Three-body correlations in mesonic-atom-like systems

H. Moriya*, W. Horiuchi*, J.-M. Richard**

*Hokkaido Univ. **Lyon Univ.

- Particles are interacting with long- and short-range potential in mesonic atom systems.
 - $-K^-p$, K^-pp , K^-pn
- Due to the existence of the short-range potential, the levels are shifted from these with only long-range potential.
 - $-\bar{K}N$ interaction is strong short-range attraction[1].

Level rearrangement

Deser-Teueman formula

□ The shift of the spectrum of the long-range potential is expressed by Deser-Trueman formula (DT) in the case of the two-body systems. [2,3]

$$\delta E^{(2)} = \frac{2\pi}{\mu} |\Psi_{LR}^{(2)}(0)| a_{SR}$$

- □ DT is the product of the contribution of long-range potential and short-range potential.
 - $-\Psi_{LR}^{(2)}(0)$: wave function of the long-range potential
 - a_{SR} : scattering length by the short-range potential

■ When the short-range potential is strong enough, the DT does not reproduce the level shift.

$$H = \sum_{i}^{2} T_{i} - T_{cm} + V_{12}^{LR} + \lambda V_{12}^{SR}$$

$$V_{ij}^{SR} = -C_{SR} \mu_{SR}^{3} \exp\left(-\mu_{SR}^{2} r_{ij}^{2}\right)$$

$$V_{ij}^{LR} = -\frac{\operatorname{erf}(\mu_{LR} r_{ij})}{r_{ij}}$$

$$\mu_{SR} = \mu_{LR} = 30$$

☐ The determinant method [4] is adopted to evaluate whether the DT works well quantitatively.

	λ_1	λ_2	λ_3	• • •
$LR_{ m I}$	$\delta E(LR_{\rm I},\lambda_1)$	$\delta E(LR_{ m I},\lambda_2)$	$\delta E(LR_{\rm I},\lambda_3)$	• • •
LR_{II}	$\delta E(LR_{\mathrm{II}},\lambda_1)$	$\delta E(LR_{\mathrm{II}},\lambda_2)$	$\delta E(LR_{\mathrm{II}},\lambda_3)$	• • •
$LR_{ m III}$	$\delta E(LR_{\rm III},\lambda_1)$	$\delta E(LR_{ m III},\lambda_2)$	$\delta E(LR_{\rm III},\lambda_3)$	• • •
•	•	• •	•	

■ If the energy shift is expressed by the DT, the determinant of the blued sub matrix is always 0

$$S_{2} = \begin{vmatrix} \delta E(LR_{\mathrm{I}}, \lambda_{1}) & \delta E(LR_{\mathrm{I}}, \lambda_{2}) \\ \delta E(LR_{\mathrm{II}}, \lambda_{1}) & \delta E(LR_{\mathrm{II}}, \lambda_{2}) \end{vmatrix} = \begin{vmatrix} A_{LR_{\mathrm{I}}} B_{SR}(\lambda_{1}) & A_{LR_{\mathrm{I}}} B_{SR}(\lambda_{2}) \\ A_{LR_{\mathrm{II}}} B_{SR}(\lambda_{1}) & A_{LR_{\mathrm{II}}} B_{SR}(\lambda_{2}) \end{vmatrix} = 0$$

[4] J.-M. Richard, C. Fayard, Phys. Lett. A 381, 3217-3221 (2017)

□ Determinant method analysis on the two-body system.

*The DT represents the twobody correlation

*The criteria whether the determinant is zero or not depends on the calculation accuracy

$$\lambda_c \sim 0.6$$

■ Extended the DT for the three-body systems[3].

$$\sum_{i>i=1}^{3} \frac{2\pi}{\mu} |\Psi_{LR,ij}^{(3)}(0)|^2 a_{SR,ij}$$

- □ Summing up the DT for all pair in a three-body system.
 - $-\Psi_{LR,ij}^{(3)}(0)$: three-body wave function of long-range potential when the two particles labeled i and j contact.
 - $a_{SR,ij}$: scattering length of i and j particles by short-range potential.
 - Including only two-body correlations
- ☐ The determinant method is still useful under the extention.

■ To overview the behavior we firstly tackle to these two simple models consisting of bosons.

Model1
$$H_{\rm I} = \sum_{i}^{3} T_{i} - T_{cm} + \sum_{i>j=1}^{3} V_{ij}^{LR} + \lambda \sum_{i>j=1}^{3} V_{ij}^{SR}$$

$$V_{ij}^{LR} = -\frac{\text{erf}(\mu_{LR}r_{ij})}{r_{ij}} \quad V_{ij}^{SR} = -C_{SR}\mu_{SR}^{3} \exp\left(-\mu_{SR}^{2}r_{ij}^{2}\right)$$

$$\text{Model2} \qquad H_{\text{II}} = \sum_{i}^{3} T_{i} - T_{cm} + \sum_{i>j=1}^{3} V_{ij}^{LR} + \lambda \sum_{i=1}^{2} V_{i3}^{SR}$$

$$V_{ij}^{LR} = -\frac{\text{erf}(\mu_{LR}r_{ij})}{r_{ij}} \quad V_{ij}^{SR} = -C_{SR}\mu_{SR}^{3} \exp\left(-\mu_{SR}^{2}r_{ij}^{2}\right)$$

Model1

LR: attractive SR: attractive LR: attractive SR: attractive LR: attractive SR: attractive

Model2

How three-body calc. is done

- □ Three-body calculation is done by stochastic variation method with the correlated Gaussian[5].
 - The wave function is expanded by the correlated Gaussian

 The variation parameters are determined to minimize the binding energy.

$$\delta \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} = 0$$

How three-body calc. is done

- The difficulty of the calculation is that both long-range and short-range model space have to be treated simultaneously.
- \Box The energies are converged until ~10⁻⁴.

□ Level shift and determinant method of model 1,2

Summary

- The ranges of the strength of the short-range potential where Deser-Trueman formula is available are evaluated by the determinant method.
- \square 2body: $\lambda_c \sim 0.6$
- □ 3body
 - Model1 $\lambda_c \sim 0.4$
 - Model2 $\lambda_c \sim 1.25$

☐ The application to physical system e.g. KNN gives the prediction on to the KN interaction.