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Lattice simulations for nuclei, ultracold atoms, and ions  
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Lattice effective field theory 
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Review: D.L, Prog. Part. Nucl. Phys. 63 117-154 (2009) 
Springer Lecture Notes: Lähde, Meißner, “Nuclear Lattice Effective Field Theory” (2019)  
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Construct the effective potential order by order 
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Contact interactions 

 
Leading order (LO) Next-to-leading order (NLO) 

Chiral effective field theory 



Related: 
 
See the talk by Lukas Bovermann on Friday afternoon at 14:55 
in the Atoms and Molecules Session.  He will discuss the 
spherical wall method and calculating phase shifts and mixing 
angles on the lattice for an arbitrary number of coupled channels.	
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6	Li, Elhatisari, Epelbaum, D.L., Lu, Meißner, PRC 98, 044002 (2018) 

Figures by Ning Li 



7	Li, Elhatisari, Epelbaum, D.L., Lu, Meißner, PRC 98, 044002 (2018) 

Figures by Ning Li 
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Euclidean time projection 



We can write exponentials of the interaction using a Gaussian 
integral identity 

We remove the interaction between nucleons and replace it 
with the interactions of each nucleon with a background field. 
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Auxiliary field method 
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A tale of two interactions 
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Two LO interactions, A and B, have nearly identical nucleon-nucleon phase 
shifts and well as three- and four-nucleon bound states	

Elhatisari, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, D.L., Rupak, 
PRL 117, 132501 (2016) 
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Bose condensate of alpha particles! 
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Calculated using the adiabatic projection method 
 Elhatisari, D.L., Rupak, Epelbaum, Krebs, Lähde, Luu, Meißner, Nature 528, 111 (2015)
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Control parameters: Sensitivity to interaction range and locality 

Elhatisari, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, D.L., Rupak, 
PRL 117, 132501 (2016) 



Essential elements for nuclear binding 

What is the minimal nuclear interaction that can reproduce the ground 
state properties of light nuclei, medium-mass nuclei, and neutron matter 
simultaneously with no more than a few percent error in the energies 
and charge radii?  
 
 
 
We construct an interaction with only four parameters. 
 

1.  Strength of the two-nucleon S-wave interaction 
2.  Range of the two-nucleon S-wave interaction 
3.  Strength of three-nucleon contact interaction 
4.  Range of the local part of the two-nucleon interaction 

Lu, Li, Elhatisari, D.L., Epelbaum, Meißner, arXiv:1812.10928, PLB in press  16	



Related:   
 
See the talk by Alejandro Kievsky that took place on Monday 
afternoon at 14:30 in the Few-Nucleons Session, and also the talk 
by Sebastian König on Thursday afternoon at 12:05 in the 
Young Researcher Award Ceremony.	
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SU(4)-invariant pionless interaction 

lattice spacing = 1.32 fm 
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S-wave parameters: 

Triton binding energy:  
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20	Lu, Li, Elhatisari, D.L., Epelbaum, Meißner, arXiv:1812.10928, PLB in press  



21	Lu, Li, Elhatisari, D.L., Epelbaum, Meißner, arXiv:1812.10928, PLB in press  
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Quantum scale anomalies with trapped ions 

In quantum mechanics and quantum field theory, scale invariance can be 
spoiled by quantum scale anomalies.  This happens when there are bound 
states, which necessarily correspond to discrete energy levels. 

Nevertheless it may happen that a discrete subgroup of the scale symmetry 
is preserved for the dynamics of certain sectors of the Hilbert space. 

This phenomenon was first noted by Efimov for bound states of three 
bosons when the two-body interactions are pointlike and the interaction 
strength is tuned to produce a zero-energy two-body resonance. 

Efimov, Sov. J. Nucl. Phys. 12, 589 (1971); Efimov, Phys. Rev. C47 1876 (1993) 
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Wikipedia 

Realization with trapped ions 
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Zhang et al., Nature 543, 217 (2017), Zhang et al., Nature 551, 601 (2017) 
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We can write our Hamiltonian in terms of hardcore boson annihilation and 
creation operators. 

Let us now take 

This choice ensures that a zero-momentum boson has zero energy.  We now 
consider the dispersion relation for one boson.   

We define the state with all spins pointing up as the vacuum state.  Then 
down-spin sites can be viewed as identical hardcore boson excitations. 	



27	

For a boson with momentum p, the energy is 

At low momenta, this can be simplified as 
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We now introduce a single-site deep trapping potential that traps one 
boson at some site i0  

We choose the position of site i0 to be r = 0. We subtract a constant from 
the Hamiltonian so that the energy of this state is exactly zero.	

r = 0	
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We now add one more boson to the system.  We regard the immobile boson 
at r = 0 as a static source. 

where we have dropped terms of O(p2). We will consider the case where 
both J0 and V0 are negative.  In order that the Hamiltonian have classical 
scale invariance, we take   

The low-energy effective Hamiltonian for the mobile boson is 

Discrete scale invariance for two bosons 

Therefore 

D.L., Watkins, Frame, Given, He, Li, Lu, Sarkar, PRA 100, 011403(R) (2019) 
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In the limit of zero energy, the bound-state wave functions have the 
following forms for even and odd parity 

where 

The case          corresponds to a Hamiltonian of the form 



31	

We can rewrite the zero-energy bound-state solutions as 

Under the scale transformations  

For the case 
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The bound state energies form a geometric progression 

The wave functions exhibit discrete scale invariance when the scale 
factors are 

The general formulae are 
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The first twelve even-parity bound-state wave functions: 

D.L., Watkins, Frame, Given, He, Li, Lu, Sarkar, PRA 100, 011403(R) (2019) 
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We use a phase convention where all of the bound-state wave functions are 
real valued. Let us construct a coherent superposition of the first N even-
parity bound states, where N is large.  

We could have just as easily chosen odd-parity bound states.  We now 
consider the amplitude 

Aside from corrections of relative size 1/N from endpoint terms at n = 0 
and n = N – 1, the amplitude is invariant under the discrete rescaling of 
time.  

Time fractals 
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Given the self-replicating behavior of the amplitude under time rescaling, 
we call it a time fractal. 

We choose an integer time scaling factor  

by taking the parameters 
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D.L., Watkins, Frame, Given, He, Li, Lu, Sarkar, PRA 100, 011403(R) (2019) 
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This is a particular case of the Weierstrass function,  

In our case we take a                 and truncate after a finite number of 
terms.  The next slide shows a picture of the Weierstrass function for  
a = 0.5, b = 3.  
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The Weierstrass function has fractal dimension 

Hardy, Trans. Amer. Math. Soc. 17, 301 (1916) 
Hunt, Proc. Amer. Math. Soc. 126, 791 (1998) 



Summary and Outlook 
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We have constructed a minimal nuclear 
interaction that can reproduce the ground 
state properties of light nuclei, medium-
mass nuc le i , and neutron matter 
simultaneously with no more than a few 
percent error in the energies and charge 
radii.  
 
This SU(4)-invariant interaction has 
consequences for the computational reach 
of future nuclear lattice simulations.  
Opens the possibility of simulations with as 
many as one or two hundred nucleons.   
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Trapped ion quantum simulators offer a 
new way to produce quantum scale 
anomalies and do so quite naturally. 
Using several adjustable parameters, one 
can study a broad class of systems with 
discrete scale invariance and fractal-like 
time dependence.  
 
There are many interesting questions that 
remain to be explored.  For example, the 
N-boson systems exhibit multi-halo 
structures with heterogeneous discrete 
scale invariance. 
 
We are using the quantum scale anomaly 
system as a testing ground for new 
quantum computing algorithms. 
 


