Dibaryon resonances and NN interaction

O.A. Rubtsova

in collaboration with

V.I. Kukulin, V.N. Pomerantsev and M.N. Platonova

Skobeltsyn Institute of Nuclear Physics, Moscow State University

24 European Conference on Few-Body Problems in Physics University of Surrey, Guildford, UK 4 September 2019

Contents:

- 1. Dibaryon resonances: predicted many years ago and recently detected.
- 2. The dressed 6q bag model for NN interaction.
- 3. Dibaryons in NN scattering.
- 4. 3N system.
- 5. Conclusions.

Dibaryon resonances

The first prediction of dibaryon states in NN system

F.J. Dyson and N.-H. Xuong, PRL 13, 815 (1964)

Table I. $Y = 2$ states with zero strangeness predicted by the <u>490</u> multiplet.							
Particle	Т	J	SU(3) multiplet	Comment	Predicted mass		
<i>D</i> ₀₁	0	1	10*	Deuteron	A		
D_{10}	1	0	27	Deuteron singlet state	A		
D_{12}	1	2	27	S-wave N-N* resonance	A + 6B		
D ₂₁	2	1	35	Charge-3 resonance	A + 6B		
D_{03}	0	3	10*	S-wave $N^* - N^*$ resonance	A + 10B		
D_{30}	3	0	28	Charge-4 resonance	A + 10B		

- The deuteron D₀₁(1876) is the lowest dibaryon state strongly coupled to NN S-wave channel.
- SU(6) mass formula: *M* = *A*+*B*[*T*(*T*+1)+*J*(*J*+1)-2]

 $(A - \text{deuteron mass}, B \approx 47 \text{ MeV})$ Prediction for masses of $N-\Delta$ and $\Delta-\Delta$ *S*-wave resonances: $M(D_{12}) \approx 2160 \text{ MeV} \approx M(N) + M(\Delta) - 10 \text{ MeV},$ $M(D_{03}) \approx 2350 \text{ MeV} \approx M(\Delta) + M(\Delta) - 110 \text{ MeV}.$

The first prediction of dibaryon states in NN system

F.J. Dyson and N.-H. Xuong, PRL 13, 815 (1964)

Table I. $Y = 2$ states with zero strangeness predicted by the <u>490</u> multiplet.								
Particle	Т	J	SU(3) multiplet	Comment	Predicted mass			
D ₀₁	0	1	<u>10</u> *	Deuteron	A			
D_{10}	1	0	27	Deuteron singlet state	A			
D_{12}	1	2	27	S-wave $N-N^*$ resonance	A + 6B			
D_{21}	2	1	35	Charge-3 resonance	A + 6B			
D_{03}	0	3	<u>10</u> *	S -wave N^* - N^* resonance	A + 10B			
D_{30}	3	0	28	Charge-4 resonance	A + 10B			

- The deuteron *D*₀₁(1876) is the lowest dibaryon state strongly coupled to *NN S*-wave channel.
- SU(6) mass formula: *M* = *A*+*B*[*T*(*T*+1)+*J*(*J*+1)-2]

 $(A - \text{deuteron mass}, B \approx 47 \text{ MeV})$ Prediction for masses of $N-\Delta$ and $\Delta-\Delta$ S-wave resonances: $M(D_{12}) \approx 2160 \text{ MeV} \approx M(N) + M(\Delta) - 10 \text{ MeV},$ $M(D_{03}) \approx 2350 \text{ MeV} \approx M(\Delta) + M(\Delta) - 110 \text{ MeV}.$

Evidence for D_{03} dibaryon from n+p elastic scattering

PRL 112, 202301 (2014) PHYSICAL R

PHYSICAL REVIEW LETTERS

week ending 23 MAY 2014

Evidence for a New Resonance from Polarized Neutron-Proton Scattering

 $D_{03} \approx \Delta\Delta(30\%) + C\overline{C}(70\%)$

[M. Bashkanov, S. Brodsky, H. Clement, PLB727(2013)438]

D_{03} resonance appears to be the *truly dibaryon (6q) state* coupled to $\Delta\Delta$ channel and not only the $\Delta\Delta$ bound state.

The series of isovector dibaryons

Experiments on $\vec{p} + \vec{p}$ elastic scattering (I. Auer et al., 1978) and partial wave analyses (PWA) for $pp \rightarrow pp$, $\pi^+d \rightarrow \pi^+d$ and $\pi^+d \rightarrow pp$ (by N. Hoshizaki et al., and others) revealed the series of isovector resonances in *NN* channels 1D_2 , 3F_3 , 1G_4 , etc.

Contributions of the dominant ${}^{1}D_{2}P$, ${}^{3}F_{3}D$ and ${}^{3}P_{2}D$ amplitudes to the $\pi^{+}d \rightarrow pp$ total cross section

Theoretical confirmation of D_{12} and D_{03} resonances

• From solving exact Faddeev equations for πNN and $\pi N\Delta$ systems the robust dibaryon poles corresponding to D_{12} and D_{03} were found:

$$M(D_{12}) = 2151 \pm 2 \text{ MeV}, \quad \Gamma(D_{12}) = 120 \pm 6 \text{ MeV}$$

$$M(D_{03}) = 2363 \pm 20 \text{ MeV}, \quad \Gamma(D_{03}) = 65 \pm 17 \text{ MeV}$$

[A. Gal, H. Garcilazo, PRL111(2013)172301 & NPA928(2014)73]

 Very good agreement with Dyson and Xuong predictions as well as with experimental findings!

P-wave isovector dibaryons

V. Komarov et al., Phys. Rev. C 93 (2016) 065206, ANKE

The reaction: $pp \rightarrow \{pp\}_s \pi^0$ Two main transitions: ${}^{3}P_0 \rightarrow {}^{1}S_0s$, ${}^{3}P_2 \rightarrow {}^{1}S_0d$

Nuclear force model based on the dibaryon mechanism

The dressed bag model with the dibaryon mechanism of NN force:

V.I. Kukulin, I.T. Obukhovsky, V.N. Pomerantsev, A. Faessler, New mechanism for intermediate- and short-range nucleon-nucleon interaction, J. Phys. G 27, 1851 (2001).
V. I. Kukulin, I. T. Obukhovsky, V. N. Pomerantsev, A. Faessler, Two-component dressed-bag model for NN interaction: Deuteron structure and phase shifts up to 1 GeV, Int. Jour. of Mod. Phys. E 11, 1 (2002).

V. I. Kukulin, V. N. Pomerantsev, M. Kaskulov, A. Faessler, *The properties of the three-nucleon system with the dressed-bag model for NN interaction: I. New scalar three-body force, J. Phys. G* **30**, 287, (2004).

V. I. Kukulin, V. N. Pomerantsev, A. Faessler, *The properties of the three-nucleon system within the dressed bag model for 2N and 3N forces: II. Coulomb and CSB effects, J. Phys.* G **30**, 309, (2004).

A. Faessler, V.I. Kukulin, M.A. Shikhalev, Description of intermediate- and short-range NN nuclear force within a covariant effective field theory, Ann. Phys. 320, 71 (2005).
V.I. Kukulin et al. Experimental and theoretical indications for an intermediate sigma-dressed dibaryon in the NN interaction, Ann. Phys. 325, 173 (2010).

Recent results for one- and two-pion production in NN collisions:

M.N. Platonova and V.I. Kukulin, *Hidden dibaryons in one- and two-pion production in NN collisions*, Nucl. Phys. A **946**, 117 (2016).

M.N. Platonova and V.I. Kukulin, *Manifestation of the P-wave diproton resonance in single-pion production in pp collisions,* Phys. Rev. D **94**, 054039 (2016).

The dibaryon mechanism

The particular short-range mechanism was proposed in 1998 (V.I. Kukulin, in *Proc. XXXIII PIYaF Winter School*, S.-Petersburg, 1998, p.207)

The above mechanism replaces the conventional *t*-channel σ -exchange between two nucleons by the *s*-channel exchange of the σ -dressed six-quark state.

 $r_{NN} < 1 \, {\rm fm}$

 $r_{NN} < 1 \text{ fm}$

 $r_{NN} > 3 \lambda_{\pi}$

At the QCD level

Two lowest configurations in 6q system:

$$|s^{6}[6]_{x}L=0;ST\rangle$$
 $|s^{4}p^{2}[42]_{x}LST\rangle$

symmetrical config.

mixed symmetry config.

 $N + N \rightarrow \mathbf{D} : |s^4p^2[42] L_q = 0,2; ST \rightarrow |s^6[6] L_q = 0, ST + \sigma >,$

4q2q configuration has been studied at first in the Nijmegen-ITEP model.

Nijmegen-ITEP dibaryon model:

Dibaryon model for the ABC puzzle

• The new model [M.N. Platonova, V.I. Kukulin, PRC 87, 025202 (2013)] for the reaction $pn \rightarrow d + (\pi\pi)_0$ at energies $T_p = 1-1.3$ GeV ($s^{1/2} = 2.32-2.44$ GeV) includes production of the $D_{03}(2380)$ dibaryon and its subsequent decay into the final deuteron and isoscalar $\pi\pi$ pair via two interfering routes:

(a) emission of $\pi\pi$ pair from a scalar σ meson produced from dibaryon meson cloud;

(b) sequential emission of two pions via an intermediate isovector dibaryon D_{12} (2150).

Dibaryon model for the ABC puzzle

- ✓ ABC enhancement appears as a consequence of σ meson production
- ✓ Peak in $M_{d\pi}$ spectrum reflects production of isovector dibaryon $D_{12}(2150)$

The formalism for NN scattering

A model with external and internal channels

The total Hamiltonian acts in two subspaces of different nature:

$$H = \begin{pmatrix} h^{\text{ex}} & h^{\text{ex,in}} \\ h^{\text{in,ex}} & h^{\text{in}} \end{pmatrix}$$

 $ex\xspace$ - corresponds to relative motion of particles $in\xspace$ - corresponds to internal degrees of freedom

After an exclusion of internal terms, one gets the effective Hamiltonian in the external subspace:

$$H_{\rm eff}(E) = h^{\rm ex} + h^{\rm ex,in} g^{\rm in}(E) h^{\rm in,ex}, g^{\rm in}(E) = (E - h^{\rm in})^{-1}$$

The mathematical background for the two-channel formalism within the Faddeev approach was given by the Leningrad's group:

Yu.A. Kuperin, K.A. Makarov, S.P. Merkuriev, A.K. Motovilov, and B.S. Pavlov, J. Math. Phys. **31**, 1681 (1990).

A model with internal and external channels

The total Hamiltonian in the dibaryon model:

$$H = \begin{pmatrix} h_{NN} & \lambda | \varphi \rangle \langle B | \\ \lambda | B \rangle \langle \varphi | & h^{\text{in}} \end{pmatrix}$$

 h_{NN} is the Hamiltonian which acts in the *NN* relative momentum space. The internal space corresponds to the 6q degrees of freedom.

In the simplest case, this space is spanned with a single state:

$$h^{\rm in} = E_D \left| B \right\rangle \left\langle B \right|$$

The energy-dependent effective Hamiltonian:

$$H_{\rm eff}(E) = h_{NN} + \frac{\lambda^2}{E - E_D} |\varphi\rangle \langle \varphi|$$

The external Hamiltonian

The Hamiltonian in the external channel:

$$h_{NN} = t_{NN} + V_{OPE} + V_{orth}$$

One pion exchange (OPE) potential:

$$V_{OPE}(\mathbf{p},\mathbf{p'}) = -\frac{f_{\pi}^2}{m_{\pi}^2} (\boldsymbol{\tau}_1 \boldsymbol{\tau}_2) \frac{(\boldsymbol{\sigma}_1 \mathbf{q})(\boldsymbol{\sigma}_2 \mathbf{q})}{q^2 + m_{\pi}^2} \left(\frac{\Lambda_{\pi NN}^2 - m_{\pi}^2}{\Lambda_{\pi NN}^2 + q^2} \right)^2, \mathbf{q} = \mathbf{p} - \mathbf{p'}$$

 $V_{\rm orth}$ is related to the orthogonality condition and plays the same role as the repulsive core in conventional models.

The repulsive core effects

6q configurations:
$$|s^4 p^2 [42]_x LST \rangle |s^6 [6]_x L = 0; ST \rangle$$

The NN relative momentum space corresponds to the mixed symmetry 6q configuration s^4p^2 . Its projection onto NN channel has a stationary node (see e.g. F. Stancu et al., PRC **56**, 2779 (1997)).

The node position is close to the repulsive core range r_c .

The effective Hamiltonian

$$H_{\rm eff}(E) = t_{NN} + V_{OPE} + V_{\rm orth} + \frac{\lambda^2}{E - E_D} |\varphi\rangle \langle \varphi|$$

Further, one may consider a complex pole: $E_D = E_0 - i\Gamma(E)/2$

 $\Gamma(E)$ takes into account decays of the dibaryon state into all inelastic channels (such as N Δ , $\Delta\Delta$, etc.) except the NN channel. For example, the decay width for the $D \rightarrow \pi NN$ process:

$$\Gamma_D(\sqrt{s}) = \begin{cases} 0, & \sqrt{s} \le E_{\text{thr}}; \\ \Gamma_0 \frac{F(\sqrt{s})}{F(M_0)}, & \sqrt{s} > E_{\text{thr}} \end{cases}, \qquad E_{\text{thr}} = 2m + m_{\pi}$$

 $F(\sqrt{s}) = \frac{1}{s} \int_{2m}^{\sqrt{s}-m_{\pi}} dM_{NN} \frac{q^{2l_{\pi}+1}k^{2L_{NN}+1}}{(q^2+\Lambda^2)^{l_{\pi}+1}(k^2+\Lambda^2)^{L_{NN}+1}},$

 $q = \sqrt{(s - m_{\pi}^2 - M_{NN}^2)^2 - 4m_{\pi}^2 M_{NN}^2} / 2\sqrt{s} - \text{momentum of the pion in total c.m. frame}$ $k = \frac{1}{2} \sqrt{M_{NN}^2 - 4m^2} - \text{nucleon momentum in the NN c.m. frame}$

Partial NN phase shifts

Coupled channels ${}^{3}D_{3}$ - ${}^{3}G_{3}$

Isovector channels

(V.N. Pomerantsev et al., FBS 2019) ρ (deg) δ (deg) 30 20-0 20 ${}^{3}P_{0}$ -20- ${}^{3}P_{0}$ 10-40-Dib. model -60 0 30 SAID SM16 15 20 10-5 $^{1}D_{2}$ 10-0 ${}^{1}D_{2}$ -5 (0 30--2 20--4- ${}^{3}F_{3}$ ${}^{3}F_{3}$ -6-10--8-0 -10-800 200 400 600 800 400 600 200 0 0 $T_{\rm lab}$ (MeV) $T_{\rm lab}$ (MeV)

$^{2S+1}L_J$	$M_{ m th}$	$\Gamma_{ m th}$	$M_{ m exp}$	$\Gamma_{ m exp}$
$^{-3}P_{0}$	2.21	0.1	2.20(5)	0.091(12)
$^{1}D_{2}$	2.18	0.11	2.14 - 2.18	0.05 - 0.1
${}^{3}F_{3}$	2.22	0.17	2.20 - 2.26	0.1 – 0.2

Coupled channels ${}^{3}P_{2} - {}^{3}F_{2}$

¹S₀ channel

V.I. Kukulin et al., Phys. At. Nucl. 2019; arXiv:1908.10551v1 [nucl-th]

The additional broad resonance:

 $E_{\rm th}$ =2.6 GeV, $\Gamma_{\rm th}$ =0.6 GeV

Coupled channels ${}^{3}S_{1} - {}^{3}D_{1}$

3N system

Three-nucleon system within the dibaryon model

The total space consists of 4 components:

$$\hat{\Psi} = \begin{pmatrix} \Psi^0 \\ \Psi^1 \\ \Psi^2 \\ \Psi^3 \end{pmatrix}, \quad \mathbb{H} = \begin{pmatrix} H^0 & H^{01} & H^{02} & H^{03} \\ H^{10} & H^1 & 0 & 0 \\ H^{20} & 0 & H^2 & 0 \\ H^{30} & 0 & 0 & H^3 \end{pmatrix},$$

(V.N. Pomerantsev et al., FBS 19)

0 – an external momentum space 1,2,3 – internal subspaces for each Jacobi set

The effective Hamiltonian:

$$H^{\rm eff}(E)\Psi^0 = E\Psi^0,$$

$$H^{\text{eff}}(E) = H^{0} + \sum_{i} H^{0i} G^{i}(E) H^{i0} = T + \sum_{i} \left[V_{i} + W_{i}(E - t_{i}) \right]$$

The Hamiltonian should be supplemented with the dibaryon 3N force.

Dibaryon-induced 3*N***force**

These three-body forces are expressed in momentum representation by integral operators with factorized kernel like:

$$W_1^{^{3BF}}(\mathbf{p}_1,\mathbf{q}_1,\mathbf{p}_1',\mathbf{q}_1';E) = \varphi(\mathbf{p}_1)w(\mathbf{q}_1,\mathbf{q}_1';E)\varphi(\mathbf{p}_1')$$

The total Hamiltonian:

$$H^{\text{tot}}(E) = H_{\text{eff}}(E) + \sum_{\alpha} W_{\alpha}^{3BF}(E)$$

Properties of ³**H and** ³**He from 3N calculations** with the dibaryon model

V.N. Pomerantsev et al., Phys. At. Nucl. 68, 1453 (2005)

Model	E MeV P	$P_{\rm p}$ %	$P_{S'},\%$	$P_{a, x}(P_{a}) \%$	Contributions to H , MeV		
Model	L, MCV	<i>I D</i> , 70		1.6qN(1.in), 70	T	$T + V^{(2N)}$	$V^{(3N)}$
³ Н							
$DBM(I)g=9.577^{a)}$	-8.482	6.87	0.67	10.99	112.8	-1.33	-7.15
$DBM(II)g=8.673^{a)}$	-8.481	7.08	0.68	7.39	112.4	-3.79	-4.69
$AV18 + UIX^{b)}$	-8.48	9.3	1.05	-	51.4	-7.27	-1.19
³ He							
DBM(I)	-7.772	6.85	0.74	10.80	110.2	-0.90	-6.88
DBM(II)	-7.789	7.06	0.75	7.26	109.9	-3.28	-4.51
$AV18 + UIX^{(b)}$	-7.76	9.25	1.24	_	50.6	-6.54	-1.17

a) These values of the *σNN* coupling constant in ³H calculations have been chosen to reproduce the exact binding energy of the ³H nucleus. The calculations for ³H have been carried out without any free parameters.
b) S. C. Pieper et al., Phys. Rev. C 64, 014001 (2001).

$$\Delta E_{\text{Coul}} = 754 \text{ keV} \left(\Delta E_{\text{Coul}}^{\text{exp}} = 764 \text{ keV} \right)$$

Conclusions:

- Attraction in partial NN channels can be explained by the suggested s-channel dibaryon mechanism.
- The parameters of the found dressed dibaryon states are in good agreement with experimental data.
- These results supplement other achievements of the dibaryon model, such as an accurate description of one-pion and two-pion production in NN collisions.

Further development:

- Explicit account of inelastic channels such as N Δ , $\Delta\Delta$ etc.
- Scattering in 3N system...
- Nuclear matter calculations: study of short-range correlations, pairing etc.

- ...

Thank you for your attention!

Properties of the deuteron:

V.N. Pomerantsev et al., Phys. At. Nucl. 68, 1453 (2005)

Model	E_d , MeV	$P_D, \%$	r_m , fm	Q_d, fm^2	μ_d , n.m.	A_S , fm ^{-1/2}	$\eta(D/S)$
RSC	2.22461	6.47	1.957	0.2796	0.8429	0.8776	0.0262
Moscow 99	2.22452	5.52	1.966	0.2722	0.8483	0.8844	0.0255
Bonn 2001	2.224575	4.85	1.966	0.270	0.8521	0.8846	0.0256
$DBM(I) P_{6q} = 3.66\%$	2.22454	5.22	1.9715	0.2754	0.8548	0.8864	0.02588
$DBM(II) P_{6q} = 2.5\%$	2.22459	5.31	1.970	0.2768	0.8538	0.8866	0.0263
Experiment	2.224575	-	1.971	0.2859	0.8574	0.8846	0.0263 ^{a)}