Clustering in ¹⁸O – absolute determination of branching ratios via high-resolution particle spectroscopy

S. Pirrie, C. Wheldon, Tz. Kokalova et al.

University of Birmingham, United Kingdom

September 2, 2019

Overview

1 Theoretical introduction

- Aims and motivations
- 3 Experimental set-up
- 4 Experimental procedure
 - Observed states
 - Monte Carlo simulations
 - Catania plots
 - γ -decay branching ratios
- 5 Results
 - Summary and outlook

Figure produced by Tz. Kokalova, taken from M. Freer, W. von Oertzen, and Y. Kanada-Enyo.Physics Reports, 432(2):43113, 2006.

 Alpha clustering in light, N = Z nuclei is well-established (e.g. Hoyle state in ¹²C).

Figure produced by Tz. Kokalova, taken from M. Freer, W. von Oertzen, and Y. Kanada-Enyo.Physics Reports, 432(2):43113, 2006.

- Alpha clustering in light, N = Z nuclei is well-established (e.g. Hoyle state in ¹²C).
- Clustering provides a good test of theoretical models, and enables the computational modelling of many-nucleon systems.

W. von Oerzten 2001 Eur. Phys. J. A 11 403 Edited by C. Beck, (2016). JPCS Cluster16

W. von Oerzten 2001 Eur. Phys. J. A 11 403 Edited by C. Beck, (2016). JPCS Cluster16

Motivations

W. von Oertzen et al. Eur. Phys. J. A 43, 1733 (2010)

Motivations

• An experiment was performed at the Maier-Leibnitz Laboratory (MLL) in Munich by W. von Oertzen *et al*, utilising the ${}^{12}C({}^{7}Li,p){}^{18}O^{*}$ ($Q_0 = +8.401$ MeV) reaction.

Motivations

- An experiment was performed at the Maier-Leibnitz Laboratory (MLL) in Munich by W. von Oertzen *et al*, utilising the ¹²C(⁷Li,p)¹⁸O* (Q₀ = +8.401 MeV) reaction.
- Through use of the Q3D magnetic spectrograph, ${\sim}30$ new states in $^{18}{\rm O}$ were discovered.

• The excitation energy, E_x , of a nucleus can be related to its total angular momentum, J, through

$$E_x(J) = rac{\hbar^2}{2{\cal I}}(J(J+1)) + E_0.$$
 (1)

• The excitation energy, E_x , of a nucleus can be related to its total angular momentum, J, through

$$E_x(J) = rac{\hbar^2}{2\mathcal{I}}(J(J+1)) + E_0.$$
 (1)

• Nuclear configurations with identical structure will have the same moment of inertia, *I*.

• The excitation energy, E_x , of a nucleus can be related to its total angular momentum, J, through

$$E_x(J) = rac{\hbar^2}{2\mathcal{I}}(J(J+1)) + E_0.$$
 (1)

- Nuclear configurations with identical structure will have the same moment of inertia, *I*.
- Rotational bands can be split into positive and negative parities due to signature splitting.

Aims

• Determine the absolute branching ratios for high-energy states in ¹⁸O.

- Determine the absolute branching ratios for high-energy states in ¹⁸O.
- For states in the proposed rotational bands, use the absolute branching ratios to determine the reduced α -partial decay widths:

$$\gamma_{\alpha}^2 = \frac{\Gamma_{\alpha}}{2P_l}.$$
(2)

- Determine the absolute branching ratios for high-energy states in ¹⁸O.
- For states in the proposed rotational bands, use the absolute branching ratios to determine the reduced α -partial decay widths:

$$\gamma_{\alpha}^2 = \frac{\Gamma_{\alpha}}{2P_l}.$$
 (2)

• Compare γ_{α}^2 to the Wigner limit, γ_W^2 , in order to determine tendency towards α -clustering for these states. The Wigner limit is defined by

$$\gamma_W^2 = \frac{3\hbar^2}{2\mu\alpha^2}.$$
(3)

Experimental set-up

Stuart Pirrie

24th European Conference on Few-Body Problems in Physics

Experimental set-up

H.-F. Wirth, Ph.D. thesis, Technischen Universität, München, 2001

threshold position

ΔE

 $\rightarrow Q_{ind.}$

Q3D magnetic spectrograph

Efficiency corrections

Efficiency corrections

Catania plots

• The Q-value for the ${}^{12}C({}^{7}Li, p)\alpha + {}^{14}C$ is given by

$$Q = E_C + E_{\alpha} + E_{\rho} - E_{beam}.$$

(4)

• The Q-value for the ${}^{12}C({}^{7}Li, p)\alpha + {}^{14}C$ is given by

$$Q = E_C + E_\alpha + E_p - E_{beam}.$$

• Also, $E_{\alpha} = \frac{p_{\alpha}^2}{2m_{\alpha}}$.

(4)

• The Q-value for the ${}^{12}C({}^{7}Li, p)\alpha + {}^{14}C$ is given by

$$Q = E_C + E_\alpha + E_p - E_{beam}.$$

- Also, $E_{\alpha} = \frac{p_{\alpha}^2}{2m_{\alpha}}$.
- Through rearranging it can be shown that

$$E_{beam} - E_C - E_p = \frac{1}{m_{\alpha}} \frac{p_{\alpha}^2}{2} - Q.$$
 (5)

(4)

Detected ¹⁸O

7500keV Q3D spectrum (ungated)

16 / 18

Table of results

Energy (keV)	Γ _{tot} (keV)	$\frac{\Gamma_{\alpha}}{\Gamma_{tot}}$	$\frac{\gamma_{\alpha}^2}{\gamma_W^2}$	E _{lit} (keV)	Γ _{lit} (keV)	J_{lit}^{π}
7117(2)	<16	0.48(2)	< 0.09	7116.9(12)	< 0.00024	4+
7615(2)	<35	1.01(9)	-	7615.9(7)	<2.5	1-
7795(2)*	<9	0.64(6)	<0.06 *	7796(5)*́	<50*	0+
7863(1)	<11	0.92(3)	-	7864(5)	-	5^{-}
7971(2)	<12	0.03(3)	-	7977(4)	-	$(3^+, 4^-)$
8032(3)	<19	0.29(10)	< 0.005	8037.8(7)	<2.5	ì- ´
8126(3)	<15	0.90(3)	<54	8125(2)	-	5-
8219(1)	<15	0.88(3)	<0.007	8213(4)	1(8)	2+
8283(4)	<28	0.39(7)	<0.12	8282(3)	8(1)	3-
8409(10)	<56	0.07(8)	-	8410(8)	8(6)	(2^{-})
8515(5)	<22	0.17(5)	-	8521(6)	5`´	(4-)
8674(9)	<16	0.10(8)	-	8660(6)	8	-
8843(14)	80(30)	0.16(8)	-	8817(12)	70(12)	(1^+)
8963(5)	<33	0.21(6)	-	8955(4)	43(3)	-
9076(6)*	90(20)	0.24(7)	-	9053(6)*	100	-
9238(16)	<14	0.86(25)	-	9270(20)	-	$(0,1,2)^{-}$
9359(9)	47(20)	0.44(8)	-	9361(6)	27(15)	2+

• The method for calculating branching ratios for high-energy states in ¹⁸O has been described.

- The method for calculating branching ratios for high-energy states in ¹⁸O has been described.
- A method for calculating γ -branching ratios through charged particle spectroscopy has been shown.

- The method for calculating branching ratios for high-energy states in ¹⁸O has been described.
- A method for calculating γ -branching ratios through charged particle spectroscopy has been shown.
- First measurements of branching ratios for states in ¹⁸O have been completed, with a paper in preparation.

- The method for calculating branching ratios for high-energy states in ¹⁸O has been described.
- A method for calculating γ -branching ratios through charged particle spectroscopy has been shown.
- First measurements of branching ratios for states in ¹⁸O have been completed, with a paper in preparation.
- Further analysis of higher energy excitation regions to determine branching ratios.

- The method for calculating branching ratios for high-energy states in ¹⁸O has been described.
- A method for calculating γ -branching ratios through charged particle spectroscopy has been shown.
- First measurements of branching ratios for states in ¹⁸O have been completed, with a paper in preparation.
- Further analysis of higher energy excitation regions to determine branching ratios.
- Comparison of the reduced α -partial widths, calculated using the absolute α -branching ratio, to the Wigner limit.

Collaborators

C. Wheldon, Tz. Kokalova, J. Bishop, N. Curtis, S. Bailey, R. Smith, D. Torresi, A. Turner

University of Birmingham

R. Hertenberger, H.-F. Wirth

Ludwig-Maximilians Universität München

Th. Faestermann

Technische Universität München

D. Mengoni

Università degli Studi di Padova

D. Dell'Aquila

Università degli Studi di Napoli Fedorico II

Stuart Pirrie

24th European Conference on Few-Body Problems in Physics