Top Quark Interactions in Simplified Dark Matter Models

Alexander Moreno Briceño

Centro de Investigaciones en Ciencias Básicas y Aplicadas Facultad de Ciencias Universidad Antonio Nariño Sede Ibagué

3rd MOCa 2019: Materia Oscura en Colombia Bogotá, Colombia

September 30, 2019

イヨトイヨト

- Top Quark Physics
 - Top Quark Production Mechanisms
- Simplified Dark Matter Models
 - Spin-0 Mediators
 - Spin-1 Mediators
- Conclusions and Outlook

ъ.

∃ → < ∃ →</p>

Top Quark Physics

Top Quark Interactions in Simplified Dark Matter Models

- T

글 > : < 글 >

= 990

Top Quark in the SM

• First observed in 1995: Top quark pair production

F. Abe et al., Phys. Rev. Lett. 74 (1995) 2626;

S. Abachi et al., Phys. Rev. Lett., 74 (1995) 2632.

Observed again in 2009: Single top quark production

S. Abachi et al., Phys. Rev. Lett., 103 (2009) 092001;

T. A. Aaltonen et al., Phys. Rev. Lett. 103 (2009) 092002.

• It is the heaviest elementary particle in the SM ($m_t \approx 173$ GeV).

• Production $(1/m_{top}) < \text{Lifetime} (\tau_t \simeq 1/\Gamma_t \approx 5 \times 10^{-25} \text{s}) < \text{Hadronization} (\tau_{had} \simeq 1/\Lambda_{QCD} \approx 3 \times 10^{-24} \text{s}) < \text{Spin decorrelation} (m_{top}/\Lambda^2).$

 As a consequence, it is possible to measure t quark polarisation, spin correlations and W[±] boson helicity states by studying angular distributions of the decay products.

イベト イラト イラト

-

• $t \rightarrow Wb$ in the SM.

W decay	BR	
W ightarrow I u	0.32	
W o q q'	0.68	

• It plays a very important role in the determination of the EWSB mechanism ($\lambda_t \sim 1$) and also in NP connected to the EWSB.

Some Top Quark Reviews: W. Bernreuther, J. Phys. G35 (2008) 083001; V. del Duca and E. Laenen, Int. J. Mod. Phys. A30 (2015) no. 35, 1530063; U. Husemann, Prog. Part. Nucl. Phys. 95 (2017) 48-97; M. Cristinziani and M. Mulders, J. Phys. G44 (2017) no. 6, 063001.

Top Quark Interactions in Simplified Dark Matter Models

Top Quark Production Mechanisms

Top Quark Interactions in Simplified Dark Matter Models

э.

Top Quark Pair Production (at LO QCD)

At leading order (LO) the partonic cross section for $t\bar{t}$ production is of order $\mathcal{O}(\alpha_s^2)$. The subprocesses that contribute to the cross section at this level are

M. Glück, J. F. Owens and E. Reya, Phys. Rev. D17 (1978) 2324;

J. Babcock, D. Silvers and S. Wolfram, Phys. Rev. D18 (1978) 162;

H. Georgi et al., Ann. Phys. 114 (1978) 273.

The differential cross section for the two particle scattering process can be written as

$$\frac{d\sigma}{dz} = \frac{\beta_t}{32\pi s} \overline{\sum} |\mathcal{M}(\hat{s}, m_t, z)|^2$$

with the spin and color averaged square matrix element, and where $z = \frac{\theta - \hat{t}}{\hat{s}} = \cos \theta$, with θ being the scattering angle, and β_t is the top quark velocity defined by

$$\beta_t = \sqrt{1 - \frac{4m_t^2}{\hat{s}}}$$

W. Benakker, A. Denner, W. Hollik, T. Mertig, R. Sack and D. Wackeroth, Nucl. Phys. B (1994) 343

Integrating the differential cross section between the kinematical limits -1 < z < 1 we get the total cross section for the $q\bar{q}$ annihilation subprocess

$$\hat{\sigma}_B^{q\overline{q}}(\hat{s}) = rac{4}{27} rac{lpha_s^2 \pi eta_t}{s} (3 - eta_t^2)$$

Integrating the differential cross section between the kinematical limits -1 < z < 1 we get the total cross section for the *gluon fusion* subprocess

$$\hat{\sigma}_{B}^{gg}(\hat{s}) = \frac{\alpha_{s}^{2}\pi}{96s} \left(\beta_{t}(-59+31\beta_{t}^{2})+2(33-18\beta_{t}^{2}+\beta_{t}^{4})\log\left(\frac{1+\beta_{t}}{1-\beta_{t}}\right)\right)$$

Top Quark Interactions in Simplified Dark Matter Models

Top Quark Production at the Tevatron and LHC

	$q\overline{q} ightarrow t\overline{t}$	$gg ightarrow t \overline{t}$
Tevatron (pp at $\sqrt{s} = 1.96$ TeV)	85%	15%
LHC (pp at $\sqrt{s} = 14$ TeV($\sqrt{s} = 7$ TeV))	10%	90%(pprox80%)

M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98 (2018) 030001

э.

(B)

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots

Top Quark Interactions in Simplified Dark Matter Models

3 N 3

- The most important production process at hadron colliders is $t\overline{t}$, which is mediated by the strong interaction.
- Single top quarks (antiquarks) production is mediated by electroweak interactions.
- The single top quark signal is smaller than the *tt* signal and it is difficult to separate from the background.
- The single top quark production cross section is within an order of magnitude of top quark pair production.

- A TE N - A TE N

- $t \rightarrow Wb$ vertex in production and decay.
- Top is produced polarized, almost 100%.
- Cross sections are proportional to $|V_{tb}|^2$ in all channels.
- BSM physics can appear in cross sections and properties.

E. Boos and L. Dudko, Int. J. Mod. Phys. A27 (2012) 1230026;

A. Giammanco and R. Schwienhorst, Rev. Mod. Phys. 90 (2018) no.3 035001;

Single Top Quark Production Channels

Electroweak single top quark production

Single Top Quark Production: Inclusive Cross Sections

A. Giammanco and R. Schwienhorst, Rev. Mod. Phys. 90 (2018) 035001

Top Quark Interactions in Simplified Dark Matter Models

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots

(a)

s-channel and t-channel: Spin Correlations

Spin correlations may appear when the top quark is highly polarized in its production and decay

Polarized Top Quark Decay

 $t^{(\uparrow)} \rightarrow b \nu_e e^+$ in the SM.

 $\frac{1}{\Gamma_{\tau}}\frac{d\Gamma_{t^{\left(\uparrow\right)}}}{d(\cos\theta_{e^{+}})} = \frac{1}{2}(1+\cos\theta_{e^{+}})$

Top Quark Interactions in Simplified Dark Matter Models

Э.

Single Top Quark Production and Decay

We define the spin asymmetry factor $A_{\uparrow\downarrow}$ as

$$A_{\uparrow\downarrow} = rac{N_\uparrow - N_\downarrow}{N_\uparrow + N_\downarrow}$$

which defines the size of the observable angular correlations when there is a mixture of spin up and spin down top quarks.

Angular distributions are linear in the cosine of the decay angles:

$$\frac{1}{\sigma_{\tau}}\frac{d\sigma_{\tau}}{d(\cos\theta_{e^+})} = \frac{1}{2}(1 + A_{\uparrow\downarrow}\cos\theta_{e^+})$$

G. Mahlon, arXiv:hep-ph/0011349v1

EN 4 EN

For the s-channel, θ_{e^+} is the angle between the momenta of the outgoing positron and the incoming \overline{d} ($A_{\uparrow\downarrow} = 0.96$).

For the t-channel, θ_{e^+} is the angle between the momenta of the outgoing positron and the outgoing *d* quark ($A_{\uparrow\downarrow} = 0.93$).

Fop Quark Interactions in Simplified Dark Matter Models

≅⊁ ≣

Top Quarks as Probes of New Physics

ATLAS Collaboration. Jul 5, 2018. ATLAS-CONF-2018-027

э

op Quark Interactions in Simplified Dark Matter Models

Simplified Dark Matter Models

Top Quark Interactions in Simplified Dark Matter Models

æ –

글 > : < 글 >

- The nature of the dark matter (DM) is a fundamental open question in physics.
- Its discovery is an important goal of the LHC.
- Potential interactions between DM and SM particles.
- A viable DM candidate must be:
 - electrically neutral
 - stable
 - weakly interacting
 - decay lifetime larger than the age of the Universe

Top Quark Interactions in Simplified Dark Matter Models

- DM is invisible at the LHC: Experimental signature of DM production at colliders is an event with a visible final state object recoiling against E_t^{miss} associated with DM.
- Simplified Models have few assumptions about DM and a minimal particle content.
 D. Pinna et al., Phys. Rev. D96 (2017) 035031;
 - P. Pani and G. Polesello, Phys. Dark Univ. 21 (2018) 8;
 - CMS Collaboration. 2018. CMS-PAS-EXO-18-010.

3

• Associated production of DM with top quarks may affect the spin correlations.

Top Quark Interactions in Simplified Dark Matter Models

The Lagrangian with the interactions between SM particles and DM (χ , Dirac fermions) mediated by a massive electrically neutral scalar or pseudoescalar φ , is given by

$$\mathcal{L}_{\varphi} \supset g_{\chi} \varphi \overline{\chi} \chi + \frac{g_{\upsilon} \varphi}{\sqrt{2}} \sum_{f} (y_{f} \overline{f} f)$$
$$\mathcal{L}_{A} \supset i g_{\chi} A \overline{\chi} \gamma^{5} \chi + \frac{i g_{\upsilon} A}{\sqrt{2}} \sum_{f} (y_{f} \overline{f} \gamma^{5} f)$$

where $y_f = \sqrt{2}m_f/v$ are the Yukawa couplings, with v = 246 GeV, g_{χ} is the DM mediator coupling and g_v is the fermion mediator coupling. Minimal set of four free parameters (with MFV): m_{χ} , m_{φ} , g_{χ} and g_v .

D. Pinna et al., Phys. Rev. D96 (2017) 035031;

D. Abercrombie et al., arXiv:1507.00966;

3

M. R. Buckley, D. Feld and D. Goncalves, Phys. Rev. D91 (2015) 015017.

The decay width of the scalars is

$$\Gamma_{\varphi} = \frac{g_{\chi}^2 m_{\varphi}}{8\pi} \left(1 - \frac{4m_{\chi}^2}{m_{\varphi}^2} \right)^{n/2} + \sum_{f} \frac{g_{v}^2 y_{f}^2 m_{\varphi}}{16\pi} \left(1 - \frac{4m_{f}^2}{m_{\varphi}^2} \right)^{n/2}$$

D. Pinna et al., Phys. Rev. D96 (2017) 035031;

D. Abercrombie et al., arXiv:1507.00966;

M. R. Buckley, D. Feld and D. Goncalves, Phys. Rev. D91 (2015) 015017.

<ロ> <同> <同> < 回> < 回>

= 990

Dark Matter and Single Top Quark Production

æ

Dark Matter and Single Top Quark Production and Decay

For the s-channel, θ_{e^+} is the angle between the momenta of the outgoing positron and the incoming \overline{d} .

For the t-channel, θ_{e^+} is the angle between the momenta of the outgoing positron and the outgoing *d* quark.

Fop Quark Interactions in Simplified Dark Matter Models

The Lagrangian with the interactions between SM particles and DM (χ , Dirac fermions) mediated by a spin-1 particle, is given by

$$\mathcal{L}_V \supset V_\mu \overline{\chi} \gamma^\mu (g^V_\chi - g^A_\chi) \chi + \sum_{f=q,l,
u} V_\mu \overline{f} \gamma^\mu (g^V_f - g^A_f \gamma_5) f,$$

Minimal set of six free parameters (with MFV): m_{χ} , M_V , g_{χ}^V , g_u^V , g_d^V and g_l^V .

J. Abdallah et al., Phys. Dark. Univ. 9-10 (2015) 8-23.

Dark Matter and Single Top Quark Production and Decay

- A detailed MC study is needed to study in detail effects that could be observed.
- A detailed study of the spin correlations in DM production in association with a single top quark at the LHC is in progress.