Measurement of spin correlation coefficients in $p-^3\text{He}$ scattering at 65 MeV

Minami Inoue
Department of Physics, Tohoku University, Japan
Collaborators

- **Tohoku univ., Japan**
 M.Inoue, K.Sekiguchi, K.Miki, A.Watanabe, S.Nakai, S.Shibuya, D.Sakai, Y.Utsuki

- **RCNP Osaka univ., Japan**
 K.Hatanaka, H.Kanda, H.J.Ong

- **Kyusyu univ., Japan**
 T.Wakasa, S.Goto, S.Mitsumoto, D.Inomoto, H.Kasahara

- **KEK, Japan**
 T.Ino

- **RIKEN, Japan**
 H.Sakai

- **Miyazaki univ., Japan**
 Y.Maeda, K.Nonaka

- **NIRS, Japan**
 T.Wakui

- **CYRIC Tohoku univ., Japan**
 M.Itoh
Contents

I. Introduction
II. Experiment
III. Results
IV. Summary
Contents

I. Introduction
II. Experiment
III. Results
IV. Summary
Introduction

Nucleon-Nucleon force

In 1935, the first theoretical insight was given as meson exchange theory by Yukawa. In 1990’s, the Nucleon-Nucleon potentials have achieved to realistic ones.

(e.g. CD Bonn, AV18, Nijmegen)

But in $A \geq 3$ system, some aspects are not explained by the NN potential only.

(e.g. few nucleon system, nucleon binding energies, equation of state of nucleon matter)

Three-nucleon force

The force acting between three-nucleons is considered to be essential for fully understanding nucleon phenomena.

(e.g. Fujita-Miyazawa, Urbana IX, Tucson-Melbourne)
Introduction

Few nucleon scattering
It is a good probe to study the dynamical aspects of nuclear forces.
- momentum dependence
- spin dependence
- isospin dependence

Nucleon-deuteron scattering …

K. Sekiguchi et al., PRC 65 034003 (2002).

3NFs are necessary to explain the data for N-d elastic scattering.
Introduction

Energy dependence of N-d elastic scattering

3NFs effects are clearly seen in the cross section minimum at intermediate energies ($E > 60$ MeV).

It is interesting to study 3NFs at intermediate energies.

In d-p scattering system, the total isospin is limited to $T = 1/2$.
Introduction

We have a strong interest in the isospin dependence of 3NFs. (e.g. neutron-rich nuclei and neutron matter)

\textit{p-}^3\text{He scattering system}
\begin{itemize}
 \item Approaching the effects of 3NFs in 4N scattering system
 \item The simplest system to approach the $T = 3/2$ channel
\end{itemize}

We performed \textit{p-}^3\text{He scattering at intermediate energies and measured spin observables.}
This work

- By using the 65 MeV polarized proton beam and the polarized ^3He target, the experiment of p-^3He elastic scattering was performed.
- The measured angles were $\theta_{\text{Lab.}} = 35^\circ, 70^\circ, 115^\circ$. ($\theta_{\text{C.M.}} = 47^\circ, 89^\circ, 133^\circ$)
- The observables were A_y, A_y^T, C_{yy}.

Spin correlation coefficient C_{yy} is obtained by bombarding the polarized proton beam on the polarized ^3He target and measuring the asymmetry of the scattered particles.
$p-^3\text{He}$ scattering at 65 MeV

RCNP (Research Center for Nuclear Physics), Osaka University, Japan
- Polarized proton beams were provided by the polarized ion source.
- The beam was accelerated by the AVF cyclotron up to 65 MeV.
- The beam bombarded the polarized ^3He target.
- Scattered protons were detected by the $dE-E$ scintillators.
- The beam polarization was measured by using $p-d$ elastic scattering.
ENN course

Beam
- Beam energy $E_p = 65$ MeV
- Beam intensity ~ 10 nA
- Beam polarization $p_y^\uparrow \sim 50\%$, $p_y^\downarrow \sim 20\%$

Target
- Polarized 3He gas, polarization $\sim 40\%$

Detectors
- $dE-E$ detectors

Measured angles
- $\theta_{\text{Lab.}} = 35^\circ, 70^\circ, 115^\circ$
- $(\theta_{\text{C.M.}} = 47^\circ, 89^\circ, 133^\circ)$

Observables
- A_y, A_y^T, C_{yy}

Polarized Proton Beams

Beam Line Polarimeter (BLP)
Beam Line Polarimeter

- The beam polarization was measured by using the reaction of $p-d$ elastic scattering.
- Scattered protons and recoiled deuterons were detected in a kinematical coincidence condition.

$A_y = -0.539, \quad dA_y = 0.025$

<table>
<thead>
<tr>
<th>Target</th>
<th>Thin film of CD$_2$(14.8 mg/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector</td>
<td>plastic (20 mmt×35 mmH×20 mmw) + PMT(H7415)</td>
</tr>
<tr>
<td>Measured angles</td>
<td>$\theta_p = 70^\circ, \theta_d = 40^\circ$</td>
</tr>
</tbody>
</table>

$Y_L^u = \frac{d\sigma}{d\Omega} n I^u (1 + A_y p_{N}^u) \Delta \Omega_L$

$Y_L^d = \frac{d\sigma}{d\Omega} n I^d (1 + A_y p_{N}^d) \Delta \Omega_L$

$Y_R^u = \frac{d\sigma}{d\Omega} n I^u (1 - A_y p_{N}^u) \Delta \Omega_R$

$Y_R^d = \frac{d\sigma}{d\Omega} n I^d (1 - A_y p_{N}^d) \Delta \Omega_R$

n : the number of targets

I : the beam current
The beam polarization

Detector’s solid angle is time independently constant.

\[\frac{\Delta \Omega_L}{\Delta \Omega_R} = \frac{I^d Y_L^u - I^u Y_L^d}{I^u Y_R^d - I^d Y_R^u} = \text{const.} \]

Using this constant, we extract spin observables without using the information of beam intensity.

\[p_N^u = \frac{1}{A_y} \frac{Y_L^u / Y_R^u - \Delta \Omega_L / \Delta \Omega_R}{Y_L^u / Y_R^u + \Delta \Omega_L / \Delta \Omega_R} , \]

\[p_N^d = \frac{1}{A_y} \frac{Y_L^d / Y_R^d - \Delta \Omega_L / \Delta \Omega_R}{Y_L^d / Y_R^d + \Delta \Omega_L / \Delta \Omega_R} . \]

- Typical polarizations are \(p_y^\uparrow \sim 50\% , p_y^\downarrow \sim 20\% \).
- Statistical uncertainties of each run are \(\sim 0.07 \) at most.
Polarized 3He target

- **Main coil** (static field ~1.2 mT)
- **Drive coil** (RF field ~ 85 kHz)
- **3He target cell**
- **Pick up coil**

Optical system
- **Laser**
 - power: 60 W
 - wavelength: 795 nm
Polarized 3He target

AH-SEOP method: to polarize 3He

i. Circularly polarized laser polarizes Rb atoms by optical pumping under the static magnetic field.

ii. K atoms are polarized by spin exchange collision with Rb atoms.

iii. 3He nucleus are polarized by hyper-fine interactions with K atoms.

Target Cell
- **Proton beam**: 150 mm
- **Circularly polarized laser**
- **Spin exchange**
- **Optical pumping**

Glass Thickness
- sides 1 mm, windows 0.5 mm

Material
- GE180 glass

Contents
- 3He (3 atm, ~2 mg/cm2), N$_2$ (~0.1 atm), A small amount of Rb, K
Polarized 3He target

AFP-NMR method: to measure 3He polarization

Rb-EPR method: to calibrate 3He polarization

For more details, see talk by A. Watanabe

Typical polarization is $p_y^{^3\text{He}} \sim 40\%$.
Detector system for p-3He scattering

Scattered protons were detected by dE–TE detectors which are consisted of NaI(Tl) and plastic scintillators.

Double slit collimators were adopted.

<table>
<thead>
<tr>
<th>θ_{lab} [deg.]</th>
<th>dE [mm4]</th>
<th>TE [mm4]</th>
<th>$\Delta\Omega$ [msr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>1.0</td>
<td>50</td>
<td>0.11</td>
</tr>
<tr>
<td>70</td>
<td>0.5</td>
<td>50</td>
<td>0.20</td>
</tr>
<tr>
<td>115</td>
<td>0.2</td>
<td>50</td>
<td>0.43</td>
</tr>
</tbody>
</table>
Contents

I. Introduction
II. Experiment
III. Results
IV. Summary
Events for $p^{-3}\text{He}$ elastic scattering are clearly seen.
To estimate the ambiguity of background subtraction, the integrating range of an elastic scattering peak was changed from $\pm 1\sigma$ to $\pm 3\sigma$.

Values of spin observables were changed less than 0.02.
Extraction of spin observables

Polarized cross sections for the left side are expressed as,

\[L_{\uparrow \uparrow} = L_0 (1 + p_y A_y + p_y T A_y^T + p_y p_y T C_{yy}) \]
\[L_{\uparrow \downarrow} = L_0 (1 + p_y A_y - p_y T A_y^T - p_y p_y T C_{yy}) \]
\[L_{\downarrow \uparrow} = L_0 (1 - p_y A_y + p_y T A_y^T - p_y p_y T C_{yy}) \]
\[L_{\downarrow \downarrow} = L_0 (1 - p_y A_y - p_y T A_y^T + p_y p_y T C_{yy}) \]

The way of extraction for right side is same.
Spin observables

$A_y^{(p)}$

- Statistical errors are only shown.
- Overall agreements are good.

$A_y^{(^3\text{He})}$

- Statistical errors are only shown.
- Large difference is found at backward two angles.

*Calculations by A. Deltuva, private communication
Spin observables

Statistical errors are only shown.

Large difference is found at backward two angles.

Sizable effects of Δ-isobar (3NFs) are predicted.

*Calculations by A. Deltuva, private communication
Contents

I. Introduction
II. Experiment
III. Results
IV. Summary
Summary

- 3NF plays important roles to understand various nuclear phenomena.

- For study of 3NF properties, we have measured $p - ^{3}\text{He}$ scattering at 65 MeV by using the polarized proton beam and the polarized ^{3}He target. (@RCNP, Osaka Univ., Japan)

- Measured angles were $\theta_{\text{Lab}} = 35^\circ, 70^\circ, 115^\circ$. ($\theta_{\text{C.M.}} = 47^\circ, 89^\circ, 133^\circ$)

- By comparing the data with the theoretical calculations, large discrepancies are found at the backward angles for A_y^T and C_{yy}.

- As the next step, we are planning to measure a complete set of spin correlation coefficients in a wide angular range.