

Hyperons

- a strange key to the strong interaction

24th European Conference on Few-Body Problems in Physics 2019

> Guildford, UK, September 2019 Karin Schönning, Uppsala University

Outline

- Introduction
- Hyperon structure with BESIII
- Hyperon decays with BESIII
- Hyperon physics with PANDA

The Nucleon

Many challenges in modern physics manifest themselves in the **nucleon**:

- Challenging to describe from first principles:
 - Its abundance
 - Its mass
 - Its spin
 - Its structure
 - Its radius

The Nucleon

Many challenges in modern physics manifest themselves in the **nucleon**:

- Challenging to describe from first principles:
 - Its abundance
 - Its mass
 - Its spin
 - Its structure
 - Its radius ?

The Nucleon

Many challenges in modern physics manifest themselves in the **nucleon**:

• Challenging to describe from first principles:

Approaches

When you don't understand a system, you can*

- Scatter on it
- Excite it
- Replace building blocks

Hyperons

What happens if we replace one of the light quarks in the proton with one - or many - heavier quark(s)?

Hyperons – key to the strong interaction

- Systems with strangeness
 - Scale: m_s ≈ 100 MeV ~ $\Lambda_{\rm OCD}$ ≈ 200 MeV: Relevant degrees of freedom?
 - Probes QCD in the confinement domain.
- Systems with charm
 - Scale: m_c ≈ 1300 MeV: Quarks and gluons more relevant.
 - Probes QCD just below pQCD.

Hyperons – key to the strong interaction

Advantage of hyperons:

Polarization experimentally accessible by the weak, parity violating decay:

Example: Angular distribution of $\Lambda \rightarrow p\pi^-$ decay

$$I(\cos\theta_{\rm p}) = N(1 + \alpha_{\Lambda} P_{\Lambda} \cos\theta_{\rm p})$$

 $P_{\Lambda} = P_{\Lambda} (\cos \theta_{\Lambda})$: polarisation (production)

 α_{Λ} : asymmetry parameter (decay)

Part 1:

HYPERON STRUCTURE

Electromagnetic Form Factors

- Electromagnetic structure observable:
 - Lattice QCD, ChPT,VDM...
- Measured in interactions hadron virtual photon γ^* .
- Quantify deviation from point-like case
 - = depend on q^2 of γ^* .

Space-like vs. time-like FF's

Space-like vs. time-like FF's

Space-like and time-like FFs related by dispersion theory

Electromagnetic Form Factors

- Space-like Sachs FFs G_E and G_M .
 - In Breit frame:

 G_E and G_M Fourier transforms of charge- and magnetization density.

Time-like form factors

- Time-like FF's are complex:
 - − Δ Φ(q^2) : phase between G_E and G_M .

- Phase is **production related** and depends on q^2 .
 - Constraint 1: Phase result of interfering amplitudes (e.g. s- and d waves)
 - $\rightarrow \Delta \Phi(q^2) = o$ at threshold
 - Constraint 2: Analyticity requires TL FF ~ SL FF as $|q^2| \rightarrow \infty$ *,**
 - $\rightarrow \Delta \Phi(q^2) \rightarrow \text{o as } |q^2| \rightarrow \infty$
- Phase → polarizes final state even for unpolarized initial state ***.

^{*} Theor. Mat. Fiz. **15** (1973) 332.

^{**} Phys. Rev. Lett. 31 (1973) 1153.

^{***}Nuovo Cim. A 109 (1996) 241.

Hyperon production in e^+e^-

- EM and strong interactions with unpolarized beam and target: non-zero polarization with respect to production plane.
- The produced $\overline{Y}Y$ pair is engtangled *i.e.* their spins are correlated.

Formalism for $e^+e^- \rightarrow \gamma^* \rightarrow \overline{Y}Y, Y \rightarrow BM + c.c$:

Two complex amplitudes contribute \rightarrow can parameterise in terms of

- Angular distribution parameter η
- Phase ΔΦ

Unpolarized part Polarized part Spin correlated part

$$W(\xi) = F_0(\xi) + \eta F_5(\xi) - \alpha^2 (F_1(\xi) + \sqrt{1 - \eta^2} \cos(\Delta \Phi) F_2(\xi) + \eta F_6(\xi)) + \alpha \sqrt{1 - \eta^2} \sin(\Delta \Phi) (F_3(\xi) - F_4(\xi))$$

(assuming
$$\alpha = \alpha_{-} = -\alpha_{+}$$
)

$$\mathcal{T}_0(\xi) = 1$$

$$\mathcal{T}_1(\xi) = \sin^2\theta \sin\theta_1 \sin\theta_2 \cos\phi_1 \cos\phi_2 + \cos^2\theta \cos\theta_1 \cos\theta_2$$

$$\mathcal{T}_2(\xi) = \sin\theta\cos\theta\left(\sin\theta_1\cos\theta_2\cos\phi_1 + \cos\theta_1\sin\theta_2\cos\phi_2\right)$$

$$\mathcal{T}_3(\xi) = \sin\theta\cos\theta\sin\theta_1\sin\phi_1$$

$$\mathcal{T}_4(\xi) = \sin\theta\cos\theta\sin\theta_2\sin\phi_2$$

$$\mathcal{T}_5(\xi) = \cos^2 \theta$$

$$\mathcal{T}_6(\xi) = \cos\theta_1 \cos\theta_2 - \sin^2\theta \sin\theta_1 \sin\theta_2 \sin\phi_1 \sin\phi_2$$

- New BESIII data at 2.396 GeV with 555 exclusive $\overline{\Lambda}\Lambda$ events in sample.
 - $-R=|G_E/GM|=0.96\pm0.14\pm0.02$
 - $\Delta \Phi = 37^o \pm 12^o \pm 6^o$
 - $-\sigma = 118.7 \pm 5.3 \pm 5.1 \text{ pb}$

←BES III PRELIMINARY arXiv [hep-ex]: 1903.09421

- Most **precise** result on R and σ
- **First** conclusive result on $\Delta\Phi$

Model predictions by Haidenbauer and Meissner.*

Lines represent different $\overline{\Lambda}\Lambda$ potentials.

Model fitted to $\bar{p}p \to \bar{\Lambda}\Lambda$ data from PS185**

*Phys. Lett. B 761(2016) 456 ** Phys. Rept. 368 (2002) 119-316

Lessons learned:

- Framework for phase measurements: can be applied to other hyperons and at other energies.
- Phase non-zero: at what scale does it approach zero?
 - Alternative way to test analyticity (TL FF ~ SL FF as $|q^2| \rightarrow \infty$)

Part 2

HYPERON DECAYS

Matter-antimatter asymmetry

More matter than anti-matter in the Universe –why?

- As much matter/baryons as anti-matter/anti-baryons, should have been created in the Big Bang.
- Where did the anti-baryons go ("Baryogenesis")?

Matter-antimatter asymmetry

The Sakharov criteria:

- There must be processes that do not conserve baryon number.
- There must be processes that violate C- and CP symmetry.
- These processes
 must have occurred
 outside thermal
 equilibrium.

A. D. Sakharov, J. Exp. Theor. Phys. Lett. 5: 24-27.

CP violation

- Allowed within SM through Cabibbo-Kobayashi-Maskawa (CKM) mechanism.
- **Mesons:** Observed in decays of strange, charmed and bottom mesons.
- **Baryons:** Observed in Λ_b decays by LHCb

Observed and SM predicted amount too small to explain matterantimatter asymmetry!

Nature Phys. **13**, p. 391–396 (2017)

Baryogenesis requires physics beyond the Standard Model!

Weak two-body decays

- Parity violating and parity conserving decay amplitudes.
 - \rightarrow interference quantified by decay parameters α , β , γ
 - $\rightarrow \alpha$ accessible in decay
 - $\rightarrow \beta$, γ accessible in sequential decays
- CP symmetry: $\alpha_{-}(\Lambda) = -\alpha_{+}(\overline{\Lambda})$ $\beta = -\overline{\beta}$ etc.
- Clean CP observable defined by *e.g.*:

$$A = \frac{\alpha_- + \alpha_+}{\alpha_- - \alpha_+}$$

Formalism for $e^+e^- \to J/\Psi \to \Lambda \overline{\Lambda}$, $\Lambda \to p\pi^-$, $\overline{\Lambda} \to \overline{p}\pi^+ *$ (same as before but **without** assuming $\alpha = \alpha_- = -\alpha_+$)

- New BESIII measurement using > 400 000 events of $e^+e^- \rightarrow J/\Psi \rightarrow \Lambda \overline{\Lambda}$.
- New formalism
 - Model independent
 - Takes full process (production and decay) into account.
 - Maximizes information \rightarrow larger precision for a given sample size

- Decay asymmetries α_{-} , α_{0} and α_{+} measured.
- Value of α_- : 17 \pm 3% > PDG value.
- Most precise CP test so far for Λ decay:

$$\frac{\alpha_{-} + \alpha_{+}}{\alpha_{-} - \alpha_{+}} = -0.006 \pm 0.012 \pm 0.007$$

Lessons learned:

- Non-zero polarization gives access to decay parameters.
- Full process gives more precise and accurate results.
- PDG values not written in stone.

2019 update of PDG

Consequences

Most polarisation measurements actually measured αP and calculated P with old PDG value of α Need to be re-scaled to updated value!

Part 3

HYPERON PHYSICS 2.0 WITH PANDA @ FAIR

HYPERON TOPICS IN PANDA

Advantages of PANDA

- Measured cross sections of ground-state hyperons in $\bar{p}p \rightarrow \bar{Y}Y$ 1-100 μb*.
- Excited hyperon cross sections should to be similar to those of ground-states**.

→ Large expected production rates!

Advantages of PANDA

Near 4π detectors \rightarrow exclusive measurements:

- Large reconstruction efficiency
- Small bias

Antihyperon – hyperon pair production:

- Two-body processes
 - → well-defined kinematics
- Symmetric particle-antiparticle final state
 - → controllable systematics.

Hyperon production prospects with PANDA

New simulation studies of single- and double-strange hyperons*:

- Exclusive measurements of
 - $\bar{p}p \to \bar{\Lambda}\Lambda, \Lambda \to p\pi^-, \bar{\Lambda} \to \bar{p}\pi^+.*$
 - $-\bar{p}p \to \bar{\Sigma}^0 \Lambda, \Lambda \to p\pi^-, \bar{\Sigma}^0 \to \bar{\Lambda}\gamma, \bar{\Lambda} \to \bar{p}\pi^+. **$
 - $-\bar{p}p \to \bar{\Xi}^+ \Xi^-, \Xi^- \to \Lambda \pi^-, \Lambda \to p \pi^-, \bar{\Xi}^+ \to \bar{\Lambda} \pi^+, \bar{\Lambda} \to \bar{p} \pi^+.*$
 - $-\bar{p}p \to \bar{\Xi}^+ \Lambda K^- + c.c., \bar{\Xi}^+ \to \bar{\Lambda}\pi^+, \bar{\Lambda} \to \bar{p}\pi^+, \Lambda \to p\pi^-.***$
- Ideal pattern recognition.
- Background using Dual Parton Model.

* W. Ikegami-Andersson (FAIRNESS 2019)

** G. Perez Andrade (Master thesis, Uppsala 2019)

*** J. Puetz, (NSTAR 2019)

p_{beam} (GeV/c)	Reaction	σ (μb)	ε (%)	Rate @ 10 ³¹ cm ⁻² s ⁻¹	S/B	Events /day
1.64	$\bar{p}p o \bar{\Lambda}\Lambda$	64.0	16.0	44 S ⁻¹	114	$3.8 \cdot 10^6$
1.77	$\bar{p}p \to \bar{\Sigma}^0 \Lambda$	10.9	5.3	2.4 S ⁻¹	>11 (90% C.L)	207 000
6.0	$\bar{p}p \to \bar{\Sigma}^0 \Lambda$	20	6.1	5.0 S ⁻¹	21	432 000
4.6	$\bar{p}p \to \bar{\Xi}^+\Xi^-$	~1	8.2	0.3 S ⁻¹	274	26000
7.0	$\bar{p}p \to \bar{\Xi}^+\Xi^-$	~0.3	7.9	O.1 S ⁻¹	65	8600
4.6	$\bar{p}p \to \bar{\Xi}^+ \Lambda K^-$	~1	5.4	O.2 S ⁻¹	30	18000

Hyperon production prospects with PANDA

New simulation studies of single- and double-strange hyperons*:

- Exclusive measurements of
 - $\bar{p}p \to \bar{\Lambda}\Lambda, \Lambda \to p\pi^-, \bar{\Lambda} \to \bar{p}\pi^+.*$
 - $-\bar{p}p \to \bar{\Sigma}^0 \Lambda, \Lambda \to p\pi^-, \bar{\Sigma}^0 \to \bar{\Lambda}\gamma, \bar{\Lambda} \to \bar{p}\pi^+. **$
 - $\ \bar{p}p \to \bar{\Xi}^+\Xi^-, \Xi^- \to \Lambda\pi^-, \Lambda \to p\pi^-, \bar{\Xi}^+ \to \bar{\Lambda}\pi^+, \bar{\Lambda} \to \bar{p}\pi^+. ^*$
 - $\bar{p}p \to \bar{\Xi}^{+}\Lambda K^{-} + c.c., \; \bar{\Xi}^{+} \to \bar{\Lambda}\pi^{+}, \; \bar{\Lambda} \to \bar{p}\pi^{+}, \; \Lambda \to p\pi^{-}. \; ***$
- Ideal pattern recognition.
- Background using Dual Parton Model

* W. Ikegami-Andersson (FAIRNESS 2019)

** G. Perez Andrade (Master thesis, Uppsala 2019)

*** J. Puetz, (NSTAR 2019)

p _{beam} (GeV/c	c) Reaction	σ (μb)	ε (%)	Rate @ 10 ³¹ cm ⁻² s ⁻¹	S/B	Events /day		
1.64	$ar p p o ar \Lambda \Lambda$	64.0	16.0	44 S ⁻¹	114	$3.8 \cdot 10^6$		
1.77								
6.0	PANDA will	432 000						
4.6	With full lu	26000						
7.0								
4.6	$\bar{p}p \to \bar{\Xi}^+ \Lambda K^-$	~1	5.4	O.2 S ⁻¹	30	18000		

Hyperon structure @ PANDA

- Transition form factors accessible from Dalitz decays
 - Complemenary kinematic region w.r.t. BESIII.
- Possible in case of *e.g.* Σ ° and Λ (1520)
- **Challenge:** Small predicted BR's (10⁻³ 10⁻⁶)
- **Good news:** Large hyperon production cross sections.

Hyperon Structure at PANDA

Possible already during Phase 0 with HADES +PANDA FTS!

Summary

- Hyperons is a powerful diagnostic tool to study
 - The strong interaction in the confinement domain.
 - The matter-antimatter asymmetry of the Universe.
- New measurements from BESIII
 - Complete measurement of Λ EM form factors.
 - Most precise test of CP symmetry in Λ decays.
 - − > 40 year old PDG value updated.
- Future at PANDA
 - "Hyperon factory" already at Day One.
 - Broad and unique hyperon programme.

Thanks for your attention!

"Old" PDG

