Experimental Higgs Studies @ FCC-ee

o Outline

- Basics of Higgs studies @ FCC-ee
- Discussion about performance and systematic uncertainties
- Projected results and discussion
- Conclusion and outlook

On behalf of the FCC Collaboration

Generic references

- FCC CDR Volume 1, Physics Opportunities, https://fcc-cdr.web.cern.ch/
- FCC CDR Volume 2, The Lepton Collider, https://fcc-cdr.web.cern.ch/
- Physics case of FCC-ee, arxiv:1308.6176 + FCC CDR
- Prospective Studies for LEP3 with the CMS detector, arxiv:1208.1662
- Physics case for the 250 GeV ILC, arxiv:1710.07621, 1708.08912
- Higgs physics at CLIC, arxiv:1608.07538
- Standard Model theory for the FCC-ee, arxiv:1809.01830
- Strategies for Higgs self coupling discovery and measurement, arxiv:1809.10041

Basics of Higgs studies@FCC-ee

Energies and luminosities at the FCC-ee

□ The FCC-ee offers the largest luminosities in the 88 \rightarrow 365 GeV \sqrt{s} range

• The FCC-ee precision for the study of the Higgs boson is multiplied by the presence of the four heaviest SM particles (Z, W, H, and top) in its energy range

The FCC-ee operation model and statistics

185 physics days / year, 75% efficiency, 10% margin on luminosity

Possible scenario with 4 interaction points...

- Possibly with twice the instantaneous luminosity (to be confirmed)
 - Same statistics at the Z pole, at the WW threshold, and at the tt threshold ...
 - ... within 3.5 years instead of seven
 - Use the 3.5 saved years at 240 and 365 GeV ...
 - ... where Higgs (and top) measurements are statistically limted
 - Accumulate 12 ab⁻¹ at 240 GeV in 3.5 years
 - ► Instead of 5 ab⁻¹ in 3 years
 - Accumulate 5.3 ab⁻¹ at 365 GeV in 8 years (+0.2 ab⁻¹ at 340-350 GeV)
 - Instead of 1.5 ab⁻¹ in 4 years (+0.2 ab⁻¹ at 340-350 GeV)
 - Optimized for the first measurement of the Higgs self-coupling @ FCC-ee (see later)
- In this talk, expected precisions are shown in both configurations

The FCC-ee as a Higgs factory

□ Higgsstrahlung (e⁺e⁻ → ZH) event rate largest at \sqrt{s} ~ 240 GeV : σ ~200 fb

- (2.4×) $10^6 e^+e^- \rightarrow ZH$ events with 5 (12) ab^{-1}
 - Target : (few) per-mil precision, statistics-limited.
 - Complemented with 200k (700k) events at $\sqrt{s} = 350 365$ GeV
 - Of which 30% in the WW fusion channel (useful for the $\Gamma_{\rm H}$ precision)

Absolute coupling and width measurement

• ZH \rightarrow ZXX final state, rate $\propto g_{HXX}^2 g_{HZZ}^2 / \Gamma_H \rightarrow$ measure g_{HXX} to a few per-mil / per-cent

 $\rightarrow \Gamma_{\mu}$ to ~1 %

• Empty recoil = invisible Higgs width; Funny recoil = exotic Higgs decays

Added value from WW fusion (mostly at 350-365 GeV)

- $Hvv \rightarrow bbvv$ final state, rate $R_2 \propto g_{HWW}^2 g_{Hbb}^2 / \Gamma_H$
 - bbvv / (Zbb × ZWW) $\propto g_{HZZ}^4 / \Gamma_H$
- Hvv \rightarrow WWvv final state, rate $R_1 \propto g_{HWW}^4 / \Gamma_H \rightarrow g_{HWW}$ to a few per mil

$$e^{-}$$

Statistical precision with 2 IPs

• Obtained with 5 ab⁻¹ at 240 GeV, and 1.5 ab⁻¹ at 365 GeV

\sqrt{s} (GeV)	24	0	365		
Luminosity (ab^{-1})	E.J	5	1.	5	
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu \bar{\nu}$ H	HZ	$\nu \bar{\nu}$ H	
${\rm H} \rightarrow {\rm any}$	± 0.5		± 0.9		
$\mathrm{H} \rightarrow \mathrm{b}\bar{\mathrm{b}}$	± 0.3	± 3.1	± 0.5	± 0.9	
$H \to c \bar c$	± 2.2		± 6.5	± 10	
$\mathrm{H} \to \mathrm{gg}$	± 1.9		± 3.5	± 4.5	
$\rm H \rightarrow W^+W^-$	± 1.2		± 2.6	± 3.0	
$\mathrm{H} \to \mathrm{ZZ}$	± 4.4		± 12	± 10	
${\rm H} \to \tau \tau$	± 0.9		± 1.8	± 8	
${\rm H} \to \gamma \gamma$	± 9.0		± 18	± 22	
$\mathrm{H} \to \mu^+ \mu^-$	± 19		± 40		
$H \rightarrow invis.$	< 0.3		< 0.6		

Note 1 : Small cross-channel correlations not (yet) included in the fits Note 2 : $H \rightarrow Z \gamma$ and $Z \rightarrow H \gamma$ still to be analysed (for the HZ γ coupling)

Statistical precision with 4 IP scenario

• Obtained with 12 ab⁻¹ at 240 GeV, and 5.5 ab⁻¹ at 365 GeV

$\sqrt{s} \; (\text{GeV})$	240 365			35
Luminosity (ab^{-1})	1	2	5.	.5
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	HZ $\nu \bar{\nu}$ H		$\nu \bar{\nu} H$
$H \rightarrow any$	± 0.3		± 0.25	
$H \rightarrow b\bar{b}$	± 0.2	± 2.0	± 0.3	± 0.5
${\rm H} \rightarrow {\rm c}\bar{\rm c}$	± 1.4		± 3.4	± 5.2
${ m H} ightarrow { m gg}$	± 1.2		± 1.8	± 2.3
${ m H} ightarrow { m W}^+ { m W}^-$	± 0.8		± 1.4	± 1.6
$\mathrm{H} \to \mathrm{ZZ}$	± 2.8		± 6.3	± 5.2
$\mathrm{H} \to \tau \tau$	± 0.6		± 0.9	± 4.2
$H \rightarrow \gamma \gamma$	± 6.0		± 9.4	± 11.5
$ H \rightarrow \mu^+ \mu^-$	± 12		± 21	
$H \rightarrow invis.$	< 0.2		< 0.3	

For information only, not in the CDR.

Discussion about performance and systematic uncertainties

Detector performance

Two detector concepts studied so far

- It was demonstrated that detectors satisfying the requirements are feasible
 - Physics performance as good as [better than] SiD/ILD or CLICDet (Full Sim)
 - ➡ e.g., b- and c-tagging due to small beam pipe (15 mm inner radius)
 - Beam backgrounds (mild wrt linear colliders) cause negligible detector occupancy
 - With careful asymmetric IR layout and masks against synchrotron radiation
 - Invasive MDI below 100 mrad causes negligible acceptance loss (Fast Sim)
 - ➡ Luminosity can still be measured to 0.01% precision

Mogens Dam

Analysis performance

- **•** Full Sim, Fast Sim, Extrapolation
 - We have developed benchmark analyses with CMS full sim analyses (2012)
 - $H \rightarrow bb, \tau\tau, WW, ZZ, \gamma\gamma, \mu\mu, ...$
 - We have checked a few of them with CLICDet full sim (2013)
 - Improves over CMS precisions by 20% (for those channels accessible to CMS)
 - We have developed a fast simulation able to reproduce CMS and CLICDet performance
 - Validated on full simulation
 - We have checked that the fast simulation gives the same results as ILC/CLIC analyses
 - For a number of benchmark analyses
 - For the final FCC-ee numbers, we have conservatively assumed same detector performance as ILC and CLIC detectors in our fast simulation (CLD)
 - We expect better performance
 - Smaller beam pipe currently checking if 10 mm radius is feasible
 - Ten years to develop innovative detectors at up to 4 IPs
 - Better calibration, new analysis techniques, etc.
 - We have extrapolated statistical precision from ILC (250 GeV) and CLIC (380 GeV)
 - For those channels not fully analysed by the FCC-ee team
 - Note: $H \rightarrow Z\gamma$ final state not yet in the tables, but can be included as well.

Experimental uncertainties

- Many sources were examined, and solutions exist for all of them
 - Centre-of-mass energy can be calibrated to ~2-5 MeV with Zγ, WW, and ZZ events
 - From the knowledge of $m_{\rm Z}$ and $m_{\rm W}$ to 0.1 and 0.5 MeV
 - ➡ Negligible impact on m_H and on Higgs branching fractions
 - Beam energy spread can be measured continuously (1% / \sqrt{day}) with $\mu^+\mu^-$ events
 - Negligible impact on recoil mass uncertainty and on σ_{HZ}
 - Alignment (absolute and relative) and calibration (calo, b-tag, PID, etc)
 - Can be performed with regular runs at the Z pole
 - Requires 12 hours for setup, e.g., every month
 - ➡ One hour data taking gives 3.10⁸ Z in Higgs mode, and 10⁷ Z in top mode
 - i.e., about 1000 times the monthly Higgs statistics
 - Fermion pairs at 240 and 365 GeV can also be used as a complement
 - ➡ Cross section 300 times the Higgs cross section (3.10⁸ events at 240 GeV)
 - Integrated luminosity can be measured fast with 0.01% precision
 - i.e., 10 times better than the ultimate precision expected from 2.5 10⁶ Higgs events
 - Magnetic field will not be uniform
 - Will be measured in the tracker volume before tracker installation
 - $\bullet~$ Will be followed with $\mu^+\mu^-$ events (Z pole) and with coil current measurements

Experimental uncertainties

- Many sources were examined, and solutions exist for
 - Centre-of-mass energy can be calibrated to ~2-5 MeV with
 - From the knowledge of m_7 and m_w to 0.1 and 0.5
 - Negligible impact on m_H and on Higgs by
 - Beam energy spread can be measured continy
 - Negligible impact on recoil mass uncompared
 - Alignment (absolute and relative) and
 - Can be performed with requi
 - Requires 12 hours,
- imental uncertainties are not expected mern for Higgs measurements ➡ One hour data in Higgs mode, and 107 Z in top mode
 - - Fermion pa
 - s the Higgs cross section (3.10⁸ events at 240 GeV)
 - con
 - than the ultimate precision expected from 2.5 10⁶ Higgs events not be uniform
 - easured in the tracker volume before tracker installation
 - ϵ followed with $\mu^+\mu^-$ events (Z pole) and with coil current measurements

٠

Integr₂

nts

 $rth \mu^+\mu^-$ events

Theoretical uncertainties

Conservative) evaluation

• Intrinsic (missing higher orders) and parametric uncertainties on total and partial widths

	Cu	rrent intrins	_	Exp.				
Partial width	QCD	electroweak	total	fut. intr.	fut. para. m_q	para. α_s	para. M_H	FCC-ee
$H \to b\overline{b}$	$\sim 0.2\%$	< 0.3%	< 0.4%	$\sim 0.2\%$	0.6%	< 0.1%	_	$\sim 1.0\%$
$H \to c \overline{c}$	$\sim 0.2\%$	< 0.3%	< 0.4%	$\sim 0.2\%$	$\sim 1\%$	< 0.1%	_	$\sim 1.7\%$
$H \to \tau^+ \tau^-$	_	< 0.3%	< 0.3%	< 0.1%	_	_	—	$\sim 1.3\%$
$H \to \mu^+ \mu^-$	_	< 0.3%	< 0.3%	< 0.1%	_	_	—	$\sim 15\%$
$H \to gg$	$\sim 3\%$	\sim 1%	\sim 3.2%	$\sim 1\%$		0.5%	—	$\sim 2\%$
$H\to\gamma\gamma$	< 0.1%	< 1%	<1%	< 1%	_	_	_	\sim 3.6%
$H\to Z\gamma$	$\lesssim 0.1\%$	$\sim 5\%$	\sim 5%	$\sim 1\%$	_	_	$\sim 0.1\%$	
$H \to WW \to \mathrm{4f}$	< 0.5%	< 0.3%	$\sim 0.5\%$	$\lesssim 0.4\%$	_	_	$\sim 0.1\%$	$\sim 0.5\%$
$H \to Z Z \to \mathrm{4f}$	< 0.5%	< 0.3%	$\sim 0.5\%$	$\lesssim 0.3\%$	_	—	$\sim 0.1\%$	\sim 4%
Γ _{tot}				$\sim 0.3\%$	$\sim 0.4\%$	< 0.1%	< 0.1%	\sim 1%

Table from S. Heinemeyer

- All expected to be smaller than statistical uncertainties
- Uncertainties on HZ and vvH cross sections also expected to be sufficiently small
 - When two-loop contributions are calculated in the SM
- **D** Effort to improve theoretical calculations has started on all fronts
 - In order to reach and exceed this conservative estimate by the time FCC-ee starts

Theoretical uncertainties

(Conservative) evaluation

(Conservative) evaluation									
 Intrinsic 	(missing	g higher ord	ers) and	parametric	uncertainti	cte	vrt	ial widths	
	Cu	rrent intrins	ic	_		per	15	Exp.	
Partial width	QCD	electroweak	total	fut. intr.	fut y C'	. e	para. M_H	FCC-ee	
$H ightarrow b \overline{b}$	$\sim 0.2\%$	< 0.3%	< 0.4%	~ 0.2%		e 10	_	$\sim 1.0\%$	
$H \to c \overline{c}$	$\sim 0.2\%$	< 0.3%	< 0.4%	~ 0,2	o' cu	0.1%	_	$\sim 1.7\%$	
$H \to \tau^+ \tau^-$	_	< 0.3%	< 0.3%	2	23	_	_	$\sim 1.3\%$	
$H \to \mu^+ \mu^-$	_	< 0.3%	< 0.3%	. 0.5	ne	_	_	$\sim 15\%$	
H ightarrow gg	$\sim 3\%$	\sim 1%	~ 3	the se		0.5%	_	$\sim 2\%$	
$H\to\gamma\gamma$	< 0.1%	< 1%	- 21	· · · · · · · ·	_	_	_	\sim 3.6%	
$H \to Z \gamma$	$\lesssim 0.1\%$	~ 5%			_	_	$\sim 0.1\%$		
$H \to WW \to 4 \mathrm{f}$	< 0.5%		¢ 40	0.4%	_	_	$\sim 0.1\%$	$\sim 0.5\%$	
$H ightarrow ZZ ightarrow 4 { m f}$	< 0.5%	, JI.		$\lesssim 0.3\%$	—	_	$\sim 0.1\%$	\sim 4%	
Γ _{tot}		31	21.	$\sim 0.3\%$	$\sim 0.4\%$	< 0.1%	< 0.1%	$\sim 1\%$	
	/ X	in the				-	Table from S.	Heinemeyer	
• All	de'	CO	ler than	statistical u	uncertainties	5			
 Up O O									
Contributions are calculated in the SM									
Effort	Effort ve theoretical calculations has started on all fronts								
 In orde or reach and exceed this conservative estimate by the time FCC-ee starts 									

Comparet intuinaia

Summary about systematic uncertainties

• The floor is statistics

- Nobody wants to be the dominant source of uncertainty
 - Especially if it reduces the discovery potential
- For most problems, hard work will lead to an uncertainty ~ o(statistical error)
- Reduction of experimental errors goes through collecting independent information
 - Calibration runs at the Z help tremendously (not possible at linear colliders)
 - Statistics at $\sqrt{s} = 240$ or 365 GeV helps too (much larger than at linear colliders)
 - The FCC-ee luminosities and <u>new ideas have been found to solve all our problems</u>
 - ➡ (so far)
- Reduction of theoretical errors goes through new tools and more computing power
 - It is a great challenge, but has discovery potential
 - It is therefore recognized as strategic in the FCC CDR
 - Two workshops already organized (January 2018 and January 2019)
 - Requires ~500 person.year (50 MCHF) over the next 20 years

e done with statistical uncertainties Summary about systematic uncertai

- The floor is statistics
 - Nobody wants to be the dominant source of uncertainty
 - Especially if it reduces the discovery potential
 - For most problems, hard work will lead to ap ٠
 - Reduction of experimental errors g
 - Calibration runs at the Z he
 - Statistics at $\sqrt{s} = 240 \varphi$ 🔏 (much larger than at linear colliders)
- . comestor C.ee The FCC-ee luming zas have been found to solve all our problems

Ing independent information

not possible at linear colliders)

- ➡ (so far)
- Reduction Srs goes through new tools and more computing power 705 COIN
 - e, but has discovery potential
 - écognized as strategic in the FCC CDR
 - mops already organized (January 2018 and January 2019)
 - es ~500 person.year (50 MCHF) over the next 20 years

Projected results and discussion

Two different sorts of Higgs fits

- The "kappa" fits
 - Assume the Standard model structure (no new coupling, no new processes)
 - The SM couplings are g_{HXX} allowed to scale by a factor κ_{x}
 - Nine free parameters : κ_W , κ_Z , κ_t , κ_b , κ_t , κ_g , κ_γ , Γ_{tot} , BR_{EXO}
 - Or more: κ_c , κ_μ , $\kappa_{\gamma Z}$, κ_λ , ...
 - Or less: $\kappa_W = \kappa_{Z'}$ universal $\kappa_{f'}$ $\Gamma_{tot} = \Gamma_{SM}$
 - Simple parameterization, transparent interpretation, free from theoretical bias
 - But violates gauge invariance ...
 - Results in this presentation

The "EFT" fits

- Expand Standard Model in gauge and Lorentz invariant dim. 6 operators (up to 2500!)
 - Only valid for new physics scale much larger than $m_{\rm H}$ or \sqrt{s}
- Consistent theoretical description, but still involves theoretical assumptions
 - New operators modify Higgs kinematics, add energy dependence
 - Includes correlation with Electroweak Precision Observables
 - FCC-ee runs at the Z pole, WW and tt thresholds play an important role See Jorge de Blas' presentation

Result of the "kappa" fit

Same fit applied to all Higgs factories inputs (for unbiased comparison)

Collider	HL-LHC	ILC ₂₅₀	CLIC ₃₈₀	LEP3240	$CEPC_{250}$	FCC-ee ₂₄₀₊₃₆₅		
Lumi (ab ⁻¹)	3	2	1	3	5	5_{240}	$+1.5_{365}$	+ HL-LHC
Years	25	15	8	6	7	3	+4	
$\delta\Gamma_{\rm H}/\Gamma_{\rm H}$ (%)	SM	3.6	4.7	3.6	2.8	2.7	1.3	1.1
$\delta g_{ m HZZ}/g_{ m HZZ}$ (%)	1.5	0.3	0.60	0.32	0.25	0.2	0.17	0.16
$\delta g_{ m HWW}/g_{ m HWW}$ (%)	1.7	1.7	1.0	1.7	1.4	1.3	0.43	0.40
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	3.7	1.7	2.1	1.8	1.3	1.3	0.61	0.56
$\delta g_{ m Hcc}/g_{ m Hcc}$ (%)	SM	2.3	4.4	2.3	2.2	1.7	1.21	1.18
$\delta g_{ m Hgg}/g_{ m Hgg}$ (%)	2.5	2.2	2.6	2.1	1.5	1.6	1.01	0.90
$\delta g_{\rm HTT}/g_{\rm HTT}$ (%)	1.9	1.9	3.1	1.9	1.5	1.4	0.74	0.67
$\delta g_{\mathrm{H}\mu\mu}/g_{\mathrm{H}\mu\mu}$ (%)	4.3	14.1	n.a.	12	8.7	10.1	9.0	3.8
$\delta g_{\rm H} \gamma \gamma / g_{\rm H} \gamma \gamma$ (%)	1.8	6.4	n.a.	6.1	3.7	4.8	3.9	1.3
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	3.4	-	-	-	-	_	-	3.1
BR _{EXO} (%)	SM	< 1.7	< 2.1	< 1.6	< 1.2	< 1.2	< 1.0	< 1.0

- The FCC-ee precision better than HL-LHC by large factors (for the copious modes)
 - The FCC-ee is best on the e⁺e⁻ Higgs factory market
- It is important to have two energy points (240 and 365 GeV), as at the FCC-ee
 - Combination better by a factor up to 2 (4) than 240/250 (365/380) GeV alone

Result of the "kappa" fit in 4 IP scenario

Same fit applied to all Higgs factories inputs (for unbiased comparison)

Collider	HL-LHC	ILC ₂₅₀	CLIC ₃₈₀	$LEP3_{240}$	$CEPC_{250}$	$FCC-ee_{240+365}$		
Lumi (ab^{-1})	3	2	1	3	5	12_{240}	$\oplus 5.5_{365}$	
Years	25	15	8	6	7	3.5	+8	
$\delta\Gamma_{\rm H}/\Gamma_{\rm H}$ (%)	SM	3.6	4.7	3.6	2.8	1.8	0.77	
$\delta g_{ m HZZ}/g_{ m HZZ}$ (%)	1.5	0.3	0.60	0.32	0.25	0.13	0.10	
$\delta g_{ m HWW}/g_{ m HWW}$ (%)	1.7	1.7	1.0	1.7	1.4	0.85	0.24	
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	3.7	1.7	2.1	1.8	1.3	0.87	0.36	
$\delta g_{ m Hcc}/g_{ m Hcc}$ (%)	SM	2.3	4.4	2.3	2.2	1.13	0.73	
$\delta g_{ m Hgg}/g_{ m Hgg}$ (%)	2.5	2.2	2.6	2.1	1.5	1.07	0.60	
$\delta g_{\mathrm{HTT}}/g_{\mathrm{HTT}}$ (%)	1.9	1.9	3.1	1.9	1.5	0.92	0.43	
$\delta g_{ m H}\mu\mu/g_{ m H}\mu\mu$ (%)	4.3	14.1	n.a.	12	8.7	6.8	5.5	
$\delta g_{\rm H} \gamma \gamma / g_{\rm H} \gamma \gamma$ (%)	1.8	6.4	n.a.	6.1	3.7	3.0	2.2	
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	3.4	-	_	-	_	_	_	
BR_{EXO} (%)	SM	< 1.7	< 2.1	< 1.6	< 1.2	< 0.8	< 0.65	

- The FCC-ee precision better than HL-LHC by large factors (for the copious modes)
 - The FCC-ee is best on the e⁺e⁻ Higgs factory market
- It is important to have two energy points (240 and 365 GeV), as at the FCC-ee
 - Combination better by a factor up to 2 (4) than 240/250 (365/380) GeV alone

Comment about longitudinal polarization

- The FCC-ee e⁺ and e⁻ beams won't be longitudinally polarized
 - Unlike at linear colliders where 80% polarized e⁻ can be injected and accelerated
 - And, with more difficulty and money, may get 30% polarized e⁺ as well.
- Effect of longitudinal polarization at 240/250 GeV for Higgs couplings
 - Polarization causes σ_{HZ} to increase by 1.4 (1.08) in $e_L^-e_R^+$ ($e_R^-e_L^+$) configuration
 - Similar increase for the backgrounds (except for WW : 2.34 and 0.14)
 - Precision better by 20% with the same luminosity in the κ fits (slide 21)
 - EFT fits benefit from different polarization states to constrain additional operators

J. De Blas

- At circular colliders, constraints come from EW precision measurements
 - Precision still better by ~20% or less with the same luminosity in the EFT fits
 - The only coupling for which polarization brings significant gain is g_{HZγ}
 Much better measured at hadron collider (e.g., FCC-hh) anyway

• At the FCC-ee, long. polarization is not worth the induced luminosity loss

- NB. Without polarization, one year at the FCC-ee with 2 (4) IPs at √s = 240 GeV offers the same Higgs coupling precision as 8 (16) years with ILC polarized e⁺ and e⁺
 - Similar remark holds for EWPO or top EW couplings measurements at other \sqrt{s}

Comment about longitudinal polarization

- The FCC-ee e⁺ and e⁻ beams won't be longitudinally arized
 - Unlike at linear colliders where 80% polarized e⁻ can be^{-/} accelerated
 - And, with more difficulty and money, may get
- Effect of longitudinal polarization at 240
 - Polarization causes σ_{H7} to increase by 1.4/ ٠
 - Similar increase for the backgrov
 - EFT fits benefit from different
 - At circular colliders.
 - At the F
- Beam Polarization brings no information b that cannot be obtained otherwise. There is no obvious need for it. ation is not worth the induced luminosity loss one year at the FCC-ee with 2 (4) IPs at $\sqrt{s} = 240$ GeV offers NB. W Ing precision as 8 (16) years with ILC polarized e+ and e+ the same
 - Similar κ holds for EWPO or top EW couplings measurements at other \sqrt{s}

٠

J. De Blas

well.

figuration

(and 0.14)

Astrain additional operators

precision measurements

rization brings significant gain is $q_{\mu 7 \nu}$

A hadron collider (e.g., FCC-hh) anyway

with the same luminosity in the EFT fits

in the κ fits (slide 21)

Juplings

Synergies with HL-LHC and FCC-hh

- The HL-LHC is a great Higgs factory (10⁹ Higgs produced) but ...
 - $\sigma_{i \rightarrow f}^{(observed)} \propto \sigma_{prod} (g_{Hi})^2 (g_{Hf})^2 / \Gamma_H$
 - $\sigma_{\rm prod}$ is uncertain and $\Gamma_{\rm H}$ is largely unknown
 - Difficult to extract absolute couplings from the κ fit
 - Must do physics with ratios or with additional assumptions.
 - e.g., Γ_{tot} and g_{Hcc} fixed to their SM values
 - And no exotic decays
- $\hfill\square$ The FCC-ee absolute measurements of g_{HZZ} and Γ_{H} break this model dependence
 - Rare decay modes allow the absolute determination of $g_{H\mu\mu\nu}$, $g_{H\gamma\gamma}$, $g_{HZ\gamma}$, ...
 - Only in combination with the FCC-ee
- Even more true with FCC-hh
 - See Michele Selvaggi's presentation

The top Yukawa coupling

- The FCC-ee will have some standalone sensitivity (~10%)
 - Through vertex correction with a top-pair threshold scan @ 350 GeV
 - See Patrizia Azzi's presentation
- Much better prior measurement at HL-LHC
 - Already observed with a 5 σ significance in ATLAS and CMS
 - Precision of 3.4%, obtained with usual assumptions (BR_{BSM} = o, Γ_{tot} = BR_{cc} = SM)
- **a** Again, the FCC-ee breaks the model dependence
 - With absolute coupling and width measurements
 - Absolute precision of 3.1 % after 7 years of FCC-ee as a Higgs factory

Collider	HL-LHC	ILC ₂₅₀	CLIC ₃₈₀	LEP3240	$CEPC_{250}$	FCC-ee ₂₄₀₊₃₆₅		
Lumi (ab^{-1})	3	2	1	3	5	5_{240}	$+1.5_{365}$	+ HL-LHC
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	3.4	_	_	_	_	_	_	3.1

• Conclusion: There is no need for an e^+e^- collider run at $\sqrt{s} = 500-550$ GeV

The trilinear Higgs self-coupling κ_{λ} [1]

• Traditionally κ_{λ} is measured with a c.o.m. energy of at least 500 GeV.

• At the FCC-ee, a different method can be used with single Higgs production

- Effect on σ_{HZ} is large at the FCC-ee
 - + With respect to exp'tal precision on σ_{HZ}
- $\hfill\square$ ~12% exclusive precision on κ_λ with 2 IPs
 - Reduced to 9% with a 4 IP scenario
 - If all other couplings are fixed to their SM values

The trilinear Higgs self-coupling κ_{λ} [2]

- The cross section depends on other couplings (HZZ, HHZZ, at least)
 - ... and of the overall model structure, which might differ from SM structure
 - e.g., additional eeZH coupling, or $e^+e^- \rightarrow A \rightarrow HZ$ graphs
- Two energy points lift off the degeneracy between HZZ and HHH

- Additional couplings addressed by a global EFT fit (J. De Blas' presentation)
 - All FCC-ee Higgs measurements are important in this fit
 - Most FCC-ee EW precision measurements are equally important (R. Tenchini's talk)
 - To fix extra parameters that would otherwise enter the fit and open flat directions

The trilinear Higgs self-coupling κ_{λ} [3]

- $\hfill\square$ Precision on κ_λ expected at the FCC-ee from the global EFT fit
 - With the baseline design: 2 IPs and 15 years (91+160+240+350+365 GeV)
 - FCC-ee standalone: $\Delta \kappa_{\lambda} / \kappa_{\lambda} \sim \pm 42\%$
 - Combined with HL-LHC: $\Delta \kappa_{\lambda} / \kappa_{\lambda} \sim \pm 34\%$
 - ⇒ 3♂ sensitivity (~ILC₂₅₀₊₅₀₀ after 30 years)
 - Statistics are of essence for this measurement
 - As for all other Higgs measurements
 - With a 4 IP scenario (and still 15 years at 91+160+240+350+365 GeV)
 - FCC-ee standalone: $\Delta \kappa_{\lambda} / \kappa_{\lambda} \sim \pm 25\%$
 - Combined with HL-LHC: $\Delta \kappa_{\lambda} / \kappa_{\lambda} \sim \pm 21\%$ (better than CLIC_{0.38+1.4} after 15 years)
 - ► 50 sensitivity for first discovery of the Higgs self-coupling in 2050

Note: the combination with HL-LHC was done before the latest numbers on double Higgs production had been made available. A slight improvement in the combination is therefore to be expected.

• And of course, the FCC-hh will bring this precision to the few % level

Together with synergetic constraints from the FCC-ee (next slide)

κ_t and κ_λ : FCC-ee & FCC-hh synergies

- **D** Top Yukawa coupling @ FCC-hh
 - Measure σ(ttH) / σ(ttZ) at FCC-hh
 - Similar production mechanism

M. Selvaggi

- Most theory uncertainties cancel
 - <1% precision possible</p>

- Information needed from FCC-ee to get g_{Htt} to ~1%
- P. Azzi Measure t_Lt_LZ couplings to fix the denominator (precision ~0.5%)
 - Measure Higgs branching ratios to fix the numerator (precision ~0.5%)

Unique at FCC-ee : First generation couplings

- If schedule allows or calls for a prolongation of FCC-ee
 - Few years at $\sqrt{s} = 125.09$ GeV with high luminosity is an interesting addition •
- For s-channel production $e^+e^- \rightarrow H$ (a la muon collider, with 10⁴ higher lumi) Born S. Jadach, R.A. Kycia 1.6 (1): with ISR arXiV:1509.02406 (2): δ√s = 4 MeV 1.4 (3): $\delta\sqrt{s} = 8$ MeV 1.2 σ(s) [fb] 1 0.8 0.6 (1) 0.4 0.2 ٠ 0
 - - **FCC-ee monochromatization setups**
 - Default: $\delta\sqrt{s} = 100 \text{ MeV}$, 25 ab⁻¹/year
 - No visible resonance
 - Option 1: $\delta\sqrt{s} = 10 \text{ MeV}$, 7 ab⁻¹/year
 - $\sigma(e^+e^- \rightarrow H) \sim 100 \text{ ab}$
 - Option 2: $\delta\sqrt{s} = 6$ MeV, 2 ab⁻¹/year
 - $\sigma(e^+e^- \rightarrow H) \sim 250 \text{ ab}$
 - Backgrounds much larger than signal
 - $e^+e^- \rightarrow q\bar{q}, \tau\tau, WW^*, ZZ^*, \gamma\gamma, ...$
 - Expected signal significance of ~0.4 σ / \sqrt{y} year in both option 1 and option 2 ٠

125.1

- Set a electron Yukawa coupling upper limit : $\kappa_{e} < 2.5$ @ 95% C.L.
 - Constrain CP violating Higgs-top couplings from EDM measurements
- Reaches SM sensitivity after five years

125.09

FCC-ee unique opportunity to constrain first generation Yukawa's ٠

125.095

125.08

125.085

Composite Higgs ?

Conclusion and outlook

- The FCC-ee Higgs factory offers an unique dataset from 240 to 365 GeV)
 - Delivers precise and model-independent measurements of all Higgs properties
 - Couplings (including self-coupling), mass, CP, ...
- Higgs studies at the FCC-ee provide solid discovery potential
 - Explore the 10 TeV energy scale (for generic Higgs-coupled new physics)
 - With up to 10-fold more precise and absolute Higgs coupling measurements
 - May discover that the Standard Model does not fit
 - NEW Physics ! Pattern of deviations may point to the source.
 - May directly discover dark matter as invisible Higgs decays
 - Or other new physics from more exotic decays
- The FCC-ee is much more than a Higgs factory
 - Z, WW, and tt factories are equally important for the (Higgs) discovery potential
 - Precision programme for theoretical / parametric uncertainties is essential
- The FCC-ee provides the precise and necessary "fixed candle"
 - For model-independent measurements at the FCC-hh (eh)
 - The FCC-ee therefore maximizes the overall FCC physics reach

J. De Blas

M. Selvaggi

F. Moortgat

Conclusion and outlook

Foi

de set face, s , de set face, s , e (for e cratch uched, , e (for e cratch uched, , s : Patt teol barevister, indensite , y discove stant are barevister, indensite , other ne states are previously to use to the set of the set important for the (Higgs) discovery potential

dent measurements at the FCC-hh (eh)

M. Selvaggi

ر65 GeV)

J. De Blas

🔏 measurements

e therefore maximizes the overall FCC physics reach

Patrick Janot

Physics at FCC : CDR Symposium 6 March 2019