Differential Cross Section for Proton Induced Deuteron Breakup at 108 MeV

Angelina Łobejko

Institute of Physics, University of Silesia, Katowice for Few Nucleon System Collaboration:

- 1) Institute of Nuclear Physics, PAN, Kraków, Poland
- 2) KVI-CART, University of Groningen, Groningen, The Netherlands
 - 3) Institute of Physics, Jagiellonian University, Kraków, Poland
 - 4) Faculty of Physics, University of Warsaw, Warsaw, Poland

Three nucleon System

- Prediction of NN potentials alone:
 - → Fail to reproduce binding energies of 3N, 4N and heavier system
 - → Fail to reproduce minimum of the d(N,N)d elastic scattering cross section
- introducing concept of three-nucleon forces: genuine (irreducible) interaction of three nucleons – direct consequence of internal structure of nucleons
- Systematic approach within ChPT

Why to Study System of 3N?

- Observables can be calculated in ab-inito regime
- the environment is non-trivial as compared to NN systems and probably reacher in dynamics
- The nuclear potentials tested in those simple systems can be used in more complicated ones
- TO LEARN ABOUT NUCLEAR INTERACTIONS

Studies of 3N System with BINA@CCB

BINA – Big Instrument for Nuclear-Polarization Analysis

1) Experimental program:

- Measurement of ²H(p,pd) elastic scattering at 108, 135 and 160 MeV
- Measurement of ²H(p,pp)n breakup reaction at 108 and 160 MeV for over 100 kinematic configurations

2) Aim:

- Studies of 3NF
- Verification of predicted
 Coulomb and relativistic
 effects
- Tests of upcoming ChPT calculations

Breakup Reaction

- Three nucleon (p,p,n) in the final state; nucleons are defined by its momenta → 9 kinematic variables;
- Energy-momentum conservation → five independent kinematic variables;
- 2H(p,pp)n was measured:
 - → Energies
 - → Directions

of two protons

- With absence of polarization the system is axially symmetric;
- θ_1 , ϕ_1 , E_1 , θ_2 , ϕ_2 , E_2
 - $\rightarrow \theta_1, \theta_2, S, \phi_{12} (\phi_1 \phi_2)$

Experimental Setup

A) The Forward Part of detector (Wall):

- Multi-Wire Proportional Chamber
- The E-ΔE telescopes
- B) The Central-Backward Part Ball

FIRST RUN ONLY THE FORWARD PART

MWPC + E- ΔE telecopes

- MWPC 3 planes wires allowing reconstruct of the emission angle of a charged particle;
- the efficiency of MWPC is about 90%;
- ΔE-E hodoscopes are made of plastic scintillator material;
- ΔE-E Particle Identifications.
 - Angular acceptance of Wall:

$$\theta \in (10^{\circ} - 35^{\circ})$$

$$\varphi \in (\text{full } \varphi)$$

Angular resolution:

$$\Delta\theta \approx 0.5^{\circ}$$

$$\Delta \phi \approx 0.5^{\circ} - 3^{\circ}$$

The Backward Part of Detector - Ball

System of 149 phoswitches

(phosphor sandwich) is a combination of scintillators with dissimilar pulse shape characteristics optically coupled to each other and to a common PMT.

The shape and the construction — 20 identical hexagon and 12 identical pentagon structures which are further divided into identical triangles (represents here a single ball element)

- The target system inside the Ball:
 - **1)** Liquid Deuterium Target **LD**₂ relative measurement of breakup cross section
 - 2) Solid Target CD₂ absolute measurement of elastic scattering cross section
- Together with Wall angular acceptance of nearly 4π

Particle Identification (PID)

- Based on ∆E-E technique;
- The events of interest are the coincidences of two charged particles:
 - 1) pp (breakup reaction),
 - 2) pd (elastic scattering),
- allows us to identify protons and deuterons;

FIRST DATA (2016)

- Graphical cuts ("gates")
 were defined for each
 individual ΔΕ-Ε
 telescope;
- Small overlap of gates is allowed;
- three groups of events are well visible:
 - the spot of deuterons coming from the elastic scattering,
 - the long branch of protons coming from the breakup reaction,
 - → the spot of elasticallyscattered protons.

Calibration of deposited energy

- Proton beam energies:
 70, 83, 97, 108, 120 MeV;
- Al(p,p)Al scattering.

- Events are defined by:
 - → the side (S = right / left),
 - \rightarrow the *E* detector number (N = 0, 1, ..., 9),
 - \rightarrow the **polar angle** ($\theta = 12^{\circ} 34^{\circ}$; step = 2°).
 - Energy for each detector:

Experimental data

Monte Carlo Simulation

Al(p,p)Al scattering

E detector number: **N=3**

Theta angle: $\theta=16^{\circ}\pm 1^{\circ}$

Side: **S=left**

1. Linear calibration

- y = aC + b
- Range: > 50 MeV

$$C = \sqrt{c_1 * c_2}$$

2. Light quenching effect

- $y=aC+b\sqrt{C}$
- Departure from linearity for energies 0-50 MeV

Calibration - LD₂ target

- Transformation of deposited energy to initial energy
- Monte Carlo simulations of E_{loss} between the reaction point and E detector

- Simulation:
- → proton energy (15-100 MeV),
- → proton θ angle (12°-34°).

Kinematical configuration

- 2 **H(p,pp)n** reaction kinematics determined by proton momenta \vec{p}_1, \vec{p}_2
- Configuration was defined by emission angles of two outgoing protons:

$$\rightarrow \theta_1 \pm 1^\circ$$
, $\theta_2 \pm 1^\circ$, $\phi_{12} \pm 5^\circ$,

 The central line of the experimental band is lying on the theoretical kinematics

It confirms the correct energy calibration

Background Subtraction

- Transformation of E₂ vs E₁ spectrum to S (arclength variable) vs Distance of the points from kinematical curve;
- Each slice on the S vs D distance spectrum is treated separately;
- The background is approximated by a linear function between the two limits of integration;
- The events below linear function are subtracted;

$$\theta_1 = 16^{\circ}, \ \theta_2 = 28^{\circ}, \ \phi_{12} = 160^{\circ}$$

D [MeV]

$\theta_1 = 16^\circ, \ \theta_2 = 28^\circ, \ \phi_{12} = 160^\circ$

Arbitrary

Data

Normalization

averaged theories:

$$\theta_1 \pm 1^\circ$$
, $\theta_2 \pm 1^\circ$, $\phi_{12} \pm 5^\circ$

$\theta_1 = 28^\circ, \ \theta_2 = 30^\circ, \ \phi_{12} = 180^\circ$

Arbitrary

Data

Normalization

averaged theories:

$$\theta_1 \pm 1^\circ$$
, $\theta_2 \pm 1^\circ$, $\phi_{12} \pm 5^\circ$

Summary of Data Analysis

- 1. Particle Identification
- 2. Energy Calibration
- 3. Selection of Kinematics Configuration of Breakup Reaction
- 4. Background subtraction
- 5. Determination of Detection Effficiency ——— IN PROGRESS
- 6. Normalization to Cross Section of Elastic Scattering
- 7. Comparison of Differential Cross Section for ²H(p,pp)n Reaction at 108 MeV

Outlook

- The preliminary analysis of the data taken with the BINA detector at CCB demonstrates a proper and efficient functioning of the forward part of this detector;
- New data will be collected with high statistics for 108, 135 and 160 MeV.

Thank you for your attention!

Theoretical calculations — Two Nucleons

- 1) Realistic Potentials meson exchange theory of NN forces phenomenological short range part (CD Bonn, Nijm I, Nijm II, AV18);
- 2) Coupled-Channel Potential with Δ -isobar excitation CD Bonn + explicit treatment of a single Δ -isobar degrees of freedom;
- 3) Chiral Perturbation Theory (ChPT) expansion of potential in powers v of small external momenta Q, $(Q/\Lambda_x)^{\nu}$, with $\Lambda_x \approx 1$ GeV;

Realistic **Potentials**

Coupled-Channels Potential (single **△**) **Chiral Perturbation Theory Potential** $(2\pi \text{ exchanges } \& \text{ contact terms})$