Universal Short Range Correlations in Bosonic Helium Clusters

Betzalel Bazak
The Racah Institute of Physics
The Hebrew University of Jerusalem

with Manuel Valiente and Nir Barnea
arXiv:1901.11247

24th European Conference on Few-Body Problems in Physics
September 2, 2019
University of Surrey, UK
Consider particles interacting through 2-body potential with range R.
Classically, the particles ‘feel’ each other only within the potential range.
But, in the case of resonant interaction, the wave function has much larger extent.
At low energies, the 2-body physics is governed by the scattering length, a.

$$\lim_{k \to 0} k \cot \delta(k) = -\frac{1}{a} + \frac{1}{2} r_0 k^2$$

When $|a| \gg R$ the potential details have no influence: **Universality**.
Consider particles interacting through 2-body potential with range R. Classically, the particles ‘feel’ each other only within the potential range. But, in the case of resonant interaction, the wave function has much larger extent. At low energies, the 2-body physics is governed by the scattering length, a.

$$\lim_{k \to 0} k \cot \delta(k) = -\frac{1}{a} + \frac{1}{2} r_0 k^2$$

When $|a| \gg R$ the potential details have no influence: *Universality*.
Naturally, $a \approx r_0 \approx R$.

Universal systems are fine-tuned to get $a \gg r_0, R$.

Corrections to universal theory are of order of r_0/a and R/a.

For $a > 0$, we have universal dimer with energy $E = -\hbar^2/ma^2$.

Nucleus: $a_\text{s} \approx -23.4$ fm, $a_\text{t} \approx 5.42$ fm, $R = \hbar/m_\pi c \approx 1.4$ fm.

Deuteron binding energy, 2.22 MeV, is close to $\hbar^2/m_\text{t}^2 \approx 1.4$ MeV.

4He atoms: $a \approx 95$ Å $\gg r_\text{vdW} \approx 5.4$ Å.

Ultracold atoms near a Feshbach resonance,

$$a(B) = a_{bg} \left(1 + \frac{\Delta}{B - B_0}\right)$$

Naturally, \(a \approx r_0 \approx R \).

Universal systems are fine-tuned to get \(a \gg r_0, R \).

Corrections to universal theory are of order of \(r_0/a \) and \(R/a \).

For \(a > 0 \), we have universal dimer with energy \(E = -\hbar^2/ma^2 \).

Nucleus: \(a_s \approx -23.4 \text{ fm}, a_t \approx 5.42 \text{ fm}, R = \hbar/m\pi c \approx 1.4 \text{ fm} \).

Deuteron binding energy, 2.22 MeV, is close to \(\hbar^2/ma_t^2 \approx 1.4 \text{ MeV} \).

\(^4\text{He} \) atoms: \(a \approx 95 \text{ Å} \gg r_{vdW} \approx 5.4 \text{ Å} \).

Ultracold atoms near a Feshbach resonance,

\[a(B) = a_{bg} \left(1 + \frac{\Delta}{B - B_0} \right) \]

Universality

- Naturally, $a \approx r_0 \approx R$.
 Universal systems are fine-tuned to get $a \gg r_0, R$.
- Corrections to universal theory are of order of r_0/a and R/a.
- For $a > 0$, we have universal dimer with energy $E = -\hbar^2/ma^2$.
- Nucleus: $a_s \approx -23.4$ fm, $a_t \approx 5.42$ fm, $R = \hbar/m\pi c \approx 1.4$ fm.
 Deuteron binding energy, 2.22 MeV, is close to $\hbar^2/ma_t^2 \approx 1.4$ MeV.

- 4He atoms: $a \approx 95$ Å $\gg r_{vdW} \approx 5.4$ Å.
- Ultracold atoms near a Feshbach resonance,

$$a(B) = a_{bg} \left(1 + \frac{\Delta}{B - B_0}\right)$$

Universality

- Naturally, $a \approx r_0 \approx R$.
 Universal systems are fine-tuned to get $a \gg r_0, R$.
- Corrections to universal theory are of order of r_0/a and R/a.
- For $a > 0$, we have universal dimer with energy $E = -\hbar^2/ma^2$.

- **Nucleus**: $a_s \approx -23.4$ fm, $a_t \approx 5.42$ fm, $R = \hbar/m_\pi c \approx 1.4$ fm.
 Deuteron binding energy, 2.22 MeV, is close to $\hbar^2/ma_t^2 \approx 1.4$ MeV.

- **4He atoms**: $a \approx 95$ Å $\gg r_{vdW} \approx 5.4$ Å.
- **Ultracold atoms** near a Feshbach resonance,

 $$a(B) = a_{bg} \left(1 + \frac{\Delta}{B - B_0}\right)$$

The contact C measures the number of pairs of particles with small separations, $C = \int dR C(R)$.

The Contact - Tan’s Relations

Tan relations connects the contact C with:

- **Tail of momentum distribution** $|a|^{-1} \ll k \ll r_0^{-1}$

\[
n_\sigma(k) \longrightarrow \frac{C}{k^4}
\]

- The energy relation

\[
E = T + U + V
\]

The kinetic energy diverges

\[
T = \sum_\sigma \int \frac{d^3k}{(2\pi)^3} \frac{\hbar^2k^2}{2m} n_\sigma(k)
\]

but the sum $T + U$ is regular

\[
T + U = \sum_\sigma \int \frac{dk}{(2\pi)^3} \frac{\hbar^2k^2}{2m} \left(n_\sigma(k) - \frac{C}{k^4} \right) + \frac{\hbar^2}{4\pi ma} C
\]
The Contact - Tan’s Relations

Tan relations connects the contact C with:

1. **Tail of momentum distribution** $|a|^{-1} \ll k \ll r_0^{-1}$

 $n_\sigma(k) \rightarrow \frac{C}{k^4}$

2. **The energy relation**

 $E = T + U + V$

 The kinetic energy diverges

 \[
 T = \sum_\sigma \int \frac{d^3k}{(2\pi)^3} \frac{\hbar^2 k^2}{2m} n_\sigma(k)
 \]

 but the sum $T + U$ is regular

 \[
 T + U = \sum_\sigma \int \frac{dk}{(2\pi)^3} \frac{\hbar^2 k^2}{2m} \left(n_\sigma(k) - \frac{C}{k^4} \right) + \frac{\hbar^2}{4\pi ma} C
 \]
Density-Density correlator at short distances

\[\langle n_1 \left(R + \frac{r}{2} \right) n_2 \left(R - \frac{r}{2} \right) \rangle \rightarrow \frac{1}{16\pi^2} \left(\frac{1}{r^2} - \frac{2}{ar} \right) C(R) \]

Adiabatic relation

\[\left(\frac{dE}{da^{-1}} \right)_S = -\frac{\hbar^2}{4\pi m} C \]

Virial theorem For a system in a harmonic trapping potential,

\[T + U - V = -\frac{\hbar^2}{8\pi ma} C \]

...
The Contact - Tan’s Relations

Density-Density correlator at short distances

\[
\left\langle n_1 \left(R + \frac{r}{2} \right) n_2 \left(R - \frac{r}{2} \right) \right\rangle \rightarrow \frac{1}{16\pi^2} \left(\frac{1}{r^2} - \frac{2}{ar} \right) C(R)
\]

Adiabatic relation

\[
\left(\frac{dE}{da^{-1}} \right)_S = -\frac{\hbar^2}{4\pi m} C
\]

Virial theorem

For a system in a harmonic trapping potential,

\[
T + U - V = -\frac{\hbar^2}{8\pi ma} C
\]
The Contact - Tan’s Relations

3 Density-Density correlator at short distances

\[
\langle n_1 \left(R + \frac{r}{2} \right) n_2 \left(R - \frac{r}{2} \right) \rangle \longrightarrow \frac{1}{16\pi^2} \left(\frac{1}{r^2} - \frac{2}{ar} \right) C(R)
\]

4 Adiabatic relation

\[
\left(\frac{dE}{d(a^{-1})} \right)_S = -\frac{\hbar^2}{4\pi m} C
\]

5 Virial theorem For a system in a harmonic trapping potential,

\[
T + U - V = -\frac{\hbar^2}{8\pi ma} C
\]
Density-Density correlator at short distances

\[
\langle n_1 \left(R + \frac{r}{2} \right) n_2 \left(R - \frac{r}{2} \right) \rangle \rightarrow \frac{1}{16\pi^2} \left(\frac{1}{r^2} - \frac{2}{ar} \right) C(R)
\]

Adiabatic relation

\[
\left(\frac{dE}{da^{-1}} \right)_S = -\frac{\hbar^2}{4\pi m} C
\]

Virial theorem For a system in a harmonic trapping potential,

\[
T + U - V = -\frac{\hbar^2}{8\pi ma} C
\]
Ultra cold gas of fermionic ^{40}K

J. T. Stewart et al. PRL 104, 235301 (2010)
Ultra cold gas of fermionic 40K

J. T. Stewart et al. PRL 104, 235301 (2010)
Strong and Weak Universality

- **Wave function factorization:** when two particles approach each other,
 \[\Psi \xrightarrow{r_{ij} \to 0} \phi_2(r_{ij}) A_{ij}(R_{ij}, \{r_k\}_{k \neq i,j}) \]

 \[C \propto \sum_{ij} \langle A_{ij} | A_{ij} \rangle; \quad \langle A_{ij} | A_{ij} \rangle = \int \prod_{k \neq i,j} dr_k dR_{ij} | A_{ij}(R_{ij}, \{r_k\}_{k \neq i,j}) |^2 \]

- In the zero-range limit, **strong universality** holds,
 \[\phi_2(r) \propto \frac{1}{r} - \frac{1}{a} \]

- For finite-range potential, **weak universality** holds, \(\phi_2(r) \) is not sensitive to the system size or state.
Wave function factorization: when two particles approach each other,

\[\Psi \xrightarrow{r_{ij} \to 0} \phi_2(r_{ij}) A_{ij}(R_{ij}, \{r_k\}_{k \neq i,j}) \]

\[C \propto \sum_{ij} \langle A_{ij}|A_{ij} \rangle; \quad \langle A_{ij}|A_{ij} \rangle = \int \prod_{k \neq i,j} dr_k dR_{ij} \left| A_{ij} \left(R_{ij}, \{r_k\}_{k \neq i,j} \right) \right|^2 \]

In the zero-range limit, strong universality holds,

\[\phi_2(r) \propto \frac{1}{r} - \frac{1}{a} \]

For finite-range potential, weak universality holds, \(\phi_2(r) \) is not sensitive to the system size or state.
Strong and Weak Universality

- **Wave function factorization:** when two particles approach each other,

\[
\Psi \xrightarrow{r_{ij} \to 0} \phi_2(r_{ij}) A_{ij}(R_{ij}, \{r_k\}_{k \neq i,j})
\]

\[
C \propto \sum_{ij} \langle A_{ij} | A_{ij} \rangle; \quad \langle A_{ij} | A_{ij} \rangle = \int \prod_{k \neq i,j} dr_k dR_{ij} \mid A_{ij} \left(R_{ij}, \{r_k\}_{k \neq i,j} \right) \mid^2
\]

- In the zero-range limit, **strong universality** holds,

\[
\phi_2(r) \propto \frac{1}{r} - \frac{1}{a}
\]

- For finite-range potential, **weak universality** holds, \(\phi_2(r) \) is not sensitive to the system size or state.
quasi-deuteron model: $\sigma_A(\omega) = L^N A^Z \sigma_d(\omega)$

Levinger, Phys. Rev. 84, 43 (1951)

$\sigma_A(\omega) = \frac{a_t}{4\pi} \tilde{C}_{pn} \sigma_d(\omega)$

Weiss, BB, and Barnea, PRL 114, 012501 (2015);
PRC 92, 054311 (2015); Eur. Phys. J. A 52 92 (2016); ...
Weak Universality

- The 2-body contact in the N-body system

$$C_2^{(N)} = \binom{N}{2} \langle A_2^{(N)} | A_2^{(N)} \rangle$$

- The pair density function at short distances

$$\rho_2^{(N)}(r) = \langle \Psi | \hat{\rho}_2^{(N)}(r) | \Psi \rangle \xrightarrow{r \to 0} C_2^{(N)} \rho_2(r)$$

where $\hat{\rho}_2^{(N)}(r) = \frac{1}{r^2} \sum_{i<j} \delta(r_{ij} - r)$, $\rho_2(r) = \int d\Omega_2 |\phi_2(r)|^2$.
Weak Universality

- The 1-body momentum distribution

\[n^{(N)}(k) \xrightarrow[k \to \infty]{} 2C_2^{(N)} |\tilde{\phi}_2(k)|^2 \]

- The static structure factor

\[S(Q) \xrightarrow[Q \to \infty]{} 1 + \frac{2C_2^{(N)}}{N} \frac{4\pi}{Q} \int drr \sin(Qr)\rho_2(r) , \]

where \(Q \) is the momentum transfer.

- The potential energy

\[\langle V_2^{(N)} \rangle = C_2^{(N)} \langle V_2^{(2)} \rangle \]

In a bosonic system, coalescence of more particles should provide further factorizations of the wavefunction,

\[\Psi \xrightarrow{r_{ijk} \to 0} \phi_3(x_{ijk}, y_{ijk}) A_3^{(N)}(R_{ijk}, \{r_l\}_{l \neq i,j,k}) \]

Braaten, Kang, and Platter, PRL 106, 153005 (2011)

Similar factorization holds for \(n > 3 \), giving for the \(n \)-body density function

\[\rho_n^{(N)}(r) \xrightarrow{r \to 0} C_n^{(N)} \rho_n(r) \]
Universality in 4He Atoms

- For $a \rightarrow \infty$, an infinite tower of Efimov trimers exists.
- For 4He Atoms, a is finite, and therefore only two trimers survive.
- Recently the excited trimer was observed experimentally.

Theory: Hiyama and Kamimura, Phys Rev A. **85**, 062505 (2012);

Experiment: Kunitski et al., Science **348** 551 (2015).
Clusters of He atoms in Effective Field Theory

- Tjon line: correlation between triton and alpha binding energies.

- Therefore, there is no need for four-body parameter at leading order.

- Same is true for 5- and 6-body clusters, also attached to an Efimov trimer.

\[B_{3^*}/3 \text{ (mK)} \]

\[B_N/N \text{ (mK)} \]

But four-body parameter is needed at NLO! cf. Johannes Kirscher talk

BB, Kirscher, Konnig, Valderrama, Barnea, and van Kolck, PRL 122, 143001 (2019)
Computational methods: VMC + DMC

- We solve the N-body Schrödinger equation with LM2M2 pair-potential
- **Variational Monte Carlo (VMC)**
 \[
 E_{\text{var}} = \frac{\langle \Psi_T | H | \Psi_T \rangle}{\langle \Psi_T | \Psi_T \rangle} \geq E_0
 \]
 with $\Psi_T = \prod_{i<j} f(r_{ij})$, where
 \[
 f(r) = \exp \left(-\frac{(p_5 / r)^5}{r} - \frac{(p_2 / r)^2}{r} - p_1 r \right) / r^{p_0}.
 \]
- **Diffusion Monte Carlo (DMC):**
 \[
 \frac{\partial \Psi(r_1 \ldots r_N, \tau)}{\partial \tau} = (T + V - E_R) \Psi(r_1 \ldots r_N, \tau)
 \]
 is treated as a diffusion-reaction process for walkers, distributed according to Ψ. Ψ converges to Ψ_0 and E_R to E_0.
- Ψ_T, optimized with VMC, is used to guide the walkers.
Benchmark: energies of small He clusters

Ground-state energies (in mK); The dimer energy is 1.30348 mK [2].

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>126.39</td>
<td>126.40</td>
<td>125.5(6)</td>
<td>124(2)</td>
<td>125.9(2)</td>
</tr>
<tr>
<td>4</td>
<td>557.7</td>
<td>558.98</td>
<td>557(1)</td>
<td>558(3)</td>
<td>557.4(4)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>1296(1)</td>
<td>1310(5)</td>
<td>1300(2)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>2309(3)</td>
<td>2308(5)</td>
<td>2315(2)</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>3565(4)</td>
<td>3552(6)</td>
<td>3571(2)</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>5020(4)</td>
<td>5030(8)</td>
<td>5041(2)</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>6677(6)</td>
<td>6679(9)</td>
<td>6697(2)</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>8495(7)</td>
<td>8532(10)</td>
<td>8519(3)</td>
</tr>
</tbody>
</table>

$B_3/B_2 = 16.522688(1)$

$B_4/B_2 = 197.3(1)$

Lattice EFT calculations

$B_N/B_{N-1} \xrightarrow{N \to \infty} 8.567$

DMC-STM

$B_N/B_2 \approx 8.567^N \exp(c_1 + c_2/N), \quad c_1 = -2.06(4) \quad c_2 = -8(2)$
Results: n-body density function

Black line: the reference density ρ_n
Colored lines: the densities for $N = 10, 15, 20 \ldots 50$ (from dark to light)
Results: n-body contact

$$\tilde{C}_n^{(N)} = \tilde{C}_n^\infty + \alpha_n N^{-1/3} + \beta_n N^{-2/3} + \ldots; \tilde{C}_n^{(N)} \equiv C_n^{(N)}/N$$

Asymptotic values for 4He droplets:

<table>
<thead>
<tr>
<th>n</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tilde{C}_n^∞</td>
<td>230 ± 25</td>
<td>500 ± 60</td>
<td>1800 ± 300</td>
<td>5900 ± 1000</td>
</tr>
</tbody>
</table>
Results: The structure factor

Experimental data: Svensson et al., PRB 21, 3638 (1980)
Blue band: theory for contact values of $\tilde{C}_2^\infty \in (200, 250)$
The generalized contact formalism was applied to study short-range correlations in 4He clusters. Using VMC and DMC calculations, we show the emergence of universal n-body short-range correlations. The values of the n-body contacts were evaluated numerically for $n \leq 5$. A good agreement was found to measurements of the structure factor of liquid 4He at high momenta.

BB, Eliyahu and van Kolck, PRA 94, 052502 (2016)
BB, Kirscher, Konnig, Valderrama, Barnea, and van Kolck, PRL 122, 143001 (2019)
Weiss, BB, and Barnea, PRL 114, 012501 (2015); PRC 92, 054311 (2015);
Eur. Phys. J. A 52 92 (2016); ...
The generalized contact formalism was applied to study short-range correlations in ^4He clusters.

Using VMC and DMC calculations, we show the emergence of universal n-body short-range correlations. The values of the n-body contacts were evaluated numerically for $n \leq 5$.

A good agreement was found to measurements of the structure factor of liquid ^4He at high momenta.

BB, Eliyahu and van Kolck, PRA 94, 052502 (2016)

BB, Kirscher, Konnig, Valderrama, Barnea, and van Kolck, PRL 122, 143001 (2019)

Weiss, BB, and Barnea, PRL 114, 012501 (2015); PRC 92, 054311 (2015); Eur. Phys. J. A 52 92 (2016); ...
The generalized contact formalism was applied to study short-range correlations in 4He clusters.

Using VMC and DMC calculations, we show the emergence of universal n-body short-range correlations.

The values of the n-body contacts were evaluated numerically for $n \leq 5$.

A good agreement was found to measurements of the structure factor of liquid 4He at high momenta.

BB, Eliyahu and van Kolck, PRA 94, 052502 (2016)

BB, Kirsch, Konnig, Valderrama, Barnea, and van Kolck, PRL 122, 143001 (2019)

Weiss, **BB, and Barnea, PRL 114, 012501 (2015); PRC 92, 054311 (2015); Eur. Phys. J. A 52 92 (2016); ...**
The generalized contact formalism was applied to study short-range correlations in ^{4}He clusters. Using VMC and DMC calculations, we show the emergence of universal n-body short-range correlations. The values of the n-body contacts were evaluated numerically for $n \leq 5$. A good agreement was found to measurements of the structure factor of liquid ^{4}He at high momenta.

BB, Eliyahu and van Kolck, PRA **94**, 052502 (2016)
BB, Kirscher, Konnig, Valderrama, Barnea, and van Kolck, PRL **122**, 143001 (2019)
Weiss, **BB**, and Barnea, PRL **114**, 012501 (2015); PRC **92**, 054311 (2015); Eur. Phys. J. A **52** 92 (2016); ...