

Low-energ

RCQM Universal RCQI

Spectroscopy

Decays Decay Systematic

CC Theory Form Factors N and Δ Masse

Summary

Spectroscopy of Heavy-Flavor Baryons

Willibald Plessas

Theoretical Physics / Institute of Physics University of Graz, Austria

in collaboration with B. Mehr Motamedi, J.P. Day, and Z. Papp Dept. of Physics and Astronomy, California State Univ. at Long Beach

24th European Conference on Few-Body Problems in Physics Guildford, September 5th, 2019

Outline

Low-energy QCD

RCQM Universal RCQN

Spectroscopy

Decays Decay Systematic:

CC Theory Form Factors N and Δ Masses

Summary

Low-Energy QCD / Relevant Degrees of Freedom

Universal Relativistic Constituent-Quark Model (URCQM) for all known baryons, including heavy flavors

Spectroscopy of All Baryons

Strong Baryon Resonance Decays

Coupled-Channels Theory

Conclusions and Outlook

Constituent-Quark Picture of Baryons

Low-energy QCD

- RCQM Universal RCQM
- Decays
- Decay Systematic:
- Form Factors N and Δ Masses
- Summary

Here the proton:

- 'Constituent' quarks are quasiparticles with dynamical mass, NOT the original QCD d.o.f. (i.e. 'current' quarks).
- 'Constituent' quarks are confined and interact via hyperfine interactions associated with $SB\chi S$, i.e. Goldstone-boson exchange.

Relativistic Framework

Low-energy QCD

RCQM

Universal RCQM

Spectroscop

Decays Decay Systematics

CC Theory Form Factors N and Δ Masses

Summary

Relativistic quantum mechanics (RQM)

i.e. **quantum theory** respecting **Poincaré invariance** (theory on a Hilbert space \mathcal{H} corresponding to a finite number of particles, not a field theory)

Invariant mass operator

$$\hat{M} = \hat{M}_{\textit{free}} + \hat{M}_{\textit{int}}$$

Eigenvalue equations

$$\hat{M} \ket{P, J, \Sigma} = M \ket{P, J, \Sigma}$$
, $\hat{M}^2 = \hat{P}^{\mu} \hat{P}_{\mu}$
 $\hat{P}^{\mu} \ket{P, J, \Sigma} = P^{\mu} \ket{P, J, \Sigma}$, $\hat{P}^{\mu} = \hat{M} \hat{V}^{\mu}$

Relativistic Constituent-Quark Model (RCQM)

Interacting mass operator

Low-energy QCD

RCQM

Universal RCQM

Spectroscopy

Decays Decay Systematic

CC Theory Form Factors N and Δ Masse

Summary

$$\hat{M} = \hat{M}_{free} + \hat{M}_{int}$$
$$\hat{M}_{free} = \sqrt{\hat{H}_{free}^2 - \hat{\vec{P}}_{free}^2}$$
$$\hat{M}_{int}^{rest \, frame} = \sum_{i < j}^{3} \hat{V}_{ij} = \sum_{i < j}^{3} [\hat{V}_{ij}^{conf} + \hat{V}_{ij}^{hf}]$$

fulfilling the Poincaré algebra

$$\begin{split} & [\hat{P}_i, \hat{P}_j] = 0, \qquad [\hat{J}_i, \hat{H}] = 0, \qquad [\hat{P}_i, \hat{H}] = 0, \\ & [\hat{K}_i, \hat{H}] = -i\hat{P}_i \qquad [\hat{J}_i, \hat{J}_j] = i\epsilon_{ijk}\hat{J}_k \qquad [\hat{J}_i, \hat{K}_j] = i\epsilon_{ijk}\hat{K}_k, \\ & [\hat{J}_i, \hat{P}_j] = i\epsilon_{ijk}\hat{P}_k, \qquad [\hat{K}_i, \hat{K}_j] = -i\epsilon_{ijk}\hat{J}_k, \qquad [\hat{K}_i, \hat{P}_j] = -i\delta_{ij}\hat{H} \end{split}$$

 \hat{H}, \hat{P}_i ... time and space translations, \hat{J}_i ... rotations, \hat{K}_i ... Lorentz boosts

Universal GBE RCQM

Phenomenologically, baryons with 5 flavors: *u*, *d*, *s*, *c*, *b*

Low-energy QCD

RCQM Universal RCQM

Spectroscopy

Decays Decay Systematics

CC Theory Form Factors N and Δ Masse

Summary

$$\Rightarrow H_{free} = \sum_{i=1}^{3} \sqrt{m_i^2 + \vec{k}_i^2}$$

$$V^{conf}(\vec{r}_{ij}) = B + C r_{ij}$$

$$V^{hf}(\vec{r}_{ij}) = \left[V_{24}(\vec{r}_{ij}) \sum_{f=1}^{24} \lambda_i^f \lambda_j^f + V_0(\vec{r}_{ij}) \lambda_i^0 \lambda_j^0 \right] \vec{\sigma}_i \cdot \vec{\sigma}_j$$

i.e., for N_f = 5, we have the exchange of a 24-plet plus a singlet of Goldstone bosons.

L.Ya. Glozman and D.O. Riska: Nucl. Phys. A **603**, 326 (1996) J.P. Day, K.-S. Choi, and W. Plessas: Few-Body Syst. **54**, 329 (2013) W. Plessas: Int. J. Mod. Phys. A30, 1530013 (2015)

Universal GBE RCQM Parametrization

Low-energy QCD

RCQM Universal RCQM

Spectroscopy

Decays Decay Systematic

CC Theory Form Factors N and Δ Masse

Summary

$$\begin{split} V^{conf}(\vec{r}_{ij}) &= B + C \, r_{ij} \\ V_{\beta}(\vec{r}_{ij}) &= \frac{g_{\beta}^2}{4\pi} \frac{1}{12m_i m_j} \left\{ \mu_{\beta}^2 \frac{e^{-\mu_{\beta} r_{ij}}}{r_{ij}} - 4\pi \delta(\vec{r}_{ij}) \right\} \\ &= \frac{g_{\beta}^2}{4\pi} \frac{1}{12m_i m_j} \left\{ \mu_{\beta}^2 \frac{e^{-\mu_{\beta} r_{ij}}}{r_{ij}} - \Lambda_{\beta}^2 \frac{e^{-\Lambda_{\beta} r_{ij}}}{r_{ij}} \right\} \end{split}$$

 $B = -402 \text{ MeV}, C = 2.33 \text{ fm}^{-2}$

$$\begin{split} \beta &= 24: \quad \frac{g_{24}^2}{4\pi} = 0.7, \qquad \mu_{24} = \mu_{\pi} = 139 \text{ MeV}, \quad \Lambda_{24} = 700.5 \text{ MeV} \\ \beta &= 0: \quad \left(\frac{g_0}{g_{24}}\right)^2 = 1.5, \quad \mu_0 = \mu_{\eta'} = 958 \text{ MeV}, \quad \Lambda_0 = 1484 \text{ MeV} \\ m_u &= m_d = 340 \text{ MeV}, \quad m_s = 480 \text{ MeV}, \\ m_c &= 1675 \text{ MeV}, \quad m_b = 5055 \text{ MeV} \end{split}$$

Low-energy QCD

RCQM Universal RCQM

Spectroscopy

Decays Decay Systematic

CC Theory Form Factors N and Δ Masse

Summary

Dynamical mass gain $\Delta m = m_Q - m_q$ due to SB χ S is similar for all flavors:

Quark		PDG		RCQM		DSE
flavor		m_q		m_Q	Δm	Δm
$\frac{1}{2}(u+d)$		3.3 – 4.2		340	\sim 336	\sim 276
S		95 ± 5		480	\sim 385	\sim 278
С		1275 ± 25		1675	\sim 400	\sim 330
b	I	4660 ± 30	Ì	5055	\sim 395	~ 400

PDG:	Particle Data Group (i.e. current-quark masses)
RCQM:	Relativistic Constituent-Quark Model
DSE:	Dyson-Schwinger Equation
CST:	Covariant Spectator Theory – not shown here
	see the talk by A. Stadler @EFB24

Is Δm a new challenge for flavor physics?

Quark Mass Functions from DSE

Low-energy QCD

RCQM Universal RCQM

Spectroscopy

Decays Decay Systematic

CC Theory Form Factors N and Δ Masse

Summary

Solution of Mass-Operator EV Problem

Low-energy QCD

RCQM Universal RCQM

Spectroscopy

Decays Decay Systematic

CC Theory Form Factors N and Δ Masse

Summary

- $\hat{M} | P, J, \Sigma, F_{abc} \rangle = M | P, J, \Sigma, F_{abc} \rangle$ $= M | M, V, J, \Sigma, F_{abc} \rangle$
- → baryon wave functions (initially in rest frame) $\Psi_{PJ\Sigma F_{abc}}(\vec{\xi}, \vec{\eta}) = \langle \vec{\xi}, \vec{\eta} | P, J, \Sigma, F_{abc} \rangle$,

where $\vec{\xi}$ and $\vec{\eta}$ are the usual Jacobi coordinates and

- P momentum eigenvalues
- (*M*, *V* mass resp. velocity eigenvalues)
 - J intrinsic spin \doteq total angular momentum)
 - Σ z-component of J
 - *F_{abc}* flavor content

Universal BCOM

Advanced Few-Body Methods - 1

A) Stochastic Variational Method (SVM)

 $\Psi_{\textit{PJ}\Sigma\textit{F}_{abc}}(\mathbf{X}) = \sum_{i} c_{i} \left\{ e^{-\frac{1}{2}\tilde{\mathbf{X}}A\mathbf{X}} \left[\Theta_{\textit{LM}_{L}}(\hat{\mathbf{X}}) \chi_{\mathcal{S}} \right]_{\textit{J}\Sigma} \phi_{\textit{F}_{abc}} \right\}_{i}$

with linear and nonlinear variational parameters

$$c_i$$
, $A = \{\beta, \delta, \nu, n, \lambda, I, L, s, S, F_{abc}, d\}$

searched by a generalized Rayleigh-Ritz principle through a stochastic selection of basis states

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

V.I. Kukulin and V.M. Krasnopol'sky: J. Phys. G 3, 795 (1977)

Y. Suzuki and K. Varga: Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems (Soringer, Berlin, 1998)

Advanced Few-Body Methods - 2

B) Modified Faddeev Integral Equations

Low-energy QCD

RCQM Universal RCQM

Spectroscopy

Decays Decay Systematic

CC Theory Form Factors N and Δ Masse

Summary

$$\begin{aligned} H &= H_0 + v_{\alpha} + v_{\beta} + v_{\gamma} = \\ H_0 + v_{\alpha}^{\rm conf} + v_{\beta}^{\rm conf} + v_{\gamma}^{\rm conf} + \tilde{v}_{\alpha} + \tilde{v}_{\beta} + \tilde{v}_{\gamma} = \\ H^{\rm conf} + \tilde{v}_{\alpha} + \tilde{v}_{\beta} + \tilde{v}_{\gamma} \,, \end{aligned}$$
with
$$\begin{aligned} H^{\rm conf} &= H_0 + v_{\alpha}^{\rm conf} + v_{\beta}^{\rm conf} + v_{\gamma}^{\rm conf} \end{aligned}$$

$$\begin{split} \Psi_{PJ\Sigma F_{abc}}(\mathbf{k}) &= \left(\tilde{\psi}_{\alpha} + \tilde{\psi}_{\beta} + \tilde{\psi}_{\gamma}\right)_{PJ\Sigma F_{abc}}(\mathbf{k}) \\ \tilde{\psi}_{\alpha} &= G_{\alpha}^{\mathrm{conf}}(E)\tilde{v}_{\alpha}\left(\tilde{\psi}_{\beta} + \tilde{\psi}_{\gamma}\right) \\ G_{\alpha}^{\mathrm{conf}}(E) &= \left(E - H^{\mathrm{conf}} - \tilde{v}_{\alpha}\right)^{-1} \end{split}$$

Z. Papp: Few-Body Syst. 26, 99 (1999)

Z. Papp, A. Krassnigg, and W. Plessas: Phys. Rev. C 62, 044004 (2000)

J. McEwen, J. Day, A. Gonzalez, Z. Papp, and W. Plessas: Few-Body Syst. 47, 225 (2010)

Solution Accuracy

Low-energ QCD

RCQM Universal RCQM

Spectroscopy

Decays

Decay Systematic

CC Theory Form Factors

Summary

Baryon	JP	Fado	Faddeev		/M	Experiment
		GBE	OGE	GBE	OGE	
N(939)	$\frac{1}{2}^{+}$	939	940	939	939	938-940
N(1440)	$\frac{1}{2}^{+}$	1459	1578	1459	1577	1420-1470
N(1520)	3 -	1520	1521	1519	1521	1515-1525
N(1535)	$\frac{1}{2}$ -	1520	1521	1519	1521	1525-1545
N(1650)	$\frac{1}{2}$	1646	1686	1647	1690	1645-1670
N(1675)	<u>5</u> —	1646	1686	1647	1690	1670-1680
Δ(1232)	3+	1240	1229	1240	1231	1231-1233
$\Delta(1600)$	3+	1718	1852	1718	1854	1550-1700
Δ(1620)	$\frac{1}{2}$	1640	1618	1642	1621	1600-1660
Δ(1700)	3 -	1640	1618	1642	1621	1670-1750
Λ(1116)	$\frac{1}{2}^{+}$	1133	1127	1136	1113	1116
Λ(1405)	$\frac{1}{2}$ -	1561	1639	1556	1628	1401-1410
Λ(1520)	3 -	1561	1639	1556	1628	1519-1521
Λ(1600)	$\frac{1}{2}^{+}$	1607	1749	1625	1747	1560-1700
Λ(1670)	$\frac{1}{2}^{-}$	1672	1723	1682	1734	1660-1680
Λ(1690)	3 -	1672	1723	1682	1734	1685-1695

Z. Papp, A. Krassnigg, and W. Plessas: Phys. Rev. C 62, 044004 (2000)

J. McEwen, J. Day, A. Gonzalez, Z. Papp, and W. Plessas: Few-Body Syst. 47, 225 (2010)

Low-energy QCD

RCQM Universal RCQN

Spectroscopy

Decays Decay Systematic

CC Theory Form Factors N and Δ Masse

Summary

Spectroscopy

of Baryons with All Flavors

u, d, s, c, b

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Light Baryon Spectra

Low-energy QCD

RCQM Universal RCQN

Spectroscopy

Decays Decay Systematic

CC Theory Form Factors N and Δ Masse

Summary

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

red Universal GBE RCQM

Particle Data Group (experiment)

Strange Baryon Spectra

RCQM Universal RCQ

Spectroscopy

Decays Decay Systematic

CC Theory Form Factors N and Δ Masse

Summary

red Universal GBE RCQM

green Particle Data Group (experiment)

◆□ → ◆□ → ◆三 → ∢目 → ◆□ →

UNI GRAZ

Comparison of N and Λ Excitation Spectra

Low-energy QCD

RCQM Universal RCQ

Spectroscopy

Decays Decay Systematic

CC Theory Form Factors N and Δ Masse

Summary

left levels: One-gluon-exchange RCQM right levels: Goldstone-boson-exchange RCQM

< 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0

W. Plessas: Few-Body Syst. Suppl. 15, 139 (2003)

GBE Hyperfine Interaction

Low-energy QCD

RCQM Universal RCQI

Spectroscop

Decays Decay Systematic

Form Factors N and Δ Mass

Summary

Level shifts due to hyperfine interaction:

L.Ya. Glozman, Z. Papp, W. Plessas, K. Varga, and R.F. Wagenbrunn, Phys. Rev. C 57, 3406 (1998)

э.

Charm Baryon Spectra

RCQM Universal RCQ

Spectroscop

Decays Decay Systematic

CC Theory Form Factors N and Δ Masse

Summary

Left panel - single charm:

our value m(Ξ_{cc}) = 3642 MeV

- red Universal GBE RCQM prediction
- green Particle Data Group (experiment)

Right panel - double charm:

green M. Mattson et al.: Phys. Rev. Lett. 89 (2002) 112001 (SELEX experiment)

New datum from LHCb 2017: m(Ξ_{cc})= 3621.40±0.72(stat.)±0.27(syst.)±0.14(Λ_c) MeV

cyan S. Migura, D. Merten, B. Metsch, and H.-R. Petry: Eur. Phys. J. A 28 (2006) 41 (Bonn RCQM)

magenta L. Liu et al.: Phys. Rev. D 81 (2010) 094505 (Lattice QCD)

 Ξ_{cc}

Low-energy QCD

RCQM Universal RCQ

Spectroscopy

Decays Decay Systematics

CC Theory Form Factors N and Δ Mass

Summary

Universal GBE RCQM predictions

Baryon	J^{p}	URCQM
Ξ _{cc}	$\frac{1}{2}^{+}$	3642
Ξ _{cc}	<u>3</u> +	3683
Ξ _{cc}	<u>1</u> -	3899
Ξ _{cc}	3-	3899
Ξ _{cc}	<u>1</u> -	4004
Ξ _{cc}	3-	4004
Ξ _{cc}	$\frac{1}{2}$ +	4032
Ξ _{cc}	$\frac{3}{2}^{+}$	4064

Bottom Baryon Spectra

Low-energy QCD

RCQM Universal RCQ

Spectroscopy

Decays Decay Systematic

CC Theory Form Factors N and Δ Masse

Summary

Left panel - single bottom:

- red Universal GBE RCQM prediction
- green Particle Data Group (experiment)

Right panel - double bottom:

green W. Roberts and M. Pervin: Int. J. Mod. Phys. A 23 (2008) 2817 (nonrel. one-gluon-exchange CQM)
 orange D. Ebert, R.N. Faustov, V.O. Galkin, and A.P. Martynenko: Phys. Rev. D 66 (2002) 014008 (RCQM)

・ロ・・聞・・思・・思・・ しゃ

Triple-Heavy Baryon Spectra

RCQM Universal RCQI

Spectroscopy

Decays Decay Systematic

CC Theory Form Factors N and Δ Masse

Summary

red Universal GBE RCQM

green W. Roberts and M. Pervin: Int. J. Mod. Phys. A 23 (2008) 2817 (nonrelativistic one-gluon-exchange CQM)

blue S. Migura, D. Merten, B. Metsch, and H.-R. Petry: Eur. Phys. J. A 28 (2006) 41 (Bonn RCQM)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

cyan A.P. Martynenko: Phys. Lett. B 663 (2008) 317 (RCQM)

magenta S. Meinel: Phys. Rev. D 82 (2010) 114502 (lattice QCD)

UNI GRAZ

Influence of Light-Heavy Q-Q Interaction

Low-energy QCD

RCQM Universal RCQN

Spectroscopy

Decays Decay Systematic

CC Theory Form Factors N and Δ Masse

Summary

leftmost cyan levels middle magenta levels rightmost red levels confinement only including only light-light GBE including full GBE RCQM

Low-energ QCD

RCQM Universal RCQI

Spectroscopy

Decays

Decay Systematic

CC Theory Form Factors N and Δ Masse

Summary

π , η , and K Decay Modes of N^* , Δ^* , Λ^* , Σ^* , Ξ^* Resonances

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

UNI GRAZ

Spectator Model Decay Operator

Low-energy QCD

RCQM Universal RCQM

Spectroscopy

Decays

Decay Systematics

CC Theory Form Factors N and Δ Masse

Summary

$$\begin{split} \langle V', M', J', \Sigma', T', M_{T'} | \hat{D}_{rd}^{m} | V, M, J, \Sigma, T, M_{T} \rangle &= \\ \frac{2}{MM'} \sum_{\sigma_{i} \sigma_{i}'} \sum_{\mu_{i} \mu_{i}'} \int d^{3} \vec{k}_{2} d^{3} \vec{k}_{3} d^{3} \vec{k}_{2}' d^{3} \vec{k}_{3}' \sqrt{\frac{\left(\sum_{i} \omega_{i}'\right)^{3}}{\prod_{i} 2\omega_{i}'}} \sqrt{\frac{\left(\sum_{i} \omega_{i}\right)^{3}}{\prod_{i} 2\omega_{i}}} \\ \times \prod_{\sigma_{i}'} D_{\sigma_{i}' \mu_{i}'}^{\star \frac{1}{2}} \left\{ R_{W} \left[k_{i}'; B\left(V'\right) \right] \right\} \Psi_{M'J'\Sigma'T'M_{T'}}^{\star} \left(\vec{k}_{1}', \vec{k}_{2}', \vec{k}_{3}'; \mu_{1}', \mu_{2}', \mu_{3}' \right) \\ \times \langle p_{1}', p_{2}', p_{3}'; \sigma_{1}', \sigma_{2}', \sigma_{3}' | \hat{D}_{rd}^{m} | p_{1}, p_{2}, p_{3}; \sigma_{1}, \sigma_{2}, \sigma_{3} \rangle \\ \times \prod_{\sigma_{i}} D_{\sigma_{i} \mu_{i}}^{\frac{1}{2}} \left\{ R_{W} \left[k_{i}; B\left(V\right) \right] \right\} \Psi_{MJ\SigmaTM_{T}} \left(\vec{k}_{1}, \vec{k}_{2}, \vec{k}_{3}; \mu_{1}, \mu_{2}, \mu_{3} \right) \end{split}$$

with the hadronic decay operator in the point-form spectator model

$$\begin{split} \langle p_{1}', p_{2}', p_{3}'; \sigma_{1}', \sigma_{2}', \sigma_{3}' | \hat{D}_{\mathrm{rd}}^{m} | p_{1}, p_{2}, p_{3}; \sigma_{1}, \sigma_{2}, \sigma_{3} \rangle = \\ & - 3\mathcal{N} \frac{i g_{qqm}}{2m_{1}} \frac{1}{\sqrt{2\pi}} \bar{u} \left(p_{1}', \sigma_{1}' \right) \gamma_{5} \gamma^{\mu} \mathcal{F}^{m} u \left(p_{1}, \sigma_{1} \right) q_{\mu} \\ & \times 2 p_{20} \delta \left(\vec{p}_{2} - \vec{p}_{2}' \right) 2 p_{30} \delta \left(\vec{p}_{3} - \vec{p}_{3}' \right) \delta_{\sigma_{2} \sigma_{2}'} \delta_{\sigma_{3} \sigma_{3}'} \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

π Decay Widths of \textit{N}^* and Δ^*

	N^*, Δ^*	Experiment	t Relativistic		Nonre	I. EEM
	$\rightarrow N\pi$	[MeV]	GBE	OGE	GBE	OGE
Low-energy QCD	N(1440)	$(227\pm18)^{+70}_{-59}$	30	59	7	27
	N(1520)	$(66\pm6)^{+}_{-}$ $^{9}_{5}$	21	23	38	37
Spectroscopy	N(1535)	$(67 \pm 15)^{+28}_{-17}$	25	39	559	1183
Decays	N(1650)	$(109\pm26)^{+36}_{-~3}$	6.3	9.9	157	352
Decay Systematics	N(1675)	$(68\pm8)^{+14}_{-4}$	8.4	10.4	13	16
Form Factors	N(1700)	$(10\pm5)^{+}_{-}{}^{3}_{3}$	1.0	1.3	2.2	2.7
N and △ Masses	N(1710)	$(15\pm5)^{+30}_{-5}$	19	21	8	6
Summary	∆(1232)	$(119 \pm 1)^{+ \ 5}_{- \ 5}$	35	31	89	85
	$\Delta(1600)$	$(61\pm26)^{+26}_{-10}$	0.5	5.1	93	86
	∆(1620)	$(38\pm8)^{+}_{-}^{8}_{6}$	1.2	2.8	76	177
	$\Delta(1700)$	$(45\pm15)^{+20}_{-10}$	3.8	4.1	10.4	9.1

With theoretical masses

T. Melde, W. Plessas, and R.F. Wagenbrunn: Phys. Rev. C 72, 015207 (2005); ibid. 74, 069901 (2006)

Low-energ QCD

Universal RCQI

Spectroscopy

Decays

CC Theory Form Factors N and Δ Masses

Summary

	Experiment	Relativistic		Nonre	I. EEM
$N ightarrow N\eta$	[MeV]	GBE	OGE	GBE	OGE
N(1520)	$(0.28\pm0.05)^{+0.03}_{-0.01}$	0.1	0.1	0.04	0.04
N(1535)	$(64 \pm 19)^+_{-28}$	27	35	127	236
<i>N</i> (1650)	$(10\pm5)^{+}_{-}$ $\stackrel{4}{_{-}}$	50	74	283	623
<i>N</i> (1675)	$(0\pm1.5)^+_{-0.1}$	1.5	2.4	1.1	1.8
<i>N</i> (1700)	$(0\pm1)^+_{-0.5}$	0.5	0.9	0.2	0.3
<i>N</i> (1710)	$(6\pm1)^+$	0.02	0.06	2.9	9.3

With theoretical masses

T. Melde, W. Plessas, and R.F. Wagenbrunn: Phys. Rev. C 72, 015207 (2005); ibid. 74, 069901 (2006)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

K Decay Widths of Λ^* and Σ^*

	Λ^*, Σ^*	Experiment	Relat	ivistic	Nonrel. EEN	
	ightarrow NK	[MeV]	GBE	OGE	GBE	OGE
	Λ(1520)	$(7.02\pm0.16)^{+0.46}_{-0.44}$	12	24	23	63
	Λ(1600)	$(33.75 \pm 11.25)^{+30}_{-15}$	15	35	4.1	23
	Λ(1670)	$(8.75 \pm 1.75)^{+4.5}_{-2}$	0.3	pprox 0	45	86
Spectroscopy	Λ(1690)	$(15\pm3)^{+3}_{-2}$	1.2	1.0	4.2	6.5
Decays Decay Systematics	Λ(1800)	$(97.5 \pm 22.5)^{+40}_{-25}$	4.2	6.4	3.1	8.6
	Λ(1810)	$(52.5 \pm 22.5)^{+50}_{-20}$	4.1	12	23	44
	Λ(1830)	$(6.18 \pm 3.33)^{+1.05}_{-1.05}$	0.1	0.9	0.1	0.1
	Σ(1660)	$(20\pm10)^{+30}_{-6}$	0.9	0.9	0.4	pprox 0
	Σ(1670)	$(6.0 \pm 1.8)^{+2.6}_{-1.4}$	1.1	1.0	1.9	2.0
	Σ(1750)	$(22.5 \pm 13.5)^{+28}_{-3}$	pprox 0	1.4	10	48
	Σ(1775)	$(48.0 \pm 3.6)^{+6.5}_{-5.6}$	11	15	20	41
	Σ(1940)	$(22\pm22)^{+16}$	1.1	1.5	3.3	6.8

With theoretical masses

T. Melde, W. Plessas, and B. Sengl: Phys. Rev. D 76, 054008 (2007)

Decay Widths of Octet Baryon Resonances

Low-energ QCD

Universal RCQM

Spectroscopy

Decays Decay Systematics

CC Theory Form Factors N and Δ Masse

Summary

T. Melde, W. Plessas, and B. Sengl: Phys. Rev. D 77, 114002 (2008)

Low-energy QCD

- RCQM Universal RCQI
- Spectroscopy
- Decays Decay Systematics
- CC Theory Form Factors N and Δ Masses
- Summary

- Baryon spectroscopy of all flavors consistently described in a universal relativistic constituent-quark model based on GBE dynamics
- The covariant structures of the ground states (N, Δ, Λ, ..., Ω) in good agreement with experiment (wherever such data are available)
- Predictions by the GBE RCQM reasonably consistent with (reliable) lattice-QCD results.
- Disturbing shortcomings of the {QQQ} quark model for hadronic decays
- Obviously certain observables require more than {QQQ} degrees of freedom

Low-energy QCD

RCQM Universal RCQN

Spectroscopy

Decays Decay Systematics

CC Theory

N and Δ Masses

Summary

Introducing

explicit mesonic degrees of freedom

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

{QQQ} Cluster with Explicit Pions

Low-energy QCD

RCQM Universal RCQN

Spectroscop

Decays Decay Systematic

CC Theory Form Factors N and ∆ Masses Coupled-channels mass-operator eigenvalue equation for π -dressing of a given bare $\{\widetilde{QQQ}\}$ cluster state

$$\begin{array}{cc} M_{\widetilde{Q}\widetilde{Q}\widetilde{Q}} & K_{\pi\widetilde{Q}\widetilde{Q}\widetilde{Q}} \\ K^{\dagger}_{\pi\widetilde{Q}\widetilde{Q}\widetilde{Q}} & M_{\widetilde{Q}\widetilde{Q}\widetilde{Q}+\pi} \end{array} \right) \left(\begin{array}{c} |\psi_{QQQ}\rangle \\ |\psi_{QQQ+\pi}\rangle \end{array} \right) = m \left(\begin{array}{c} |\psi_{QQQ}\rangle \\ |\psi_{QQQ+\pi}\rangle \end{array} \right),$$

where $M_{\widetilde{QQQ}}$ is the $\{\widetilde{QQQ}\}$ mass operator with confinement. After Feshbach elimination of the $|\psi_{QQQ+\pi}\rangle$ channel:

$$[M_{\widetilde{QQQ}} + \underbrace{K_{\pi\widetilde{QQQ}}(m - M_{\widetilde{QQQ} + \pi})^{-1}K_{\pi\widetilde{QQQ}}^{\dagger}}_{V_{opt}}]|\psi_{QQQ}\rangle = m|\psi_{QQQ}\rangle.$$

It is an exact eigenvalue equation for $|\psi_{QQQ}\rangle$, yielding in general a complex eigenvalue *m* of the π -dressed {*QQQ*} system.

Strong $\pi \widetilde{N} \widetilde{N}$, $\pi \widetilde{N} \widetilde{\Delta}$, $\pi \widetilde{\Delta} \widetilde{N}$, and $\pi \widetilde{\Delta} \widetilde{\Delta}$ FFs

Low-energy QCD

RCQM Universal RCQ

Spectroscopy

Decays Decay Systematic:

CC Theory Form Factors N and A Masse

Summary

Equating the microscopic optical potential with the hadronic one (including vertex FF's)

 $\int K_{\pi \widetilde{QQQ}} (m - M_{\widetilde{QQQ}+\pi})^{-1} K_{\pi \widetilde{QQQ}}^{\dagger}$ $\sim \int \mathcal{F}_{\pi \widetilde{B}\widetilde{B}}(\vec{k}_{\pi}^{2}) K_{\pi \widetilde{B}\widetilde{B}} (m - M_{\widetilde{B}+\pi})^{-1} K_{\pi \widetilde{B}\widetilde{B}}^{\dagger} \mathcal{F}_{\pi \widetilde{B}\widetilde{B}}^{*}(\vec{k}_{\pi}^{2})$

allows to determine the various strong $\pi \widetilde{B}\widetilde{B}$ form factors $\mathcal{F}_{\pi \widetilde{B}\widetilde{B}}(\vec{k}_{\pi}^2)$ at the following vertices:

(日)

Consistent Solution of the CC RCQM for N

Low-energy QCD

RCQM Universal RCQN

Spectroscopy

Decays Decay Systematics

CC Theory Form Factors N and A Masse

Summary

$$\begin{split} \left[m_{\widetilde{N}}^{} + \int \frac{d^{3}k_{\pi}}{(2\pi)^{3}} \frac{1}{2\omega_{\pi} 2\omega_{\widetilde{N}}^{} 2m_{\widetilde{N}}^{}} \mathcal{F}_{\pi\widetilde{N}\widetilde{N}}(\vec{k}_{\pi}^{2}) \left\langle \widetilde{N} \mid \mathcal{L}_{\pi\widetilde{N}\widetilde{N}}(0) \mid \widetilde{N}, \pi : \vec{k}_{\pi} \right\rangle \\ \times \left(\frac{m}{\sqrt{m_{\widetilde{N}}^{2} + \vec{k}_{\pi}^{2}}} - \sqrt{m_{\pi}^{2} + \vec{k}_{\pi}^{2}} \right)^{-1} \\ \times \mathcal{F}_{\pi\widetilde{N}\widetilde{N}}^{*}(\vec{k}_{\pi}^{2}) \left\langle \widetilde{N}, \pi : \vec{k}_{\pi} \mid \mathcal{L}_{\pi\widetilde{N}\widetilde{N}}^{\dagger}(0) \mid \widetilde{N} \right\rangle \right] \left\langle \widetilde{N} \mid \psi_{N} \right\rangle = m \left\langle \widetilde{N} \mid \psi_{N} \right\rangle \end{split}$$

- Start with an arbitrary value $m_{\widetilde{N}}^{(0)}$ for $m_{\widetilde{N}}$ and calculate $\mathcal{F}_{\pi\widetilde{N}\widetilde{N}}^{(0)}(\vec{k}_{\pi})$
- ► Use $\mathcal{F}_{\pi \tilde{N} \tilde{N}}^{(0)}(\vec{k}_{\pi})$ in the eigenvalue equation to obtain m = 939 MeV and a corresponding bare mass $m_{\tilde{N}}^{(1)}$
- Take $m_{\widetilde{N}}^{(1)}$ and calculate $\mathcal{F}_{\pi \widetilde{N} \widetilde{N}}^{(1)}(\vec{k}_{\pi})$
- Repeat this iteration until a consistent solution is achieved

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQ@

$\pi \widetilde{N} \widetilde{N}$ Form Factor from Microscopic Theory

Result of the CC RCQM compared to other models

RCQM Universal RCQ

Spectroscopy

Decays Decay Systematic

CC Theory Form Factors N and Δ Masse

Summary

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

Pionic (Dressing) Effects on Nucleon Mass

Low-energy QCD

RCQM Universal RCQN

Spectroscopy

Decays Decay Systematics

CC Theory Form Factors N and Δ Masses

Summary

Predictions of the CC RCQM

	CC	RCQM	SL	KNLS	PR Gauss	PR Multipole
$\frac{f^2}{\frac{\pi \widetilde{N}\widetilde{N}}{4\pi}}$	0.071	0.0691	0.08	0.08	0.013	0.013
m _N	939	939	939	939	939	939
$m_{\widetilde{N}}$	1096	1067	1031	1037	1025	1051
$m_N - m_{\widetilde{N}}$	-157	-128	-92	-98	-86	-112

(all values in MeV)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

m

Consistent Solution of the CC RCQM for Δ

Low-energy QCD

RCQM Universal RCQM

Spectroscopy

Decays Decay Systematic

CC Theory Form Factors N and Δ Masses

Summary

$$\begin{split} & \sum_{\overline{\Delta}} + \int \frac{d^{3}k_{\pi}}{(2\pi)^{3}} \frac{1}{2\omega_{\pi} 2\omega_{\widetilde{N}} 2m_{\overline{\Delta}}} \mathcal{F}_{\pi\widetilde{N}\widetilde{\Delta}}(\vec{k}_{\pi}^{2}) \left\langle \widetilde{\Delta} \mid \mathcal{L}_{\pi\widetilde{N}\widetilde{\Delta}}(0) \mid \widetilde{N}, \pi : \vec{k}_{\pi} \right\rangle \\ & \times \qquad \left(m - \sqrt{m_{\widetilde{N}}^{2} + \vec{k}_{\pi}^{2}} - \sqrt{m_{\pi}^{2} + \vec{k}_{\pi}^{2}} \right)^{-1} \\ & \times \qquad \mathcal{F}_{\pi\widetilde{N}\widetilde{\Delta}}^{*}(\vec{k}_{\pi}^{2}) \left\langle \widetilde{N}, \pi : \vec{k}_{\pi} \mid \mathcal{L}_{\pi\widetilde{N}\widetilde{\Delta}}^{\dagger}(0) \mid \widetilde{\Delta} \right\rangle \right] \left\langle \widetilde{\Delta} \mid \psi_{\Delta} \right\rangle = m \left\langle \widetilde{\Delta} \mid \psi_{\Delta} \right\rangle \end{split}$$

- The bare N mass $m_{\tilde{N}}$ is determined from above
- Assume an arbitrary value $m_{\widetilde{\Delta}}^{(0)}$ for $m_{\widetilde{\Delta}}$ and calculate $\mathcal{F}_{\pi \widetilde{N} \widetilde{\Delta}}^{(0)}(\vec{k}_{\pi})$
- Use *F*⁽⁰⁾_{πŇΔ}(*k*_π) in the eigenvalue equation to obtain the physical Δ mass *m* and a corresponding bare mass *m*⁽¹⁾_λ
- Take $m_{\widetilde{\Delta}}^{(1)}$ and calculate $\mathcal{F}_{\pi \widetilde{N} \widetilde{\Delta}}^{(1)}(\vec{k}_{\pi})$
- Repeat this iteration until a consistent solution is achieved

$\pi \widetilde{N} \widetilde{\Delta}$ Form Factor from Microscopic Theory

Result of the CC RCQM compared to other models

Low-energy QCD

RCQM Universal RCQI

Spectroscopy

Decays Decay Systematic

CC Theory Form Factors N and Δ Masses

Summary

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

N and Δ Mass

Pionic (Dressing) Effects on Δ Mass and Width

Predictions of the CC RCQM

		CC	RCQM	SL	KNLS	PR Gauss	PR Multipole
	$\frac{f^2_{\frac{\pi\widetilde{N}\widetilde{\Delta}}{4\pi}}}{4\pi}$	0.239	0.188	0.334	0.126	0.167	0.167
	m _N	939	939	939	939	939	939
	$Re[m_{\Delta}]$	1232	1232	1232	1232	1232	1232
	$m_{\widetilde{\Delta}}$	1327	1309	1288	1261	1329	1347
s	$\stackrel{-}{Re}[m_{\Delta}] - m_{\widetilde{\Delta}}$	-95	-77	-56	-29	-96	-115
	$2 Im[m_{\Delta}] = \Gamma$	67	47	64	27	52	52
	$\Gamma_{\mathrm exp}(\Delta o \pi N)$			\sim 117			

 Δ decay to physical N:

(日)

Mass Dependence on Coupling Strength

Blue dotted line: decay threshold $m_N + m_\pi = 1078$ MeV ($m_N = 939$ MeV, $m_\pi = 139$ MeV)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Pionic (Dressing) Effects on Δ Mass and Width

Predictions of the CC RCQM

with dressed coupling constant $f_{\pi N\Delta} = 1.3 \times f_{\pi \widetilde{N}\widetilde{\Delta}}$:

	CC	RCQM	SL	KNLS	PR Gauss	PR Multipole
$\frac{f_{\pi N\Delta}^2}{4\pi}$	0.403	0.318	0.564	0.213	0.282	0.282
m _N	939	939	939	939	939	939
$Re[m_{\Delta}]$] 1232	1232	1232	1232	1232	1232
$m_{\widetilde{\Delta}}$	1381	1356	1319	1279	1387	1418
$Re[m_{\Delta}]$	$]-m_{\widetilde{\Delta}}$ -149	-124	-87	-47	-155	-186
2 <i>Im</i> [<i>n</i>	$\mu_{\Delta}] = \Gamma$ 118	83	106	45	94	97
Γ _{exp} (Δ	$\Delta \to \pi N$)		~ 117			

Low-energy QCD

RCQM Universal RCQI

Spectroscop

Decays Decav Systemati

CC Theory Form Factors N and Δ Masses

Summary

 Δ decay to physical N:

Conclusions and Outlook

Low-energy QCD

RCQM Universal RCQN

Spectroscopy

- Decays Decay Systematic
- CC Theory Form Factors N and Δ Masses

Summary

- A {QQQ} constituent-quark model cannot provide a comprehensive, simultaneous description of baryon ground AND resonant states
- A coupled-channels theory taking into account the π, as the Goldstone boson of spontaneous chiral-symmetry breaking of low-energy QCD, immediately offers new degrees of freedom
- A consistent implementation of pionic effects for the *N* and the Δ has now been achieved (in a relativistically-invariant framework)
- Extensions to further resonances are called for
- Other than just π couplings will presumably be needed

Collaborators

Graz

K. Berger, J.P. Day, Ki-Seok Choi, L. Glozman,

A. Krassnigg, T. Melde, M. Rohrmoser, R.C. Schardmüller, R.A. Schmidt, B. Sengl, K. Varga, R.F. Wagenbrunn

(Theoretical Physics, University of Graz)

Pavia S. Boffi and M. Radici (INFN, Sezione di Pavia)

Padova

L. Canton (INFN, Sezione di Padova)

Iowa City + Long Beach

W. Klink, Z. Papp (Department of Physics, University of Iowa resp. CSULB)

Low-energy

RCQM Universal RCQM

Spectroscopy

Decays Decay Systematic

CC Theory Form Factors N and Δ Masses

Summary

Low-energ

RCQM Universal RCQ

Spectroscopy

Decays Decay Systematic

CC Theory Form Factors N and Δ Masse

Summary

Thank you very much

for

your attention!

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @