Phenomenological and experimental searches for compressed stau-neutralino production at the LHC

Manuel Alejandro Segura Delgado¹

Universidad de Los Andes¹ CO

September, 2019

A B A A B A

Outline

- Description and current issues
- Physics beyond of the SM
 - Minimal Supersymmetric Standard Model
- Large Hadron Collider LHC
- Compact Muon Solenoid CMS

- Research motivation
 - State of the Art
 - Phenomenological Study, third generation EWK-SUSY

.

- QCD Multi-jets
- Unblinded
- Limit setting
- Conclusions

The Standard Model


```
SU(3)_C \otimes SU(2)_L \otimes U(1)_Y
```

э

・ 同 ト ・ ヨ ト ・ ヨ ト

The Standard Model

э

イロト イポト イヨト イヨト

Problems of the SM

• Hierarchy problem: Quantum corrections to the Higg's mass depend on the energy scale $\sim 10^{19}$ GeV.

$$\Delta m_H^2 = -\frac{|\lambda_f^2|}{8\pi^2} [\Lambda_{UV}^2 + \dots]$$

- The Standard Model does not incorporate gravity effects.
- Why do neutrinos ν_e, ν_τ, ν_μ have mass?

э

(日)

Problems of the SM

- The Dark matter and Dark energy:
- Hierarchy problem: Quantum corrections to the Higg's mass depend on the energy scale $\sim 10^{19}$ GeV.

$$\Delta m_H^2 = -\frac{|\lambda_f^2|}{8\pi^2} [\Lambda_{UV}^2 + \dots]$$

- The Standard Model does not incorporate gravity effects.
- Why do neutrinos ν_e, ν_τ, ν_μ have mass?

• Non-unification scheme for constant couplings in the Standard Model.

< 回 > < 三 > < 三 >

 h_0, H^0, A^0, H^{\pm} Associated Super-partners: $\tilde{H}^0_u, \tilde{H}^+_u, \tilde{H}^0_d, \tilde{H}^-_d$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Higgs Sector

- 2 Electro-weak Sector
- 8 R-Parity

$$P_R = (-1)^{3(B-L)+2S}$$

- There are not composed states between SM and SUSY particles.
- SUSY particles are produced in pairs.
- From the previous item, the LSP must be stable. In MSSM, the LSP can be depending on the parametrization either neutralino ($\tilde{\chi}_1^0$) or gravitino (\tilde{g}). These hypothetical particles could explain DM.
- The super-partners must decay into an odd number of $\tilde{\chi}_1^0$ (it would explain the large amount of DM we observe in the universe).
- Hierarchy problem solved.

$$(\lambda - g^2) \Lambda^2 \phi^\dagger \phi$$

(日) (四) (日) (日) (日)

Experimental setup

2

イロト イヨト イヨト イヨト

The Large Hadron Collider

Sketch of the LHC inside of underground tunnel, the main experiments are: CMS, ATLAS, ALICE and LHCb

<ロト < 四ト < 三ト < 三ト

(日) (四) (日) (日) (日)

Research Motivation

2

イロト イヨト イヨト イヨト

State of the Art

- Events with large missing transverse energy at CERN in 1987. $m(\tilde{q}) < 45$ GeV and $m(\tilde{g}) < 53$ GeV excluded.
- A search for squark and gluino production at the CERN pp collider in 1989. $m(\tilde{q})<74~{\rm GeV}$ and $m(\tilde{g})<79~{\rm GeV}$ excluded.
- Limits on the masses of supersymmetric particles from \sqrt{s} = 1.8 TeV $p\bar{p}$ collisions in 1990. $m(\tilde{g}) < 73$ GeV excluded.
- Experiments carried out by LEP between 1995-2000. $m(\tilde{\chi}_1^{\pm}) < 103.5$ GeV, $m(\tilde{\chi}_1^0) < 70$ GeV, $m(\tilde{\mu}) < 100$ GeV excluded.
- SUSY searches at the Tevatron in 2012. 160 $< m(\tilde{b}) <$ 200 GeV, $m(\tilde{\chi}_1^0) <$ 100 GeV excluded.
- SUSY searches at LHC in 2012. $\textit{m}(\tilde{t}) <$ 755 GeV, $\textit{m}(\tilde{\chi}_1^0) <$ 200 GeV excluded.
- SUSY searches for electroweak production of charginos, neutralinos at LHC in 2014. $m(\tilde{\chi}_1^{\pm}), m(\tilde{\chi}_1^0)$ up to 720 GeV and sleptons up to 260 GeV excluded.
- SUSY searches for the color sector at CMS in 2018. $m(\tilde{t})$ up to 755 GeV for neutralino mass below 200 GeV excluded.
- SUSY searches for the color sector at ATLAS in 2018. m(ğ) < 2000 GeV excluded.
- SUSY searches for the electroweak sector at CMS in 2018. $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^0$ Mass up to 710 GeV, $\tilde{\chi}^{\pm} \tilde{\chi}^{\mp}$ Mass up to 630 GeV.
- SUSY searches for the electroweak sector at ATLAS in 2018. $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^0$ Mass up to 760 GeV, $\tilde{\chi}^{\pm} \tilde{\chi}^{\mp}$ Mass up to 630 GeV.

State of the Art

Particle Physics, Cosmology, and Dark Matter

- To obtain a relic DM density consistent with the astronomically measured value, stau-neutralino *coannihilation* is one of the scenarios.
- The DM relic density is extremely sensitive to the mass difference between the stau (τ̃) and the neutralino (χ̃₁⁰) → motivates a search for compressed spectra (Δm < 50 GeV).

Probing the Stau-Neutralino Coannihilation Region at the LHC with a soft tau lepton and an ISR jet

Andrés Flórez¹, Luis Bravo¹, Alfredo Gurrola², Carlos Ávila¹, Manuel Segura¹, Paul Sheldon² and Will Johns² ¹ Physics Department, Universidad de los Andes, Bogotá, Colombia ² Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA (Dated: August 31, 2016)

Probing the Stau-Neutralino Coannihilation Region at the LHC with a soft tau lepton and an ISR jet

Andrés Flórez¹, Luis Bravo¹, Alfredo Gurrola², Carlos Ávila¹, Manuel Segura¹, Paul Sheldon² and Will Johns² ¹ Physics Department, Universidad de los Andes, Bogotá, Colombia ² Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA (Dated: August 31, 2016)

Probing the Stau-Neutralino Coannihilation Region at the LHC with a soft tau lepton and an ISR jet

Andrés Flórez¹, Luis Bravo¹, Alfredo Gurrola², Carlos Ávila¹, Manuel Segura¹, Paul Sheldon² and Will Johns²

¹ Physics Department, Universidad de los Andes, Bogotá, Colombia

² Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA

(Dated: August 31, 2016)

$$\begin{split} \dot{\vec{p}}_{T} &= \vec{p}_{T}^{f} \\ 0 &= \vec{p}_{T}(\tau^{+}) + \vec{p}_{T}(\tau^{-}) \\ &+ \vec{p}_{T}^{1}(\tilde{\chi}_{1}^{0}) + \vec{p}_{T}^{2}(\tilde{\chi}_{1}^{0}) \end{split}$$

 $\vec{p}_{T}^{1}(\tilde{\chi}_{1}^{0}) = -\vec{p}_{T}^{2}(\tilde{\chi}_{1}^{0})$ $\vec{p}_{T}^{1}(\tilde{\chi}_{1}^{0}) = -\vec{p}_{T}^{2}(\tilde{\chi}_{1}^{0}) + \vec{p}_{T}^{j}(ISR)$ • The τ 's in compressed-mass spectra scenarios

have low momentum with respect to $\tilde{\chi}_1^0$'s.

$$m_{\mathrm{T}}(\ell, p_{\mathrm{T}}^{\textit{miss}}) = \sqrt{2 p_{\mathrm{T}}(\ell) p_{\mathrm{T}}^{\textit{miss}}(1 - \cos \Delta \phi_{\ell, p_{\mathrm{T}}^{\textit{miss}}})}$$

Experimental study

2

イロト イヨト イヨト イヨト

Background estimation

$$N_{
m SR} = \sigma \cdot L_{
m int} \cdot \epsilon_{
m b-jet} \cdot \epsilon_{ au_h} \cdot \epsilon_{
ho_T^{miss}} \cdot \epsilon_{
m ISR}$$

3

イロト イヨト イヨト イヨト

QCD Multi-jets contribution

- We use the classic ABCD method to estimate the QCD Multi-jets contribution in the SR.
- This method allows to obtain the m_T shape and a correct normalization factor.
- Loose-Tight means that a τ_h candidate passes Loose but fails Tight isolation requirement.
- Since the strong mismodelling of QCD events in MC, the semi-data driven approach leads to different scale factor for the normalization.

(日) (四) (日) (日) (日)

QCD Multi-jets contribution

- We use the classic ABCD method to estimate the QCD Multi-jets contribution in the SR.
- This method allows to obtain the $m_{\rm T}$ shape and a correct normalization factor.
- Loose-Tight means that a τ_h candidate passes Loose but fails Tight isolation requirement.
- Since the strong mismodelling of QCD events in MC, the semi-data driven approach leads to different scale factor for the normalization.

Fully data-driven approach is used.

Alejandro Segura (Uniandes)

QCD Multi-jets contribution: closure test

• To validate the extraction of the shape from the non-isolated events and the $p_T(\tau_h)$ dependent R_{Loose}^{Tight} ratios, CRE and CRF are used.

э

イロト イヨト イヨト イヨト

QCD Multi-jets contribution: closure test

• To validate the extraction of the shape from the non-isolated events and the $p_{T}(\tau_{h})$ dependent R_{Loose}^{Tight} ratios, CRE and CRF are used.

2D histogram represents the predicted yield of QCD-multijes events in CRE (left) and CRF (right), as a function of m_T(τ_h, p_T^{miss}) and p_T(τ_h).

QCD Multi-jets contribution: closure test

• To validate the extraction of the shape from the non-isolated events and the $p_{T}(\tau_{h})$ dependent R_{Loose}^{Tight} ratios, CRE and CRF are used.

- 2D histogram represents the predicted yield of QCD-multijes events in CRE (left) and CRF (right), as a function of $m_{\rm T}(\tau_h, p_{\rm T}^{miss})$ and $p_{\rm T}(\tau_h)$.
- Final yield of QCD Multi-jets events in CRF.

Alejandro Segura (Uniandes)

Unblinded

Unblinded plots

 $m_{\mathrm{T}}(au_h, p_{\mathrm{T}}^{\textit{miss}})$ unblinded for 2016 data and MC

 $m_{\mathrm{T}}(au_h, p_{\mathrm{T}}^{\textit{miss}})$ unblinded for 2017 data and MC

イロト イボト イヨト イヨト

3

Unblinded

Unblinded plots

 $m_{\mathrm{T}}(au_h, p_{\mathrm{T}}^{\mathrm{mas}})$ unblinded for 2017 dat and MC

There is no evidence of new physics in this research!

and MC.

MOCa 2019

Expected and observed limits

- Signal are inclusive N(j) ≤ 2 in MadGraph
- $\tilde{\chi}^0_2$ and $\tilde{\chi}^\pm_1$ are 100% Wino
- $\tilde{\chi}_1^0$ is 100% Bino
- $m(\tilde{\chi}_1^{\pm}) m(\tilde{\chi}_1^0) = 50 \text{ GeV}$
- $m(\tilde{\tau}) = 0.5m(\tilde{\chi}_1^{\pm}) + 0.5m(\tilde{\chi}_1^{0})$
- Inclusive τ̃ production:

•
$$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$$
+jets (~ 64.4% of total x-sec)

$$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} + \text{jets}, \ \tilde{\chi}_2^0 \tilde{\chi}_2^0 + \text{jets}, \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0 + \text{jets}, \ \tilde{\chi}_2^0 \tilde{\chi}_1^0 + \text{jets}$$

3

イロト 不得 トイヨト イヨト

Expected and observed limits

- Signal are inclusive N(j) ≤ 2 in MadGraph
- ${\tilde \chi}_2^0$ and ${\tilde \chi}_1^\pm$ are 100% Wino
- $\tilde{\chi}_1^0$ is 100% Bino
- $m(\tilde{\chi}_1^{\pm}) m(\tilde{\chi}_1^0) = 50 \text{ GeV}$
- $m(\tilde{\tau}) = 0.5m(\tilde{\chi}_1^{\pm}) + 0.5m(\tilde{\chi}_1^{0})$
- Inclusive τ̃ production:
 - $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ +jets (~ 64.4% of total x-sec)

 - $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} + \text{jets}, \ \tilde{\chi}_2^0 \tilde{\chi}_2^0 + \text{jets}, \\ \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0 + \text{jets}, \ \tilde{\chi}_2^0 \tilde{\chi}_1^0 + \text{jets}$
- Expected and observed upper limit at the 95% CL on signal cross-section as a function of $m(\tilde{\chi}_2^0) = m(\tilde{\chi}_1^{\pm})$ 2016 (top) & 2017 (bottom) data.

Combined limits

Expected and observed upper limit at the 95% CL on signal cross-section as a function of m(x⁰₂) = m(x[±]₁) for combined 2016 & 2017 datasets.

We exclude $\tilde{\chi}_2^0/\tilde{\chi}_1^{\pm}$ with masses below 290 GeV for $m(\tilde{\chi}_1^{\pm}) - m(\tilde{\chi}_1^0) = 50$ GeV exceeding the sensitivity from other searches in theses compressed $\tilde{\tau} - \tilde{\chi}_1^0$ regions. Previous limits from LEP excluded masses below ~ 100 GeV.

Alejandro Segura (Uniandes)

Combined limits

- Expected and observed upper limit at the 95% CL on signal cross-section as a function of m(x⁰₂) = m(x[±]₁) for combined 2016 & 2017 datasets.
- 2 Expected and observed upper limit at the 95% CL on signal cross-section as a function of $m(\tilde{\tau})$ for combined 2016 & 2017 datasets.

Summary and Conclusions

- CMS initiated SUSY search in $\tilde{\tau} \tilde{\chi}_1^0$ coanaihilation scenarios using ISR jet.
- Studies on $Z(\rightarrow \mu^+\mu^-) + ISR$ resulted in the boson boost weights for 2016/2017 data.
 - The efficiency ϵ_{ISR} is well-understood.
 - After further study into jet resolution, ϵ_{MET} is also well-understood.
- Those boson weights (and modeling of the p_T^{miss}) were validated on a region of W($\rightarrow \mu \nu$) + ISR for 2016/2017 data.
- $Z(\rightarrow \tau^+ \tau^-) + ISR$ CR shows that $\epsilon_{\tau ID}$ is well-understood.
- Contributions of W/Z+Jets and $t\bar{t}$ backgrounds to the SR are well-understood (2016/2017).
- The Full Data Driven method seems to be the best strategy to estimate the QCD Multijets contribution in the SR. The shape is extracted from CRB and it will be reweighted using the 2D histogram and the corresponding $p_T(\tau_h)$ weights.
- We exclude $\tilde{\chi}_2^0/\tilde{\chi}_1^{\pm}$ with masses below 290 GeV

• We exceed the current bound of other stau searches $m(\tilde{\chi}_1^{\pm}) - m(\tilde{\chi}_1^0) = 50 \text{ GeV} \text{ and } m(\tilde{\tau}) = \frac{1}{2}m(\tilde{\chi}_1^{\pm}) + \frac{1}{2}m(\tilde{\chi}_1^0) \text{ GeV}.$

Alejandro Segura (Uniandes)

Thanks

3

イロン イ理 とく ヨン イヨン

BACKUP SLIDES

3

イロン イ理 とく ヨン イヨン

Particle Algorithm and τ properties

Particle Flow Algorithm

- The algorithm reconstructs the stable visible particle individually in each sub-detector.
- The information recollected by all sub-detectors is combined.
- The visible particles are divided in groups: Photons, electrons, neutral and charge hadrons and muons.
- This information is used to reconstruct high level objects as: The Jets, E_T^{miss} and τ s

Feynman diagram for τ decay modes

General Properties

- $m_{\tau} = 1.777 \text{ GeV}$
- t_{lifetime}(τ) = 290.6 fs
- $c\tau = 87 \mu m$

Leptonic Decay				
$\tau^{\pm} \rightarrow e^{\pm} \nu_e \nu_{\tau}$	17.8%			
$\tau^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} \nu_{\tau}$	17.4%			

Hadronic Decay				
$\tau^{\pm} \rightarrow h^{\pm} \nu_{\tau}$	11.5%			
$\tau^{\pm} \rightarrow h^{\pm} \pi^0 \nu_{\tau}$	26.0%			
$\tau^{\pm} \rightarrow h^{\pm} \pi^0 \pi^0 \nu_{\tau}$	10.8%			
$\tau^{\pm} \rightarrow h^{\pm} h^{\pm} h^{\mp} \nu_{\tau}$	9.8%			
$\tau^{\pm} \rightarrow h^{\pm} h^{\pm} h^{\mp} \pi^0 \nu_{\tau}$	4.8%			

 In the leptonic decay the τ decays too fast, in general, it is no possible to distinguish the e/μ that come from the other collision. On the other hand, in the hadronic decay the signature is similar to the QCD multijet background. Therefore, an algorithm for τ identification is needed.

< □ > < 同 > < 回 > < 回 > < 回 >

au reconstruction

Hadron plus strips Algorithm (HPS)

 This Algorithm takes the Jet as a input and reconstruct the individual decay mode, the three decay modes are shown in the following table:

- The π⁰ decays into γγ, these photons probably can be produce a electron-positron pairs, therefore, these objects are clustered in the ECAL strip in the plane (η, φ)
- The τ candidate is reconstructed using the clustered strip in the ECAL and the charge particles tracks coming from the Jets.

Possible Fake Candidates:

- QCD jets: Compose by charge (≈ 65 %) and neutral (≈ 20 %) hadrons and photons (≈ 15 %)
- Electrons: Could be misidentified as h^{\pm} or $h^{\pm}\pi^{0}$ decay modes of the τ .
- Muons: Could be misidentified as h^{\pm} decay mode of the τ .

In order to distinguish the different physics objects, there are discriminants dedicated to tag correctly the τ

イロト イボト イヨト イヨト

τ isolation discriminators

MVA-based Isolation discriminators

- The QCD jets have a larger multiplicity of particles that the τ jets
- The τ jets in general, have a narrower cones that the QCD jets.
- Depends on the strong of the selection, there are different working points. For example, the Tight isolation has a identification efficiency of $\approx 60\%$ and a fake rate of 4.4×10^{-3}

Against electron discriminators

- Base on the amount of Bremsstrahlung associated to the leading track and the multiplicity of particles.
- The Loose isolation has a identification efficiency of $\approx 83\%$ and a fake rate of 4.4 $\times 10^{-2}$

Against muon discriminators

- Base on the hits in the muon chambers and low deposits of energy in the ECAL and HCAL.
- The Tight isolation has a identification efficiency of \approx 99% and a fake rate of 1.4 \times 10 $^{-3}$

< □ > < □ > < □ > < □ > < □ > < □ >

Background: $\mu \rightarrow \tau_h$ emulation in W+Jets

Lepton universality:

 For additional confidence in our BG estimates, we follow a second methodology: select muon control sample in data, and then replace muon by τs using response templates. ρ_T^{Tgen} is the ρ_T before the τ decays.

 $\sigma(p_T^{\mu}) < 2\% \rightarrow p_T^{\mu} \approx p_T^{\tau gen} \qquad \qquad \text{Response} = R(p_T^{\tau gen}) = p_T^{\tau_h, \text{RECO}} / p_T^{\tau gen}$

- Take p_T^{μ} in data, we assume it's $\approx p_T^{\tau_{gen}}$, and generate random $p_T^{\tau_h,REO}$ using the response templates from MC (left side).
- · Weights are applied to correct for reconstruction and identification efficiencies.
- Perform closure tests in both MC and data. Data closure test (right side) are performed in a sample orthogonal to the SR, containing small signal contamination, such that, signal-like cuts except require 40 < p_T^T, RECO < 60 GeV.

・ロト ・四ト ・ヨト ・ヨト

Source	W + jets	Z + jets	tī	VV	QCD-Multijets	Signal
Luminosity	2.5	2.5	2.5	2.5	2.5	2.5
$ID(\mu)$	< 1	< 1	< 1	< 1	< 1	1
ID(e)	< 1	< 1	< 1	< 1	< 1	1
$ID(au_h)$	6	8	9	9	—	9
ID(b-jets)	2	2	7	2	2	2
Trigger	3	3	3	3	3	3
JES	s	s	5	5	—	s
TES	s	s	s	s	—	5
MMS	< 1	< 1	< 1	< 1	—	< 1
EES	< 1	< 1	< 1	< 1	—	< 1
Pileup	5	5	5	5	—	5
Pdf	4.8	4.8	4.2	3.5	—	6.0
bin-by-bin stat	s	s	s	s	—	5
Closure+Norm	2	8	6	_	23	-
j ^{ISR}	s	s	_	_	—	5
Prefiring	_	_	_	_	—	5
Gen. Scale	1	1	3.5	-	—	2
Fast Sim.	-	-	-	_	_	s
Ratio ^{Tight} Loose—nonTight	_	_	-	-	S	

Alejandro Segura (Uniandes)

Background composition in the SR

• Z/W/tt/QCD estimations done for 2016 data.

			co 10 ⁶ ET 35.9 fb ⁻¹ (13 TeV)
-			Lino DY+Jets
Central Selections	Yield	Fraction	10 ⁴
VV	149.9 ± 7.2	1.2%	m(\chi)=150 GeV, m(\chi)=200 GeV, m(?)=175 GeV BG stat. uncer.
SingleTop	202.1 ± 5.7	1.7%	
DY	232.0 ± 5.0	2.0%	
tt	1002.2 ± 19.3	8.6%	
QCD	1359.9 ± 18.6	11.7%	
W+Jets	8596.1 ± 60.5	74.4%	$m_{T}^{10^{-1}}$ 50 100 150 200 250 300 350 400 m_{T}^{450} 500 m $m_{T}^{(\tau, E_{T}^{miss})}$ [GeV]
Total Back	11542 ± 67.0		_
SignalLSP150 $ imes$ 10X	6398.6 ± 603.9		_

э

イロト イボト イヨト イヨト

Tracker System

イロン イ理 とく ヨン イヨン

2

- Tracker System
- 2 Electromagnetic Calorimeter ECAL

- Tracker System
- electromagnetic Calorimeter ECAL
- **3** Hadronic Calorimeter HCAL

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Tracker System
- 2 Electromagnetic Calorimeter ECAL
- Hadronic Calorimeter HCAL
- Superconducting Solenoid

Mapping of the magnetic intensity

- Tracker System
- 2 Electromagnetic Calorimeter ECAL
- Hadronic Calorimeter HCAL
- Superconducting Solenoid
- Sesistive Plate Chambers (RPC)

Muon system

- Tracker System
- 2 Electromagnetic Calorimeter ECAL
- Hadronic Calorimeter HCAL
- Superconducting Solenoid
- Sesistive Plate Chambers (RPC)
- Orift Tubes (DT)

Muon system

• • = • • = •

- Tracker System
- 2 Electromagnetic Calorimeter ECAL
- Hadronic Calorimeter HCAL
- Superconducting Solenoid
- Sesistive Plate Chambers (RPC)
- Orift Tubes (DT)
- Cathode Strips Chambers (CSC)

Muon system

• • = • • = •

- Tracker System
- 2 Electromagnetic Calorimeter ECAL
- Hadronic Calorimeter HCAL
- Superconducting Solenoid
- Sesistive Plate Chambers (RPC)
- Orift Tubes (DT)
- Cathode Strips Chambers (CSC)

(3) η -partition

A B A A B A

Trigger esqueme

processing of events based on hardware:

Alejandro Segura (Uniandes)

Trigger esqueme

processing of events based on software:

Level 1 Trigger (L1T)

High Level Trigger (HLT)

Reconstruction algorithm operate with the information in each read-out to create all physics objects.

<日

<</p>

Trigger esqueme

- Level 1 Trigger (L1T)
- 2 High Level Trigger (HLT)
- Oata Acquisition System (DAQ)

• The information is saved within a time of 32 μs .

- 4 回 ト 4 三 ト 4 三 ト

• The speed is 100 Gb/s

э

<ロト <回ト < 回ト < 回ト < 回ト -

Jet

- Partonic
- Hadronic
- O Detector

Jet

- Partonic
- e Hadronic
- Oetector
- 2 Jet reconstruction

Jet

- Partonic
- Ø Hadronic
- Oetector
- 2 Jet reconstruction
- Oross Section

In particle physics, a cross section (σ) represents the *probability of production* of a specific process. This quantity is related with the level of the interaction between the beam and the target, or between two beams, and it depends on the energy of collisions.

• • = • • = •

Jet

- Partonic
- Ø Hadronic
- Oetector
- 2 Jet reconstruction
- Cross Section
- Uminosity

э

Jet

- Partonic
- Ø Hadronic
- Oetector
- 2 Jet reconstruction
- Cross Section
- 4 Luminosity
- Ocordinate systems

• • = • • = •

э

Jet

- Partonic
- Ø Hadronic
- Oetector
- 2 Jet reconstruction
- Oross Section
- Uminosity
- Oordinate systems
- O Pseudorapidity

$$\eta \equiv -\ln\left[\tan\left(\frac{\theta}{2}\right)\right].$$

Jet

- Partonic
- Ø Hadronic
- Oetector
- 2 Jet reconstruction
- Oross Section
- 4 Luminosity
- Oordinate systems
- O Pseudorapidity
- Missing Transverse Energy p_{T}^{miss}

The momentum conservation in the transverse plane:

$$\sum_{i} \vec{p}_{i}^{T} = 0,$$

$$= \sum_{j} \vec{p}_{j}^{T}(\text{invisible}) + \sum_{k} \vec{p}_{k}^{T}(\text{visible})$$
$$\sum_{j} \vec{p}_{j}^{T}(\text{invisible}) = -\sum_{k} \vec{p}_{k}^{T}(\text{visible})$$

$$p_{\mathrm{T}}^{miss} = \Big| - \sum_{k} \vec{p}_{k}^{T}(\textit{visible}) \Big|$$
(1)

A B A A B A