion
- expansion in Zα


C.Ji et al., JPG: Part. Nucl. 45, 093002 (2018)

Sonia Bacca JG U


Atom	Exp uncertainty on ΔE _{2S-2P}	Uncertainty on TPE prior to the discovery of the puzzle	Uncertainty on TPE: ab initio
<i>μ</i> 2H	0.003 meV	0.03 meV	0.02 meV
μ^3 He+	0.08 meV	1 meV	0.3 meV
μ ⁴ He ⁺	0.06 meV	0.6 meV	0.4 meV
μ ^{6,7} Li++	0.7 meV	4 meV	

Atom	Exp uncertainty on ΔE _{2S-2P}	Uncertainty on TPE prior to the discovery of the puzzle	Uncertainty on TPE: ab initio
μ²H	0.003 meV	0.03 meV	0.02 meV
μ^{3} He+	0.08 meV	1 meV	0.3 meV
μ ⁴ He ⁺	0.06 meV	0.6 meV	0.4 meV
μ ^{6,7} Li++	0.7 meV	4 meV	

Sonia Bacca JG U

Atom	Exp uncertainty on ΔE _{2S-2P}	Uncertainty on TPE prior to the discovery of the puzzle	Uncertainty on TPE: ab initio
μ²H	0.003 meV	0.03 meV	0.02 meV
μ^{3} He+	0.08 meV	1 meV	0.3 meV
µ⁴He⁺	0.06 meV	0.6 meV	0.4 meV
μ ^{6,7} Li++	0.7 meV	4 meV	

Sonia Bacca JG U

Atom	Exp uncertainty on ΔE _{2S-2P}	Uncertainty on TPE prior to the discovery of the puzzle	Uncertainty on TPE: ab initio
μ²H	0.003 meV	0.03 meV	0.02 meV
μ^3 He+	0.08 meV	1 meV	0.3 meV
μ^4 He $^+$	0.06 meV	0.6 meV	0.4 meV
μ ^{6,7} Li++	0.7 meV	4 meV	

What about $\mu^{6,7}$ Li++?

Go to Poster Session, Contribution by Simone Li Muli Thu 18:30

Summary and Outlook

- Ab initio calculations have allowed to substantially reduce uncertainties in TPE
- Independently on the nature of the puzzle, these calculations are needed to support any spectroscopic measurement with muonic atoms
- In the future we will investigate the hyperfine splitting of muonic deuterium and the Lamb shift in muonic lithium atoms

Summary and Outlook

- Ab initio calculations have allowed to substantially reduce uncertainties in TPE
- Independently on the nature of the puzzle, these calculations are needed to support any spectroscopic measurement with muonic atoms
- In the future we will investigate the hyperfine splitting of muonic deuterium and the Lamb shift in muonic lithium atoms

Thanks to my collaborators

N.Barnea, O.J. Hernandez, C.Ji, S.Li Muli, N.Nevo Dinur, A. Poggialini

Summary and Outlook

- Ab initio calculations have allowed to substantially reduce uncertainties in TPE
- Independently on the nature of the puzzle, these calculations are needed to support any spectroscopic measurement with muonic atoms
- In the future we will investigate the hyperfine splitting of muonic deuterium and the Lamb shift in muonic lithium atoms

Thanks to my collaborators

N.Barnea, O.J. Hernandez, C.Ji, S.Li Muli, N.Nevo Dinur, A. Poggialini

Thank you for your attention!

Backup Slides

Sonia Bacca JG U

Uncertainties quantifications

Uncertainties sources

- Numerical
- Nuclear model
- Isospin symmetry breaking
- Nucleon-size
- Truncation of multiples
- η-expansion
- expansion in Zα

C.Ji et al., JPG: Part. Nucl. 45, 093002 (2018)

	μ^2 H		μ^3 H		$\mu^3 \mathrm{He^+}$			$\mu^4 \mathrm{He^+}$				
	$\overline{\delta_{ m pol}^A}$	$\delta_{ m Zem}^A$	$\delta_{ ext{TPE}}^{A}$	$\overline{\delta_{ m pol}^A}$	$\delta_{ m Zem}^A$	$\delta_{ ext{TPE}}^{A}$	$\overline{\delta_{ m pol}^A}$	$\delta_{ m Zem}^A$	$\delta_{ ext{TPE}}^{A}$	$\overline{\delta_{ m pol}^A}$	$\delta_{ m Zem}^A$	$\delta_{ ext{TPE}}^{A}$
Numerical	0.0	0.0	0.0	0.1	0.0	0.1	0.4	0.1	0.1	0.4	0.3	0.4
Nuclear-model	0.3	0.5	0.4	1.3	2.4	1.7	0.7	1.8	1.5	3.9	4.6	4.4
ISB	0.2	0.2	0.2	0.7	0.2	0.5	1.8	0.2	0.5	2.2	0.5	0.5
Nucleon-size	0.3	0.8	0.0	0.6	0.9	0.2	1.2	1.3	0.9	2.7	2.0	1.2
Relativistic	0.0		0.0	0.1		0.1	0.4		0.1	0.1		0.0
Coulomb	0.4		0.3	0.5		0.3	3.0		0.9	0.4		0.1
η -expansion	0.4		0.3	1.3		0.9	1.1		0.3	0.8		0.2
Higher $Z\alpha$	0.7		0.5	0.7		0.5	1.5		0.4	1.5		0.4
Total	1.0	0.9	0.8	2.3	2.2	2.0	4.2	2.2	2.1	5.5	5.1	4.6