

The RmatReact Team

Tom Rivlin

Engineering and Physical Sciences Research Council

Dr Laura McKemmish

Marie Skłodowska-Curie Actions

The RmatReact Team

Tom Rivlin

Dr Eyrn Spinlove

Engineering and Physical Sciences Research Council

Contents

- 1. Cold Chemistry
- 2. Wavefunctions at dissociation
- 3. R-matrix Theory
- 4. The RmatReact approach

Cold and ultracold molecules

LD Carr, D DeMille, RV Krems, J Ye, New. J. Phys., 11, 055049 (2009)

Low-energy collision processes

Elastic scattering $HD(v,J) + H^+ \longrightarrow HD(v,J) + H^+$ Inelastic scattering $HD(v,J) + H^+ \longrightarrow HD(v',J') + H^+$ **Reactive scattering** $HD + H^+ \longrightarrow H_2 + D^+$ Charge exchange $HD + H^+ \longrightarrow HD^+ + H$ Photodissociation $H_2D^+ + hv \longrightarrow HD(v,J) + H^+$ Radiative association $HD + H^+ \longrightarrow H_2D^+ + hv$ Predissociation not important for H_2D^+ Long-range, weakly-bound states

H₂D⁺ as an example

H₃⁺ vibrational wavefunctions near dissociation

J.J. Munro, J. Ramanlal & J. Tennyson, New J. Phys., 7, 196 (2005)

F Kemp, CE Kirk & IR McNab Phil. Trans. R. Soc. Lond. A 358, 2403 (2000).

Low energy collisions with systems with deep potential wells

Naturally divide into two regions:

Long-range:

• simple s-wave scattering

Short-range:

- complicated structures even near threshold
- many resonances

The R-matrix method

e

PG Burke, R-Matrix Theory of Atomic Collisions Application to Atomic, Molecular and Optical Processes (Springer, 2011)

Inner region

R-matrix

boundary

н — н

J. Tennyson, Electron - molecule collision calculations using the R-matrix method, Phys. Rep., 491, 29 (2010).

Outer region

R-Matrix theory:

1940s Introduced by Wigner & Eisenbud for nuclear physics: phenomenological

1960s Calculable theory for electron – atom/ion collisions (Burke et al)

1970s Calculable electron-molecule collisions (Schneider, Burke and others) (Phenomenological also used by Fabrikant, Meyer, etc)

1980s Light-Walker propagator for reactive scattering

Present: Calculable R-matrix is method of choice for electron collision calculations also time-dependent (fast laser studies) used in nuclear physics and elsewhere

(C(P))

UK Atomic Molecular R-matrix code base

RmatReact treactment of reactive scattering

J Tennyson, LK McKemmish, T Rivlin, Faraday Discussion **195**, 31 (2016)

What is an R-matrix?

Relates (asymptotic) radial wavefunction to its derivative

$$\mathbf{R}(r, E) = \frac{\mathbf{F}(r)}{\mathbf{F}'(r)}$$

$$R_{i,j}(r,E) = \frac{F_i(r)}{F'_j(r)}$$

where $F_i(r)$ is the asymptotic radial wavefunction associated with channel *i*. Each channel is associated with an asymptotic state Eg in H⁺ + H₂, *i* represents (*v*,*J*) states of H₂.

On the R-matrix boundary, *r=a*

$$R_{i,j}(E) = \frac{1}{2a} \sum_{k} \frac{\omega_{k,i} \omega_{k,j}}{E - E_k}$$

where E_k is the energy of the k^{th} inner region solution and $w_{i,k}$ is the amplitude of this solution in channel *i*

In the inner region

- Continuum wavefunctions are discretised
- Solutions do not depend on scattering energy

RmatReact summary

Frame transformation (on the boundary):

Hyperfine coupling Spin-orbit coupling Magnetic fields

L.K. McKemmish and J. Tennyson,

General Mathematical Formulation of Reactive Atom-Diatomic Collisions in RmatReact Methodology *Phil. Trans. Royal Soc. London A*, **377**, 20180409 (2019).

Inner region: variational nuclear motion programs

- Duo: vibronic spectra of diatomics implementation complete
- DVR3D: triatomics (exact kinetic energy) partial implementation
- WAVR4: tetratomics (exact kinetic energy) to be done
- TROVE: polyatomic (approx. kinetic energy) to be done

New general diatomic code Duo

Computer Physics Communications 202 (2016) 262–275

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Duo: A general program for calculating spectra of diatomic molecules*

COMPUTER PHYSICS

Sergei N. Yurchenko^{a,*}, Lorenzo Lodi^a, Jonathan Tennyson^a, Andrey V. Stolyarov^b

^a Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

Hund's case (a)

CaO: transition dipole moment curves

CaO: line list

S.N. Yurchenko, A. Blissett, U. Asari, M. Vasilios, C. Hill & J. Tennyson, Mon. Not. R. astr. Soc., 456, 4524 (2016)

Duo implementation:

- Bloch term to allow for finite boundary
- Lobatto Shape function DVR used
- Initial tests on Ar Ar (elastic scattering)
- Study of He $O(^{3}P_{i})$ (inelastic scattering)
- Code available on gitlab (via www.exomol.com)

Eigenphases for the Morse potential

T. Rivlin, L.K. McKemmish and J. Tennyson, Low temperature scattering with the R-matrix method: the Morse potential, Springer Conference Proceedings. (in press)

Ar – Ar inner region wavefunctins with Duo

T. Rivlin, LK McKemmish, KE Spinlove & J Tennyson, Mol. Phys. (in press)

Ar – Ar low energy eigenphases: J=5

Ar – Ar total cross section at low energy

T. Rivlin, LK McKemmish, KE Spinlove & J Tennyson, Mol. Phys. (in press)

Structure of the S-matrix in the complex k-plane $E = k^2/2^{..}$

PS Bingham & JD Gorfinkiel, Reskit: A toolkit to determin the poles of an S-matrix Computer Phys. Comms. 239 272 (2019)

Ar – Ar bound state as pole in S-matrix in the complex k-plane.

RmatReact: current status

- Ar Ar elastic collisions: completed
- $O({}^{3}P_{J})$ He inelastic collisions: nearing completion
- Triatomics (DVR3D) development in progress
- Collaboration with Brianna Heazlewood (Oxford) on ultralow energy ion – molecule collisions

World Scientific

About the first edition "The best book for anyone who is embarking on research in astronomical spectroscopy" Contemporary Physics (2006)

3rd edition published 18 June 2019

www.worldscientific.com/worldscibooks/10.1142/q0207