Correlation analysis and statistical uncertainty of three-nucleon scattering observables

Yu. Volkotrub, R. Skibiński, J. Golak, K. Topolnicki, H. Witała for the LENPIC Collaboration

M.Smoluchowski Institute of Physics, Jagiellonian University

JAGIELLONIAN UNIVERSITY IN KRAKÓW

Yuriy Volkotrub (Jagiellonian University)

Outline

Introduction

- Nucleon-deuteron scattering
- Theoretical uncertainties in few-nucleon sector

Tools

- Forces: OPE-Gaussian, chiral SMS
- The Faddeev approach to 3N scattering

Results

- Propagation of potential uncertainties to the elastic nucleon-deuteron scattering 3N observables up to E = 200 MeV.
- Angular dependence of correlation coefficients between various three-nucleon observables

Summary

Why to study nucleon-deuteron scattering?

$\begin{matrix} N+d \rightarrow N+d \\ N+d \rightarrow N+N+N \end{matrix}$

- Because this relatively simple reaction beyond 2N system makes the demanding test of two-nucleon force models (which are usually fitted to all 2N data).
- Exact theoretical methods and numerical solutions are available (including three-nucleon force, Coulomb interaction, relativity and etc.).
- Many observables are sensitive to various terms of interaction and it gives deeper insight to structure of nuclear interactions.
- Understanding of nuclear force is the basics of nuclear physics and can be investigated in this way.

Theoretical uncertainties in few-nucleon sector

Uncertainty quantification for nuclear interactions:

- An estimation by comparing predictions based on various models of nuclear interactions
 - The spread of predictions obtained by numerous models like AV18, CD-Bonn, chiral models, ...
- Application of a covariance matrix of 2N potential parameters to estimate uncertainty
 - the statistical uncertainties from an error propagation of potential parameters uncertainties to various nuclear observables
- Utilizing power-counting arguments to estimate the systematic uncertainties
 - truncation errors for $\chi \text{EFT's}$
- Bayesian: can fit the above methods into this framework
- Theoretical methods introduce their own uncertainties (small in the Faddeev approach for *Nd* scattering) and suffer from finite computational accuracy

Yuriy Volkotrub (Jagiellonian University)

Tools

Two-nucleon forces from χEFT

From E. Epelbaum's lecture at the summer school of "Strong interaction in the nuclear medium: new trends" Chiral expansion of the 2N force: $V_{2N} = V_{2N}^{(LO)} + V_{2N}^{(NLO)} + V_{2N}^{(N^2LO)} + V_{2N}^{(N^3LO)} + V_{2N}^{(N^4LO)} + \dots$ • LO: $g_A \rightarrow 2 LECs$ NLO: renormalization of 1π -exchange 7 LECs renormalization of contact terms N²LO: ci ← subleading 2π-exchange \checkmark renormalization of 1π -exchange N³I O: renormalization of 1π -exchange 15 LECs renormalization of contact terms 母母的母弟… 电母母网络… sub-subleading 2π -exchange 3π -exchange (small) + isospin-breaking corrections... van Kolck et al. '93.'96; Friar et al. '99.'03.'04; Niskanen '02; Kaiser '06; E.E. et al. '04.'05.'07; ... The newest and the best model "SMS" is chiral N⁴LO potential with semilocal regularization in momentum space, the ۰ SMS N⁴LO+ (2018, Bochum (LENPIC)) \leftarrow 27 LECs P. Reinert presented this model at the session vesterday. P. Reinert, H. Krebs, and E. Epelbaum, Eur. Phys. J. A 54, 86 (2018).

Yuriy Volkotrub (Jagiellonian University)

Tools

The OPE-Gaussian potential

R. Navarro Pérez, J. E. Amaro, and E. Ruiz Arriola, Phys. Rev. C 89 (2014) 064006

The OPE-Gaussian interaction can be decomposed as

$$V(\vec{r}) = V_{short}(\vec{r})\theta(r_c - r) + V_{long}(\vec{r})\theta(r - r_c)$$

where $r_c = 3$ fm.

The long range part has two parts: OPE part and electromagnetic corrections

$$V_{long}(\vec{r}) = V_{OPE}(\vec{r}) + V_{em}(\vec{r})$$

The short range part is

$$V_{short}(\vec{r}) = \sum_{n=1}^{18} \hat{O}_n \left[\sum_{i=1}^{4} V_{i,n} F_i(r) \right], F_i(r) = e^{-r^2/(2a_i^2)}$$

where \hat{O}_n are the same operators as in the AV18 + three additional operators; $V_{i,n}$ and a_i are unknown coefficients to be determined from NN data, F_i are radial Gaussian functions.

- Authors prepared and used " 3σ self-consistent database" to fix free parameters.
- Finally, they obtained values of all 42 free parameters and their uncertainties (statistically well defined standard deviations and correlation coefficients).
- The OPE-Gaussian force can be seen as a remastered the AV18 interaction.

Tools

Formalism for 2N and 3N scattering

- 2N bound state: Schrödinger equation,
- 2N scattering state: Lippmann-Schwinger equation for the t-matrix (interaction + free propagation)

$$t(E) = VG_0(E)V + VG_0(E)VG_0(E)V + \dots$$

$$G_0(E) \equiv \lim_{\epsilon \to 0^+} \frac{1}{E - H_0 + i\epsilon}$$

• 3*N*: Faddeev equation:

$$T = tP\phi + (1 + tG_0)V_{123}^{(1)}(1 + P)\phi + tPG_0T + (1 + tG_0)V_{123}^{(1)}(1 + P)G_0T$$

In the presented work we neglect the 3N interactions and apply only the two-body force, which enters the Faddeev equation via the *t*-matrix operator
T = tP\$\phi\$ + tPG0 T and in this case, we have the transition amplitude U = PG0^{-1} + PT which can be represented given this diagram

How to estimate statistical uncertainties?

- Statistical uncertainties here: uncertainties of 3N observables arising from uncertainties of 2N force parameters.
- Knowing 2N force parameters and their correlation matrix we sample many (50) sets of potential parameters.
- For each set we solve Faddeev equation and compute 3*N* observables.
- Thus for each observable (at given energy and scattering angle) we have 50+1 predictions.
- Basing on these predictions we estimate the uncertainty of given 3N observable. This can be done in various ways, which in practice leads to similar results. We use $\Delta_{68\%} a$ difference between maximal and minimal value which are taken over 34 (68% of 50) predictions based on different sets of the 2*N* potential parameters.

P. Reinert, H. Krebs, and E. Epelbaum, Eur. Phys. J. A 54, 86(2018).

Propagation of statistical errors with chiral forces

 The OPE-Gaussian and the new SMS potentials allow us to study propagation of uncertainties to 3N system.

- Statistical errors for the chiral SMS force are of similar magnitude as the ones for the OPE-Gaussian.
- Similar magnitudes at N²LO and N⁴LO+.

Propagation of statistical errors with chiral forces

A_(n) E = 13 MeV

0,2 0,15 0.1 0.05 OPEG $A_{v}(n)$ — the neutron N2LO 90 120 150 180 90 120 150 180 60 90 120 150 180 vector analyzing power Θ_[deg] Θ_{m} [deg] Θ_{m} [deg] $iT_{11}(d)$ — the deuteron E = 200 MeVE = 13 MeViT.,(d) E = 65 MeViT.,(d) N4LO+ tensor analyzing power 0.1 0,08 0.06 0,04 0.02 60 90 120 150 180 60 an 120 150 180 60 90 120 150 180 Θ_{cm} [deg] Θ_{cm} [deg] Θ_{-} [deg] $n + \vec{d} \rightarrow n + d$

 $\vec{n} + d \rightarrow n + d$

E = 65 MeV

• Statistical errors for the chiral SMS forces are of similar magnitude as the ones for the OPE-Gaussian.

Yuriy Volkotrub (Jagiellonian University)

EFB24 Conference

E = 200 MeV

Correlations among observables in few-nucleon systems

GOAL:

- explore correlations between 2*N* and 3*N* observables
- could impact on future methods of fixing free parameters of the 2N and N-body potentials, especially the case of correlations in a 3N system should deliver information on possible restrictions on data sets used during fitting the 3N potential parameters

Examples

- Analysis of correlations among the 3N observables.
- Angular dependence of correlation coefficients for pairs of 3N observables. Correlation coefficient for a given pair of 3N observables can depends on:
 - a scattering energy;
 - a scattering angle;
 - a model of NN interaction;
 - an order of chiral expansion

Results

Correlation coefficients between choosen 3N observables

 $E = 13 MeV, \theta = 45^{\circ}$

 $E = 65 MeV, \theta = 45^{\circ}$

A few pairs of 3*N* observables which are strongly correlated/uncorrelated independently on the nuclear model and scattering energy exist! They are, e.g., A_y vs i T_{11} ; T_{20} vs T_{21} ; T_{20} vs T_{22} .

Yuriy Volkotrub (Jagiellonian University)

Results

Angular dependence of correlation coefficients between $A_y(n)$ and $iT_{11}(d)$ at E = 13 and 65 MeV

Predictions obtained with the chiral N⁴LO+ SMS force differs from remain results.

Yuriy Volkotrub (Jagiellonian University)

Summary

Part I

- The dominant theoretical uncertainties arise from using various models of the *NN* interaction.
- The statistical errors are small.
- In general, the theoretical uncertainties remain smaller than the experimental ones.

More discussion about theoretical uncertainties in R.Skibiński, Yu. Volkotrub. et al., Phys. Rev. C98, 014001 (2018). Part II

- We have investigated correlations between various three-nucleon observables.
- We have found pairs of 3*N* observables which are strongly correlated or remain uncorrelated independently on the model of nuclear forces and reaction energy.
- We expect the reason is probably as a sensitivity of various observables to different partial waves contributions to the scattering amplitude.
- This research is ongoing.

Thank you for your kind attention!

Statistical & Systematic (truncation) Errors

Yuriy Volkotrub (Jagiellonian University)

Correlation coefficients between 2N observables with various chiral forces

 $E = 10 MeV, \theta = 45^{\circ}$

 $E = 20 MeV, \theta = 45^{\circ}$

Correlation table of correlation coefficients between 2N observables with various chiral forces at E = 10 MeV

Correlation coefficients between 2N observables with various chiral forces at E = 20 MeV

Angular dependence of correlation coefficients between 2N observables with various chiral forces

Yuriy Volkotrub (Jagiellonian University)

Nuclear forces from χEFT - regularization

 Chiral forces (2N,3N, ...) require regularization to avoid divergences in the Lippmann-Schwinger equation and in π – π loops. Various solutions have been proposed. They are:

Nonlocal regularization

(convenient for applications but introduces unwanted artifacts in a long-range part of interaction)

in momentum space $V(p',p) \rightarrow V(p',p)f(p',p)$ with

$$f(p',p) \equiv exp\left(-\left(\frac{p'}{\Lambda}\right)^{2n} - \left(\frac{p}{\Lambda}\right)^{2n}\right)$$
 where $\Lambda = 450 - 550$ MeV and $n = 2, 3, 4, \dots$