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Alpha clustering

Figure produced by Tz. Kokalova, taken from M. Freer, W. von Oertzen, and Y.
Kanada-Enyo.Physics Reports, 432(2):43113, 2006.

Alpha clustering in light, N = Z
nuclei is well-established (e.g.
Hoyle state in 12C).

Clustering provides a good test
of theoretical models, and
enables the computational
modelling of many-nucleon
systems.
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Alpha clustering

W. von Oerzten 2001 Eur. Phys. J. A 11 403
Edited by C. Beck, (2016). JPCS Cluster16
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Motivations

W. von Oertzen et al. Eur. Phys. J. A 43, 1733 (2010)

An experiment was performed at the
Maier-Leibnitz Laboratory (MLL) in Munich by
W. von Oertzen et al, utilising the
12C(7Li,p)18O∗ (Q0 = +8.401 MeV) reaction.

Through use of the Q3D magnetic
spectrograph, ∼30 new states in 18O were
discovered.
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What is a rotational band?

The excitation energy, Ex , of a
nucleus can be related to its total
angular momentum, J, through

Ex(J) =
~2

2I
(J(J + 1)) + E0. (1)

Nuclear configurations with identical
structure will have the same moment
of inertia, I.

Rotational bands can be split into
positive and negative parities due to
signature splitting.
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Aims

Determine the absolute branching ratios for high-energy states in 18O.

For states in the proposed rotational bands, use the absolute branching ratios to
determine the reduced α-partial decay widths:

γ2
α =

Γα

2Pl
. (2)

Compare γ2
α to the Wigner limit, γ2

W , in order to determine tendency towards α-clustering
for these states. The Wigner limit is defined by

γ2
W =

3~2

2µα2
. (3)
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Experimental set-up
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Q3D magnetic spectrograph

Private communication, R. Krücken

H.-F. Wirth, Ph.D. thesis, Technischen Universität, München, 2001
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Q3D magnetic spectrograph
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Efficiency corrections
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Catania plots

The Q-value for the 12C(7Li,p)α+14C is given by

Q = EC + Eα + Ep − Ebeam. (4)

Also, Eα = p2
α

2mα
.

Through rearranging it can be shown that

Ebeam − EC − Ep =
1

mα

p2
α

2
− Q. (5)
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Catania plot (example)
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What about below the neutron threshold?

Stuart Pirrie 24th European Conference on Few-Body Problems in Physics September 2, 2019 13 / 18



What about below the neutron threshold?

Stuart Pirrie 24th European Conference on Few-Body Problems in Physics September 2, 2019 13 / 18



What about below the neutron threshold?

Stuart Pirrie 24th European Conference on Few-Body Problems in Physics September 2, 2019 13 / 18



What about below the neutron threshold?

Stuart Pirrie 24th European Conference on Few-Body Problems in Physics September 2, 2019 13 / 18



What about below the neutron threshold?

Stuart Pirrie 24th European Conference on Few-Body Problems in Physics September 2, 2019 13 / 18



Stuart Pirrie 24th European Conference on Few-Body Problems in Physics September 2, 2019 14 / 18



Stuart Pirrie 24th European Conference on Few-Body Problems in Physics September 2, 2019 14 / 18



Stuart Pirrie 24th European Conference on Few-Body Problems in Physics September 2, 2019 14 / 18



Stuart Pirrie 24th European Conference on Few-Body Problems in Physics September 2, 2019 14 / 18



Detected 18O
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Example gated Q3D spectra
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Table of results

Energy
(keV)

Γtot
(keV)

Γα

Γtot

γ2
α

γ2
W

Elit
(keV)

Γlit
(keV) Jπlit

7117(2) <16 0.48(2) <0.09 7116.9(12) <0.00024 4+

7615(2) <35 1.01(9) - 7615.9(7) <2.5 1−

7795(2)* <9 0.64(6) <0.06 * 7796(5)* <50* 0+

7863(1) <11 0.92(3) - 7864(5) - 5−

7971(2) <12 0.03(3) - 7977(4) - (3+,4−)
8032(3) <19 0.29(10) <0.005 8037.8(7) <2.5 1−

8126(3) <15 0.90(3) <54 8125(2) - 5−

8219(1) <15 0.88(3) <0.007 8213(4) 1(8) 2+

8283(4) <28 0.39(7) <0.12 8282(3) 8(1) 3−

8409(10) <56 0.07(8) - 8410(8) 8(6) (2−)
8515(5) <22 0.17(5) - 8521(6) 5 (4−)
8674(9) <16 0.10(8) - 8660(6) 8 -
8843(14) 80(30) 0.16(8) - 8817(12) 70(12) (1+)
8963(5) <33 0.21(6) - 8955(4) 43(3) -
9076(6)* 90(20) 0.24(7) - 9053(6)* 100 -
9238(16) <14 0.86(25) - 9270(20) - (0,1,2)−

9359(9) 47(20) 0.44(8) - 9361(6) 27(15) 2+
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Summary and outlook

The method for calculating branching ratios for high-energy states in 18O has been
described.

A method for calculating γ-branching ratios through charged particle spectroscopy has
been shown.

First measurements of branching ratios for states in 18O have been completed, with a
paper in preparation.

Further analysis of higher energy excitation regions to determine branching ratios.

Comparison of the reduced α-partial widths, calculated using the absolute α-branching
ratio, to the Wigner limit.
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