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Talk Outline

• Computing challenge of the HL-LHC

• Recent developments in quantum computing

• IBM-Q

• D-Wave

• Ideas for areas in HEP using quantum computing

• Monte Carlo simulation

• Track reconstruction

• Analysis via machine learning

�2



Coming soon: HL-LHC
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today

First beam in ATLAS
(2009)

Higgs discovery
(2012)

Only ~5% of total 
expected data
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Computing for HL-LHC
• The HL-LHC environment is expected to pose a challenge for computing

• Increased luminosity
• Increased read-out rates (trigger+detector upgrades)

• Increased pile up
• Currently project needing more CPU time than will be available

• Dominated by track reconstruction
• Also expect to need 10x more disk storage
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MC fast calo sim + fast reco
Generators speed up x2

Flat budget model
(+20%/year)

ATLAS Preliminary

ref

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults


Developments in Computing
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Moore’s law: number of transistors on integrated circuits doubles 
every two years

 Not expected to continue indefinitely: approaching the size of atoms 

Recent speed improvements 
from increasing number of 
cores rather than power of 

each individual core 



Initial ideas of quantum computing

“Let the computer itself be built of 
quantum mechanical elements which obey 

quantum mechanical laws.”

RICHARD FEYNMAN (1982)
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April 1983 – Richard Feynman’s Talk at Los Alamos

Title: Los Alamos Experience
Author: Phyllis K Fisher
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Noisy Intermediate Scale Quantum (NISQ)
• Current state of the art quantum computers fall into two main categories

• Quantum annealers, e.g. D-Wave (2000 qubits)

• Universal quantum computers, e.g. IBM Q (20 quits)

• All quantum computers are not equal: challenges include connectivity and 
noise
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arXiv:1801.00862.pdf

IBM 20Q Tokyo chip D Wave

https://arxiv.org/pdf/1801.00862.pdf


Qubit and qunit
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11/05/18

 D-Wave Classifier, OpenLab Q-HEP, J.-R. Vlimant
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qubit and qubit

Quantum Circuits
Series of quantum gates

operating on a set of
quantum states.

Quantum Annealing
Evolution of a quantum

system to a low T Gibbs state
That's D-Wave !

Slide courtesy of J.R. Vlimant



D-Wave Connectivity
�9

11/05/18

 D-Wave Classifier, OpenLab Q-HEP, J.-R. Vlimant
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D-Wave qubit Adjacency 

Active qubits in green
Coupling to 5-6 qubits
Inactive qubits in red
Not a fully connected graph

Slide courtesy of J.R. Vlimant



Quantum Annealing on D-Wave computers

bias weights ⇒ ai
coupling strength ⇒ bij  qubits ⇒ qi
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anneal time 
~20µs

QUBO

Quadratic 
Unconstrained 
Binary 
Optimisation

source: dwavesys on 
YouTube

Slide credit: L. Linder

https://www.youtube.com/watch?v=UV_RlCAc5Zs
https://www.youtube.com/playlist?list=PLPvKnT7dgEsvVQwGgrlUVXBa2J6PAW8a4
https://www.youtube.com/playlist?list=PLPvKnT7dgEsvVQwGgrlUVXBa2J6PAW8a4
https://www.youtube.com/playlist?list=PLPvKnT7dgEsvVQwGgrlUVXBa2J6PAW8a4


Evolution of D-Wave Hardware
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Slide credit: L. Linder

https://en.wikipedia.org/wiki/D-Wave_Systems


Ideas for Quantum Computing in 
HEP
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Event Generation
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A typical pp event at the LHC
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In current MC generators, we largely neglect the correlations 
between particles in the parton shower



Entanglement
• This isn’t the full picture

• Particles are quantum mechanical 
objects

• Correlations exist between them

• Idea: exploit entanglement between qubits 
on a quantum computer to improve the 
description of the parton shower
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arXiv:1901.08148
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0
#," = �↵#," and

�
0
#," = ��#,"

with a classical MCMC implementation. The quantum
circuit is implemented with Qiskit [14]. To compute the
distributions of various observables, the algorithm is run
many times and each measured outcome (leaf and final
spin) is recorded. With these ‘events’, it is possible to
then compute the distribution of any observable. For il-
lustration, two observables are considered: the number
of times the system moved left and the first time the sys-
tem moved left. As in the calculation from Sec. III, the
state always starts as spin down.

A classical MCMC is constructed by sampling from
the squared amplitudes at each step. This classical sim-
ulation does not contain any interference e↵ects and is
therefore expected to produce the incorrect probability
distributions for a generic observable when ✓F 6= 0.

We run our simulations with N = 4, with cos2(✓") for
each step taken as (0.2, 0.3, 0.4, 0.5) and (0.4, 0.5, 0.6, 0.7)
for cos2(✓#). Figure 9 shows results for the number of left
branches, while Fig. 10 shows results for the step the first
left branch occurred. In both cases, the histograms in the
left plot show the probability distributions when ✓F = 0
(both for the quantum algorithm and a classical MCMC),
while the right plot shows how the expectation value of
the observables depends on cos2 ✓F . As expected, the ex-
pectation values are the same for the MCMC and for the
quantum algorithm when ✓F = 0, but di↵er as interfer-
ence e↵ects are introduced. We have verified that the re-
sults from the quantum algorithm agree with the analyt-
ical calculation of the full probability distribution using
the exponentially scaling method introduced in Sec. II.
The di↵erence between the MCMC and the quantum al-
gorithm also goes to zero as cos ✓F ! 0, in which case
the spin flips at each step in a deterministic way and thus
there are no interference e↵ects.

VI. CONCLUSIONS

In this work, we have introduced a system similar
to the quantum walk which smoothly interpolates be-

FIG. 9. Left: the probability mass function over the number
of up branches. Right: the expected number of up branches as
a function of the time-independent spin transition probabil-
ity cos2(✓F ). Error bars correspond to Poission uncertainties
from the finite simulation.

FIG. 10. Left: the probability mass function over the step
for the first up branch. A value of �1 indicates that the
system never moved to the left. Right: the expected first
step for an up branch as a function of the time-independent
spin transition probability cos2(✓F ). The error bars are the
same as in Fig. 9.

tween a binary tree, amenable to classical MCMC ap-
proaches, and interfering trees with non-trivial quantum
phenomenology. When non-trivial interference e↵ects are

https://arxiv.org/abs/1901.08148


Early Results
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with a classical MCMC implementation. The quantum
circuit is implemented with Qiskit [14]. To compute the
distributions of various observables, the algorithm is run
many times and each measured outcome (leaf and final
spin) is recorded. With these ‘events’, it is possible to
then compute the distribution of any observable. For il-
lustration, two observables are considered: the number
of times the system moved left and the first time the sys-
tem moved left. As in the calculation from Sec. III, the
state always starts as spin down.

A classical MCMC is constructed by sampling from
the squared amplitudes at each step. This classical sim-
ulation does not contain any interference e↵ects and is
therefore expected to produce the incorrect probability
distributions for a generic observable when ✓F 6= 0.

We run our simulations with N = 4, with cos2(✓") for
each step taken as (0.2, 0.3, 0.4, 0.5) and (0.4, 0.5, 0.6, 0.7)
for cos2(✓#). Figure 9 shows results for the number of left
branches, while Fig. 10 shows results for the step the first
left branch occurred. In both cases, the histograms in the
left plot show the probability distributions when ✓F = 0
(both for the quantum algorithm and a classical MCMC),
while the right plot shows how the expectation value of
the observables depends on cos2 ✓F . As expected, the ex-
pectation values are the same for the MCMC and for the
quantum algorithm when ✓F = 0, but di↵er as interfer-
ence e↵ects are introduced. We have verified that the re-
sults from the quantum algorithm agree with the analyt-
ical calculation of the full probability distribution using
the exponentially scaling method introduced in Sec. II.
The di↵erence between the MCMC and the quantum al-
gorithm also goes to zero as cos ✓F ! 0, in which case
the spin flips at each step in a deterministic way and thus
there are no interference e↵ects.

VI. CONCLUSIONS

In this work, we have introduced a system similar
to the quantum walk which smoothly interpolates be-

FIG. 9. Left: the probability mass function over the number
of up branches. Right: the expected number of up branches as
a function of the time-independent spin transition probabil-
ity cos2(✓F ). Error bars correspond to Poission uncertainties
from the finite simulation.

FIG. 10. Left: the probability mass function over the step
for the first up branch. A value of �1 indicates that the
system never moved to the left. Right: the expected first
step for an up branch as a function of the time-independent
spin transition probability cos2(✓F ). The error bars are the
same as in Fig. 9.

tween a binary tree, amenable to classical MCMC ap-
proaches, and interfering trees with non-trivial quantum
phenomenology. When non-trivial interference e↵ects are

arXiv:1901.08148

https://arxiv.org/abs/1901.08148


Track Reconstruction
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https://sites.google.com/lbl.gov/hep-qpr



Track Reconstruction  
1. Associative Memory
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Tracking with Associative Memory
• Store possible tracks patterns directly in hardware

• Direct mapping from hit patterns to tracks

• Avoids scaling with combinatorics

• Can be sensitive to changes in detector conditions 

• Currently being installed within ATLAS as the Fast Track Trigger (FTK)  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Quantum Associative Memory

• Theoretically proven asymptotic advantages of circuit-based QC

• Optimal recall of unstructured memories

• Optimal memory capacity 

Strategy
• Memorize N patterns by assembling a quantum superposition:

• Apply generalized Grover’s algorithm to amplify the amplitude of a pattern 
being recalled.

• Measure memory.
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Storage Capacity
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Detector hit identifier (bits) 8 16 32

Binary track pattern (bits) 64 128 256

QuAM register (qubits) 130 258 514

QuAM capacity (patterns) ∼1019 ∼1038 ∼1077

cf: 1078-1082 atoms 
in the known 

universe



Recall Efficiency

• Theoretical probability of 
measuring a solution as a function 
of the number of Grover’s 
iterations and matching patterns 
(for N = 109)  

• Peak probability for measuring a 
solution as a function of the 
number of matching and total 
number of patterns stored in 
QuAM. 

• Both estimates assume the 
special case of uniform initial 
superposition and errorless 
quantum dynamics.
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Topological Constraints
• Integral (storage and recall) topological requirements for patterns containing 

different numbers of bits

• u: control register

• p: temporary storage register

• m: “permanent” storage register
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2-bit 3-bit n-bit



Implementation (1)

• We developed QuAM circuit generators 
implementing the Trugenberger’s initialization and 
generalized Grover’s algorithms.

• use open-source quantum computing platform, 
Qiskit

• Supported backends

• IBM QE cloud-based quantum chips [5Q 
Yorktown/Tenerife, 14Q Melbourne, 20Q Tokyo]

• Local/remote noisy simulators
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arXiv:1902.00498

Storage QuAM Retrieval QuAM

Snippet
Snippet

https://qiskit.org/
https://arxiv.org/abs/1902.00498


Implementation (2)
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QuAM storage circuit generator
Ex.: complete circuit for retrieving one 2-bit pattern

QuAM retrieval circuit generator
Ex.: complete circuit for retrieving one 2-bit pattern

arXiv:1902.00498

https://arxiv.org/abs/1902.00498


Track Reconstruction  
2. Quantum Annealing
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https://github.com/derlin/hepqpr-qallse



Quantum Annealing
• Explore how Quantum Annealing can bring speed improvements to pattern 

recognition

• Implement QUBO minimisation on D-Wave and study scaling with track 
multiplicity

• Inspired from [1], but use triplets as binary variables 

• Encode the quality of the triplets based on physics properties. The pair-wise 
connections b act as constraints (>0) or incentives (<0):

• Minimizing O means selecting the best triplets to form track candidates.
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[1] Stimpfl-Abele, G., & Garrido, L. (1991). Fast track finding with neural networks. Computer Physics Communications, 64(1), 46-56.



Implementation
• Dataset: simplified TrackML dataset, focus on  barrel, 1+ GeV, 5+ hits

• Toy dataset, but representative of expected conditions at the HL-LHC

• QUBO solvers: qbsolv (D-Wave + simulation), neal (simulation)

• D-Wave 2X (1152 qubits), D-Wave 2000Q (2048 qubits)  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Performance
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Doublets for a dataset of 2456 particles and 16855 hits



Performance (2)
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Physics performance as a function of occupancy using a D-Wave 2X (qbsolv).

Timing  building: 0-20 min | solving: 0-12s (sim), 0-56 min (D-Wave)
D-Wave | sim.  Same physics,  important time overhead with D-Wave



Analysis: Quantum Assisted 
Machine Learning (QAML)
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QAML Classifiers
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QAML Weak/Strong Classifier

Define functions h
i
 of the

input variables into [-1,1]

such that 
➢ P(signal|h>0) > P(bkg|h>0)
➢ P(bkg|h<0) > P(signal|h<0)

i.e. Most signal on h>0, most

bkg on h<0

Define w
i
 as binary linear

combination of h
i

https://arxiv.org/abs/1109.0325 

Slide courtesy of J. R. Vlimant

https://indico.cern.ch/event/719844/contributions/3047935/attachments/1746478/2828652/vlimant_DW-OpenLab_Nov18.pdf


QAML Objective Function
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QAML Target/Objective
Define as a “target” function

Per event error

Full error

➔ C
ij
 and C

iy
 are summations over the values of h

i
 over the training set

➔ λ is a parameter penalizing the number of non-zero w
i

https://arxiv.org/abs/1109.0325 

Slide courtesy of J. R. Vlimant

https://indico.cern.ch/event/719844/contributions/3047935/attachments/1746478/2828652/vlimant_DW-OpenLab_Nov18.pdf


Implementation with QUBO
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QUBO
Quadratic Unconstrained Binary Optimization

Simple conversion 
of binary 

weights to ±1

Slide courtesy of J. R. Vlimant

https://indico.cern.ch/event/719844/contributions/3047935/attachments/1746478/2828652/vlimant_DW-OpenLab_Nov18.pdf


Example: H→ɣɣ �35
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Generated Samples

SIGNAL

BACKGROUND

Generated with PYTHIA 6.4
at 8TeV proton-proton
c.o.m energy

Generated with SHERPA at 8TeV
proton-proton c.o.m energy
➔ Photon pT of 32 GeV and 25 GeV

for realistic trigger selection
➔ Di-photon mass [122.5, 127.5] GeV
➔ Higgs candidate |η|<2.5

11/05/18

 D-Wave Classifier, OpenLab Q-HEP, J.-R. Vlimant
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Sample Size and Folding

● 300k signal + 300k background total sample
● Training set

● 20 stratified, independent splits of sizes 100,
1000, 5000, 10k, 15k, 20k events

➔ Spread of classifier performance over the folds
reported as the uncertainty due to the choice
of training sample, and initialization.
 

● Testing set
● Remaining 100k+100k independent sample
➔ Statistical error on the classifier performance

estimated using bootstrapping

11/05/18

 D-Wave Classifier, OpenLab Q-HEP, J.-R. Vlimant
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Characterizing Variables
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Weak Classifier Function

Define v
shift

● Based on 70th and 30th 
percentile of the signal
distribution (s

70
, s

30
)

● If the percentile of
background at s

70
 is less

than 70%, then translate
to s

70
 and invert the

variable
● Else, check the percentile

of background at s
30

, and

if more than 30%, then
translate to s

30
.

● Else, the two distributions
are “too overlapping” and
we discard the variable.

Define h
● v

+1
 and v

-1
 are the 10th and

90th percentile of v
shift

Applied to all variables and their
product (inverse if flipped)

Slides courtesy of J. R. Vlimant

https://indico.cern.ch/event/719844/contributions/3047935/attachments/1746478/2828652/vlimant_DW-OpenLab_Nov18.pdf


Performance

• First application of D-Wave quantum annealing in high-energy physics

• Via solving an Ising model

• Good performance, but not at the same level of DNN & xgboost
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Sample Size of 20k Events

DW & SA

DNN & XGB

Two components in the
error band. Both negligible

1.Stat error of the test
set.

2.Spread over the folds.

Nature 550, 375-379 (2017)

Image courtesy of J. R. Vlimant

https://indico.cern.ch/event/719844/contributions/3047935/attachments/1746478/2828652/vlimant_DW-OpenLab_Nov18.pdf


Conclusion
• HL-LHC is coming very soon!

• Major upgrade to accelerator and detectors which will enable an extensive 
and exciting physics program

• Fully exploiting this data is the topic of an extensive R&D program in 
software and computing

• Too early to tell, but, perhaps quantum computing can play a role?

• Showed examples of preliminary research in pattern recognition on 
quantum computers

• Ideas currently being pursued include MC simulation, track 
reconstruction, Higgs analyses
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Back up
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Track Reconstruction: Current Approaches
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Transition
Radiation
Tracker

Silicon
Detectors

TRT Extension

Seed

Silicon
Track

Space Point
Silicon
Track
Candidate

Nominal
Interaction
Point

Space point formation

Seed finding

Track finding

Ambiguity Solving

TRT Extension

Multi-step iterative Kalman filter approach


