
1) Track finding with quantum annealing 
2) Attempt for track finding with gate-based system
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Tracking studies for quantum computer 
at Tokyo

Not really generic talk; more like working status… 



Track finding with quantum annealing
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Track finding with quantum annealing

Started by following Lucy’s talk at CPAD conference 
‣ tried to mimic Lucy’s approach…  
‣ skipped a few steps (just for simplification or laziness..)

Thanks!

What we have done so far: 
‣ simulate hits using FCC-hh inner detector 
‣ reconstruct triplets from inner detector hits 
‣ define bias and interaction weights for each triplet and triplet pairs 

- weights not optimized at all so far… 
‣ running simulated annealing to solve QUBO  
‣ get track candidates from selected triplets

Input to QUBO = pre-selected triplets (details in backup) 
Output from QUBO = triplets as those associated with tracks
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M. Saito has started looking into Lucy’s code 
‣ Exploring track finding with doublet-based QUBO approach 

→ details in backup

https://indico.fnal.gov/event/18104/session/23/contribution/61


Results

�4

# of found tracks (total): 
11-hits = 18 
10-hits = 5  (23) 
 9-hits = 7  (30) 
 8-hits = 9  (39)

7-hits = 3  (42)  
6-hits = 5  (47) 
5-hits = 6  (53) 
4-hits = 10  (63)

hits in all 2416 triplets

hits in 378 triplets found by annealing (= output from QUBO)
hits in 478 triplets selected by θ’<0.05 cut (= input to QUBO)

50 muons

Note: lines are drawn by checking positions  
           of shared hits in selected triplets

Quick test on D-Wave (just one event, though) 
➔ Same set of triplets found in D-Wave and simulated annealing
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N = # of selected triplets (= qubits)  
Nf = Required # of triplets to be found

Set to a = 1 and a’=1 
Results don’t seem to depend on the default values…  
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Modification to QUBO Hamiltonian
Q) Is it possible to select only triplets associated with specific tracks?

Original hamiltonian: 

Add additional constraint to select a specific number of triplets

Modified hamiltonian: 
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Nf  = 2 Nf  = 4 Nf  = 9Nf  = 6
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Seems like it’s working as hoped… 
Maybe some application for selecting specific tracks by annealing?

Results By changing Nf…

Nf  = 10 Nf  = 12 Nf  = 14 Nf  = 17



Nf  = 20 Nf  = 150Nf  = 100Nf  = 50

Nf  = 400Nf  = 300Nf  = 200
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By changing Nf…

Setting Nf to be large appears to restore the original QUBO solution

Results



it would be interesting to find out why there is an initial preference for shorter tracks, 
and why with an increase in Nf, it's not the shorter tracks that are first extended. 
Naively, I'd think that a pattern recognition that's restricted with Nf would be more 
useful if it first completes tracks.

➔ The Nf constraint is currently applied equally to all triplets, i.e, no preference 
for those triplets that are lined up to make a single track candidate. Therefore, 
triplet combinations with the smallest −sij are chosen no matter whether they 
belong to same tracks or not (I think).  

Also, related to the size of “unrelated weight” (set to 0 by default)

wunrelated=0 wunrelated=0.5 wunrelated=1.0

34 triplets found50 triplets found 40 triplets found

Nf = 50 for all
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Attempt for track finding with gate-based system
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Translated to Ising hamiltonian by converting Ti to si with➔
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Both a (=0.01) and bij are same as 
used for the annealing

QC code 
‣ IBM Qiskit framework

Obtain the ground state by solving eigenvalue equation with 
Ising hamiltonian
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Attempt for track finding with gate-based system
Modify QUBO hamiltonian used above to be Ising hamiltonian 
Solve eigenvalue problem with Ising hamiltonian

Original QUBO hamiltonian: 
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Processing time exponentially grows 
with the number of qubits (=triplets)

5 muons 
7 layers only 
Use only triplets with |𝜂|<1, |𝜙−0.5𝜋|<0.1𝜋

hits in all 27 triplets

hits in 10 triplets found by ExactEigensolver
hits in 27 triplets selected by θ’<0.05 cut

#triplets     time 
11                <0.1 sec 
27                ~30-45 min
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Results

I presume the exponential growth in time is in the simulation only? 
(Unless you're doing full QPE.) ➔ Hope so… No success on hardware yet 



hits in all 33 triplets

hits in 26 triplets found by 
VQE statevector_simulator

hits in 33 triplets selected by θ’<0.05 cut
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∆𝜙 #triplets 
(found) time [sec]

[−𝜋, −0.8𝜋] 3(3) 230
[−0.8𝜋, −0.6𝜋] 7(0) 1020
[0, 0.2𝜋] 7(7) 890

[0.4𝜋, 0.6𝜋] 9(9) 1530
[0.6𝜋, 0.8𝜋] 7(7) 920

Results 5 muons 
11 layers 
Use only triplets within a slice (|𝜂|<1, ∆𝜙<0.2𝜋) at a time 
Repeat measurement by sliding over 𝜙 



Slicing in (𝜂, 𝜙) can make the hamiltonian size small and run independently 
(need treatment for particles traversing the boundaries, though) 

How important is the initial state for VQE? 

VQE setup in Qiskit aqua: 
- depth = 5  → #parameters = #qubits × (depth + 1) ~ O(100) in present case 
- variational form = Ry (testing RyRz, …) → Optimizing ansatz for this problem? 
- initial state = zero 
- optimizer = SPSA 
- linear entanglement  
- #shots = 100

As for Hamiltonian design: the trick with VQE is to generate Hamiltonians that are mostly 
local. That width and depth of circuits are reduced and some can even be run independently. 
Ie. in your slide 13, a whole lot of Jij terms should be zero. (Since VQE is iterative, it may make 
sense to do so artificially for the first bunch of iterations, just to establish a good initial.) 

There are other issues with scaling of VQE. In particular, progress in Hilbert space need not 
translate to progress in classical space. This problem becomes exponentially worse with 
increasing # qubits and the only real mitigation is by better ansatz design (and noise 
reduction).
➔
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yes, you can run VQE on real hardware, but you'll be limited by the classical optimizer step 
(the QisKit minimizers are mostly the same as those in SciPy and only COBYLA is more or less 
usable when noise is present, but only if you have a good initial).
➔ Not sure what to use… Used SPSA so far; Quick test with COBYLA looks similar



Track finding with quantum annealing 
‣ Application of specific track reconstruction with annealing? 

‣ Quantitative evaluation of processing time relative to standard 
reconstruction using D-Wave system 

- maybe better to improve algorithm first? 

‣ Using annealing for shorter objects (before triplet selection)? 
- at doublet selection? or at even hit level??    → M. Saito 

‣ Can we exploit more quantum effects in QUBO tracking? 
- superposition? entanglement? 
- any conclusive example of quantum annealing superior to classical 

annealing? 

‣ Optimization of QUBO tracking algorithm? 
- any improvement in decomposing QUBO problem into sub-QUBOs? 
- check performance with different annealing times, # of annealing runs, etc. 
- different sampling scheme??
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To DO



Track finding with gate-based system 
‣ Exercise VQE + Ising hamiltonian model on real hardware 

IBMQ QASM HPC simulator: 
- Succeeded in one slice (3 qubits), then failed in next slice with message: 

qiskit.providers.exceptions.JobError: 'Invalid job state. The job should be DONE but 
it is JobStatus.ERROR’ 

- Slightly faster response than hardware, but still slow… 

IBMQ 16-bit system (ibmq_16_melbourne): 
- No success… essentially no response; one occasion with error message: 

Got a 502 code response to /api/Jobs/5c55a8dd5a747200565b113a/status: 502 
Bad Gateway: Registered endpoint failed to handle the request. 

‣ More thorough studies on algorithm, ansatz design, etc. needed 
- Currently requires lots of CPU time if #qubits > ~20… 
- Consider alternative hamiltonian model?
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To DO

Interesting exercise for VQE etc., but less likely for general-purpose tracking

Need more preferred hardware access (e.g, IBM Q Network) 
for realistic study?
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Other Directions?
‣ Simulation, e.g, 

- Parton-shower simulation with interfering quantum trees (arXiv:1901.08148) 
- Quantum simulation of Yang-Mills theory and hadronization (arXiv:1810.09213) 
- Simulation of physical events by sampling quantum states? 

‣ Machine learning, e.g,  
- Quantum SVM (→ R. Sawada)

Quantum simulation of SU(N) Yang-Mills gauge theory 
- Quantizing the theory with annihilation and creation operators 
- Mapping particles to qubits (based on Lattice approach) with Jordan-Wigner transformation 

of annihilation/creation operators to Pauli matrices on qubits 
- “Exponential speed-up with the # of qubits that increases polynomially wth the lattices”

!

H! H!

H! H!

R! R†!

H! H!
|0 !

W
orking!Qubits!

Auxiliary!Qubit!

e  !|0 !

Claimed to work in both perturbative 
and non-perturbative regimes 

➔ Proposed study for QCD  
     Hadronization 

But no test on simulator yet…?
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Backup



Simulation 
‣ single muon (1<pT<10 GeV, |𝜂|<1) events → overlaid to produce 50 muons per event 
‣ FCC barrel inner detector: 5 pixel layers, 8 macro-pixel layers 
‣ put hits into grid with size : (x, y, z) = (100, 100, 100) 𝜇m 
‣ merge adjacent hits
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Reconstruction 
‣ triplet reconstruction: 

- require ∆R<0.02 (0.04) for the 3 innermost (other) layer hits 
- scan over (1,2,3), (2,3,4), (3,4,5), … layers up to (9,10,11) 
- only triplets with 3 consecutive layer hits (i.e, no hole) considered 

‣ calculate sign of menger curvature for each triplet (positive or negative charge)  
- no requirement on the size of menger curvature 

‣ calculate θ’=|θ1−θ2| (for triplet selection) and θ*=(θ1+θ2)/2 (for triplet connection) in r-z

r

z
𝜃1 𝜃2

Setup



From doublets to triplets
Focus on triplets of hits: Ta,b,c

Two triplets Ta,b,c and Td,e,f can be combined:

○ into a quadruplet (qplet) if a=d ∧ b=e

If they share any other hit, they are in conflict. 

14

valid quadruplet conflicting triplets

invalid quadruplet

unrelated triplets

New properties:
○ curvature in the transverse plane
○ delta angles in the R-Z plane
○ …

→ Powerful early selection,
better continuity, fewer zigzags 

QC code 
‣ D-Wave Ocean framework 
‣ Simulated annealing (dwave-neal) and qbsolv for decomposing QUBO problem

Analysis 
‣ select only triplets with θ’<0.05 to remove  

non-aligned triplets in r-z ⇒ qubits 

‣ bias weight = 0.01 (fixed) 
‣ interaction strength bij :  

• triplets at same layers → non-shared hit triplets (unrelated) = wunrelated 
                                               → shared hit triplets (conflicting) = wconflict 
• triplets shifted by 1 → non-shared hit triplets (unrelated) = wunrelated 
                                          → shared hit triplets 
                                                     → only 1 shared hit (conflicting) = wconflict 
                                                     → 2 shared hits (quadruplet candidates) 

                                                            → opposite-sign curvature (invalid) = wconflict 
                                                            → same-sign curvature = −sij (valid) 

• triplets shifted by ≥ 2 : unrelated triplets = wunrelated

wunrelated = 0 
wconflict = 1000

conflicting

unrelated

valid

invalid

�19

sij = 1� 1

2
(dcurvij + drzij)
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# of found tracks (total): 
11-hits = 18 
10-hits = 5  (23) 
 9-hits = 7  (30) 
 8-hits = 9  (39)

7-hits = 3  (42)  
6-hits = 5  (47) 
5-hits = 6  (53) 
4-hits = 10  (63)

Results
50 muons

hits in all 2416 triplets

hits in 378 triplets found by annealing (= output from QUBO)
hits in 478 triplets selected by θ’<0.05 cut (= input to QUBO)

Quick test on D-Wave seems to work: 
same set of triplets found in D-Wave and 
simulated annealing



‣ Represent quantum states (= combination of triplets) by applying 
parametrized operators (= gates) to initial states  
‣ Obtain energy expectation value by running on quantum hardware 
‣ Update quantum states by updating the parameters (using CPU) such 

that the expectation value becomes minimum  
➔ Can approximately obtain ground state with small # of qubits
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Variational Quantum Eigensolver (VQE)



ExactEigensolver
VQE  
statevector_ 
simulator

VQE  
qasm_simulator

#triplets 
(found) time [sec] #triplets 

(found) time [sec] #triplets 
(found) time [sec]

3(3) ~0.02 3(3) ~240 3(3) ~240

7(7) ~0.03 7(7) ~900 7(7) ~950

27(10) ~1800 ? ? ? ?
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Processing Time



‣ Simulation 
- Generation of physics events including quantum effects from first principle 
- Simulation of physical events by sampling quantum states? 

‣ Data analysis 
- Machine learning application, e.g, Quantum SVM (→ R. Sawada) 
- Application of deep network?

Quantum simulation of Yang-Mills 
theory and hadronization 
Gate-based simulation of quark/
gluon ➞ hadron processes
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1FIG. 1. Perceptron models. (a) Schematic outline of the
classical perceptron as a model of artificial neuron: An input
array ~i is processed with a weight vector ~w to produce a lin-
ear, binary valued output function. In its simplest realization,
also the elements of~i and ~w are binary valued, the perceptron
acting as a binary (linear) classifier. (b) Scheme of the quan-
tum algorithm for the implementation of the artificial neuron
model on a quantum processor: From the system initialized in
its idle configuration, the first two unitary operations prepare
the input quantum state, | ii, and implement the Uw trans-
formation, respectively. The final outcome is then written on
an ancilla qubit, which is eventually measured to evaluate the
activation state of the perceptron.

vices for machine learning applications. Remarkably, we
show that the quantum perceptron model can be used
to sort out simple patterns, such as vertical or horizon-
tal lines among all possible inputs. In order to show the
potential of our proposed implementation of a quantum
artificial neuron, we theoretically simulate a 4+1 qubits
version using the IBM quantum simulator. We conclude
the paper by discussing the usefulness of our algorithm
as a quantum neuron in fully quantum neural networks.

QUANTUM CIRCUIT MODELING OF A
CLASSICAL PERCEPTRON

A scheme of the quantum algorithm proposed in this
work is shown in Fig. 1(b). The input and weight vec-

tors are limited to binary values, ij , wj 2 {�1, 1}, as in
McCulloch-Pitts neurons. Hence, a m-dimensional input
vector is encoded using the m coe�cients needed to de-
fine a general wavefunction | ii of N qubits. In practice,
given arbitrary input (~i) and weight (~w) vectors
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with ij , wj 2 {�1, 1}, we define the two quantum states

| ii =
1p
m

m�1X

j=0

ij |ji; | wi =
1p
m

m�1X

j=0

wj |ji . (2)

The states |ji 2 {|00 . . . 00i, |00 . . . 01i, . . . , |11 . . . 11i}
form the so called computational basis of the quantum
processor, i.e. the basis in the Hilbert space of N qubits,
corresponding to all possible states of the single qubits
being either in |0i or |1i. As usual, these states are la-
beled with integers j 2 {0, . . . ,m � 1} arising from the
decimal representation of the respective binary string.
Evidently, if N qubits are used in the register, there
are m = 2N basis states labelled |ji and, as outlined
in Eq. (2), we can use factors ±1 to encode the m-
dimensional classical vectors into an uniformly weighted
superposition of the full computational basis.
The first step of the algorithm prepares the state | ii

by encoding the input values in~i. Assuming the qubits to
be initialized in the state |00 . . . 00i ⌘ |0i⌦N , we perform
a unitary transformation Ui such that

Ui|0i⌦N = | ii . (3)

In principle, any m ⇥ m unitary matrix having ~i in the
first column can be used to this purpose, and we will
give explicit examples in the following. Notice that, in a
more general scenario, the preparation of the input state
starting from a blank register might be replaced by a
direct call to a quantum memory [21] where | ii was
previously stored.

The second step computes the inner product between
~w and ~i using the quantum register. This task can be
performed e�ciently by defining a unitary transforma-
tion, Uw, such that the weight quantum state is rotated
as

Uw| wi = |1i⌦N = |m� 1i . (4)

As before, any m ⇥m unitary matrix having ~wT in the
last row satisfies this condition. If we apply Uw after Ui,
the overall N -qubits quantum state becomes

Uw| ii =
m�1X

j=0

cj |ji ⌘ |�i,wi . (5)

2

∑ wjij

w0

w1

w2

wj

wm�1

i0

i1

i2

ij

im�1

inputs

output

(a)

(b)

|0i

|0i

|0i

|0i

|0i
Ancilla

Ui Uw
Encoding
qubits

�����
X

j

ijwj

�����

2

1FIG. 1. Perceptron models. (a) Schematic outline of the
classical perceptron as a model of artificial neuron: An input
array ~i is processed with a weight vector ~w to produce a lin-
ear, binary valued output function. In its simplest realization,
also the elements of~i and ~w are binary valued, the perceptron
acting as a binary (linear) classifier. (b) Scheme of the quan-
tum algorithm for the implementation of the artificial neuron
model on a quantum processor: From the system initialized in
its idle configuration, the first two unitary operations prepare
the input quantum state, | ii, and implement the Uw trans-
formation, respectively. The final outcome is then written on
an ancilla qubit, which is eventually measured to evaluate the
activation state of the perceptron.

vices for machine learning applications. Remarkably, we
show that the quantum perceptron model can be used
to sort out simple patterns, such as vertical or horizon-
tal lines among all possible inputs. In order to show the
potential of our proposed implementation of a quantum
artificial neuron, we theoretically simulate a 4+1 qubits
version using the IBM quantum simulator. We conclude
the paper by discussing the usefulness of our algorithm
as a quantum neuron in fully quantum neural networks.
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The states |ji 2 {|00 . . . 00i, |00 . . . 01i, . . . , |11 . . . 11i}
form the so called computational basis of the quantum
processor, i.e. the basis in the Hilbert space of N qubits,
corresponding to all possible states of the single qubits
being either in |0i or |1i. As usual, these states are la-
beled with integers j 2 {0, . . . ,m � 1} arising from the
decimal representation of the respective binary string.
Evidently, if N qubits are used in the register, there
are m = 2N basis states labelled |ji and, as outlined
in Eq. (2), we can use factors ±1 to encode the m-
dimensional classical vectors into an uniformly weighted
superposition of the full computational basis.
The first step of the algorithm prepares the state | ii

by encoding the input values in~i. Assuming the qubits to
be initialized in the state |00 . . . 00i ⌘ |0i⌦N , we perform
a unitary transformation Ui such that

Ui|0i⌦N = | ii . (3)

In principle, any m ⇥ m unitary matrix having ~i in the
first column can be used to this purpose, and we will
give explicit examples in the following. Notice that, in a
more general scenario, the preparation of the input state
starting from a blank register might be replaced by a
direct call to a quantum memory [21] where | ii was
previously stored.

The second step computes the inner product between
~w and ~i using the quantum register. This task can be
performed e�ciently by defining a unitary transforma-
tion, Uw, such that the weight quantum state is rotated
as

Uw| wi = |1i⌦N = |m� 1i . (4)

As before, any m ⇥m unitary matrix having ~wT in the
last row satisfies this condition. If we apply Uw after Ui,
the overall N -qubits quantum state becomes

Uw| ii =
m�1X

j=0

cj |ji ⌘ |�i,wi . (5)

Application of neural network 
(parceptron) in Quantum computer 
Tested on IBM 5-bit system
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Possible Other Directions
Application utilizing more quantum effects?


