Tracking studies for quantum computer at Tokyo

1) Track finding with quantum annealing
2) Attempt for track finding with gate-based system

Not really generic talk; more like working status...

Track finding with quantum annealing

Track finding with quantum annealing

Started by following Lucy's talk at CPAD conference Thanks!

- tried to mimic Lucy's approach...
- skipped a few steps (just for simplification or laziness..)

What we have done so far:

- simulate hits using FCC-hh inner detector
- reconstruct triplets from inner detector hits
- define bias and interaction weights for each triplet and triplet pairs
- weights not optimized at all so far...
- running simulated annealing to solve QUBO
- get track candidates from selected triplets

Input to QUBO = pre-selected triplets (details in backup)
Output from QUBO = triplets as those associated with tracks
M. Saito has started looking into Lucy's code

- Exploring track finding with doublet-based QUBO approach

Results

50 muons
hits in all 2416 triplets
hits in 478 triplets selected by $\theta^{\prime}<0.05$ cut (= input to QUBO) hits in 378 triplets found by annealing (= output from QUBO)

$$
\begin{array}{ll}
\text { \# of found tracks (total): } \\
11 \text {-hits }=18 & 7 \text {-hits }=3(42) \\
10 \text {-hits }=5(23) & 6 \text {-hits }=5(47) \\
9 \text {-hits }=7(30) & 5 \text {-hits }=6(53) \\
8 \text {-hits }=9(39) & 4 \text {-hits }=10(63)
\end{array}
$$

Quick test on D-Wave (just one event, though)
\rightarrow Same set of triplets found in D-Wave and simulated annealing

Modification to QUBO Hamiltonian

Q) Is it possible to select only triplets associated with specific tracks?

Original hamiltonian:

$$
\mathcal{O}(a ; b ; T)=a \sum_{i}^{N} T_{i}+\sum_{i}^{N} \sum_{j>i}^{N} b_{i j} T_{i} T_{j} \quad T \in\{0,1\}
$$

Add additional constraint to select a specific number of triplets

$$
a \sum_{i}^{N} T_{i} \rightarrow a \sum_{i}^{N} T_{i}+a^{\prime}\left(\sum_{i} T_{i}-N_{f}\right)^{2} \begin{aligned}
& N=\text { \# of selected triplets (= qubits) } \\
& N_{f}=\text { Required \# of triplets to be found }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Modified hamiltonian: } \\
& \qquad \begin{array}{r}
\mathcal{O}(a ; b ; T) \rightarrow a^{\prime} N_{F}^{2}+\left(a+a^{\prime}\left(1-2 N_{f}\right)\right) \sum_{i}^{N} T_{i}+\sum_{i}^{N} \sum_{j>i}^{N}\left(2 a^{\prime}+b_{i j}\right) T_{i} T_{j} \\
\sim\left(a+a^{\prime}\left(1-2 N_{f}\right)\right) \sum_{i}^{N} T_{i}+\sum_{i}^{N} \sum_{j>i}^{N}\left(2 a^{\prime}+b_{i j}\right) T_{i} T_{j} \\
\text { Set to } a=1 \text { and } a^{\prime}=1 \\
\text { Results don't seem to depend on the default values... }
\end{array}
\end{aligned}
$$

Results

$N_{f}=9$

$N_{f}=17$

Seems like it's working as hoped... Maybe some application for selecting specific tracks by annealing?

Results

$N_{f}=50$

$N_{f}=300$

By changing $N_{f} \ldots$

$N_{f}=400$

Setting N_{f} to be large appears to restore the original QUBO solution
it would be interesting to find out why there is an initial preference for shorter tracks, and why with an increase in N_{f}, it's not the shorter tracks that are first extended. Naively, I'd think that a pattern recognition that's restricted with Nf would be more useful if it first completes tracks.
\rightarrow The N_{f} constraint is currently applied equally to all triplets, i.e, no preference for those triplets that are lined up to make a single track candidate. Therefore, triplet combinations with the smallest $-s_{i j}$ are chosen no matter whether they belong to same tracks or not (l think).

Also, related to the size of "unrelated weight" (set to 0 by default)

Attempt for track finding with gate-based system

Attempt for track finding with gate-based system

Modify QUBO hamiltonian used above to be Ising hamiltonian Solve eigenvalue problem with Ising hamiltonian

Original QUBO hamiltonian:

$$
\mathcal{O}(a ; b ; T)=a \sum_{i}^{N} T_{i}+\sum_{i}^{N} \sum_{j>i}^{N} b_{i j} T_{i} T_{j} \quad T \in\{0,1\}
$$

\rightarrow Translated to Ising hamiltonian by converting T_{i} to s_{i} with $T_{i}=\frac{1-s_{i}}{2}$

$$
\begin{aligned}
H & =\sum_{i}^{N} h_{i} s_{i}+\sum_{i}^{N} \sum_{j>i}^{N} J_{i j} s_{i} s_{j} \quad s_{i} \in(-1,1) \\
J_{i j} & =Q_{i j}+Q_{j i} \quad h_{i}=-\sum_{k}^{N}\left(Q_{i k}+Q_{k i}\right) \quad Q_{i j}= \begin{cases}a & (i=j) \\
b_{i j} & (j>i) \\
0 & (j<i)\end{cases}
\end{aligned}
$$

\rightarrow Obtain the ground state by solving eigenvalue equation with Ising hamiltonian

Both $a(=0.01)$ and $b_{i j}$ are same as used for the annealing

QC code

- IBM Qiskit framework

Results

5 muons
7 layers only
Use only triplets with $|\eta|<1,|\phi-0.5 \pi|<0.1 \pi$

Processing time exponentially grows with the number of qubits (=triplets)
hits in all 27 triplets
hits in 27 triplets selected by $\theta^{\prime}<0.05$ cut hits in 10 triplets found by ExactEigensolver

\#triplets	time
11	$<0.1 \mathrm{sec}$
27	$\sim 30-45 \mathrm{~min}$

I presume the exponential growth in time is in the simulation only?
(Unless you're doing full QPE.)
${ }_{11} \rightarrow$ Hope so... No success on hardware yet

Results

5 muons
11 layers
Use only triplets within a slice $(|\eta|<1, \Delta \phi<0.2 \pi)$ at a time
Repeat measurement by sliding over ϕ

$\boldsymbol{\Delta} \phi$	\#triplets (found)	time [sec]
$[-\pi,-0.8 \pi]$	$3(3)$	230
$[-0.8 \pi,-0.6 \pi]$	$7(0)$	1020
$[0,0.2 \pi]$	$7(7)$	890
$[0.4 \pi, 0.6 \pi]$	$9(9)$	1530
$[0.6 \pi, 0.8 \pi]$	$7(7)$	920

yes, you can run VQE on real hardware, but you'll be limited by the classical optimizer step (the QisKit minimizers are mostly the same as those in SciPy and only COBYLA is more or less usable when noise is present, but only if you have a good initial).
\rightarrow Not sure what to use... Used SPSA so far; Quick test with COBYLA looks similar
As for Hamiltonian design: the trick with VQE is to generate Hamiltonians that are mostly local. That width and depth of circuits are reduced and some can even be run independently. le. in your slide 13, a whole lot of Jij terms should be zero. (Since VQE is iterative, it may make sense to do so artificially for the first bunch of iterations, just to establish a good initial.)

There are other issues with scaling of VQE. In particular, progress in Hilbert space need not translate to progress in classical space. This problem becomes exponentially worse with increasing \# qubits and the only real mitigation is by better ansatz design (and noise reduction).
\rightarrow Slicing in (η, ϕ) can make the hamiltonian size small and run independently (need treatment for particles traversing the boundaries, though)
How important is the initial state for VQE?
VQE setup in Qiskit aqua:

- depth = $5 \rightarrow$ \#parameters $=$ \#qubits $\times($ depth +1$) \sim \mathrm{O}(100)$ in present case
- variational form $=$ Ry (testing RyRz, ...) \rightarrow Optimizing ansatz for this problem?
- initial state = zero
- optimizer = SPSA
- linear entanglement
- \#shots = 100

To DO

Track finding with quantum annealing

- Application of specific track reconstruction with annealing?
- Quantitative evaluation of processing time relative to standard reconstruction using D-Wave system
- maybe better to improve algorithm first?
- Using annealing for shorter objects (before triplet selection)?
- at doublet selection? or at even hit level?? \rightarrow M. Saito
- Can we exploit more quantum effects in QUBO tracking?
- superposition? entanglement?
- any conclusive example of quantum annealing superior to classical annealing?
- Optimization of QUBO tracking algorithm?
- any improvement in decomposing QUBO problem into sub-QUBOs?
- check performance with different annealing times, \# of annealing runs, etc.
- different sampling scheme??

To DO

Track finding with gate-based system

- Exercise VQE + Ising hamiltonian model on real hardware IBMQ QASM HPC simulator:
- Succeeded in one slice (3 qubits), then failed in next slice with message: qiskit.providers.exceptions.JobError: 'Invalid job state. The job should be DONE but it is JobStatus.ERROR'
- Slightly faster response than hardware, but still slow...

IBMQ 16-bit system (ibmq_16_melbourne):

- No success... essentially no response; one occasion with error message: Got a 502 code response to /api/Jobs/5c55a8dd5a747200565b113a/status: 502 Bad Gateway: Registered endpoint failed to handle the request.
- More thorough studies on algorithm, ansatz design, etc. needed
- Currently requires lots of CPU time if \#qubits $>\boldsymbol{\sim} 20 \ldots$
- Consider alternative hamiltonian model?

Interesting exercise for VQE etc., but less likely for general-purpose tracking
Need more preferred hardware access (e.g, IBM Q Network) for realistic study?

Other Directions?

- Simulation, e.g,
- Parton-shower simulation with interfering quantum trees (arXiv:1901.08148)
- Quantum simulation of Yang-Mills theory and hadronization (arXiv:1810.09213)
- Simulation of physical events by sampling quantum states?
- Machine learning, e.g,
- Quantum SVM (\rightarrow R. Sawada)

Quantum simulation of $\operatorname{SU}(N)$ Yang-Mills gauge theory

- Quantizing the theory with annihilation and creation operators
- Mapping particles to qubits (based on Lattice approach) with Jordan-Wigner transformation of annihilation/creation operators to Pauli matrices on qubits
- "Exponential speed-up with the \# of qubits that increases polynomially wth the lattices"

Claimed to work in both perturbative and non-perturbative regimes
\rightarrow Proposed study for QCD Hadronization

But no test on simulator yet...?

Backup

Setup

Simulation

- single muon ($1<\mathrm{p}_{\mathrm{T}}<10 \mathrm{GeV},|\eta|<1$) events \rightarrow overlaid to produce 50 muons per event
- FCC barrel inner detector: 5 pixel layers, 8 macro-pixel layers
- put hits into grid with size $:(x, y, z)=(100,100,100) \mu \mathrm{m}$
- merge adjacent hits

Reconstruction

- triplet reconstruction:
- require $\Delta R<0.02$ (0.04) for the 3 innermost (other) layer hits
- scan over ($1,2,3$), $(2,3,4),(3,4,5), \ldots$ layers up to $(9,10,11)$
- only triplets with 3 consecutive layer hits (i.e, no hole) considered
- calculate sign of menger curvature for each triplet (positive or negative charge)
- no requirement on the size of menger curvature
- calculate $\theta^{\prime}=\left|\theta_{1}-\theta_{2}\right|$ (for triplet selection) and $\theta^{*}=\left(\theta_{1}+\theta_{2}\right) / 2$ (for triplet connection) in $r-z$

Circumcircle of $A B C$

$$
c(x, y, z)=\frac{1}{R}=\frac{4 A}{|x-y||y-z||z-x|}
$$

Analysis

unrelated

- select only triplets with $\theta^{\prime}<0.05$ to remove non-aligned triplets in $r-z \Rightarrow$ qubits
- triplets shifted by $1 \rightarrow$ non-shared hit triplets (unrelated) $=W_{\text {unrelated }}$
\rightarrow shared hit triplets
\rightarrow only 1 shared hit (conflicting) $=w_{\text {confict }}$
$\rightarrow 2$ shared hits (quadruplet candidates)
\rightarrow opposite-sign curvature (invalid) $=w_{\text {conflict }}$
\rightarrow same-sign curvature $=-s_{i j}$ (valid)
- triplets shifted by ≥ 2 : unrelated triplets $=\omega_{\text {unrelated }}$

$$
s_{i j}=1-\frac{1}{2}\left(d c u r v_{i j}+d r z_{i j}\right)
$$

QC code

- D-Wave Ocean framework
- Simulated annealing (dwave-neal) and qbsolv for decomposing QUBO problem

Results

50 muons

hits in all 2416 triplets
hits in 478 triplets selected by $\theta^{\prime}<0.05$ cut ($=$ input to QUBO)
hits in 378 triplets found by annealing (= output from QUBO)

Quick test on D-Wave seems to work: same set of triplets found in D-Wave and simulated annealing

\# of found tracks (total):
11-hits $=18 \quad 7$-hits $=3$ (42)
10 -hits $=5(23) \quad 6$-hits $=5(47)$
9 -hits $=7$ (30) $\quad 5$-hits $=6$ (53)
8 -hits $=9$ (39)
4 -hits $=10$ (63)

Variational Quantum Eigensolver (VQE)

- Represent quantum states (= combination of triplets) by applying parametrized operators (= gates) to initial states
- Obtain energy expectation value by running on quantum hardware
- Update quantum states by updating the parameters (using CPU) such that the expectation value becomes minimum
\rightarrow Can approximately obtain ground state with small \# of qubits
Quantum Hardware

Processing Time

ExactEigensolver		VQE statevector_ simulator		VQE qasm_simulator	
\#triplets (found)	time [sec]	\#triplets (found)	time [sec]	\#triplets (found)	time [sec]
3(3)	~ 0.02	3(3)	~ 240	3(3)	~ 240
7(7)	~ 0.03	7(7)	~900	7(7)	~950
27(10)	~ 1800	?	?	?	?

Possible Other Directions

Application utilizing more quantum effects?

- Simulation
- Generation of physics events including quantum effects from first principle
- Simulation of physical events by sampling quantum states?
- Data analysis
- Machine learning application, e.g, Quantum SVM (\rightarrow R. Sawada)
- Application of deep network?

Quantum simulation of Yang-Mills theory and hadronization
Gate-based simulation of quark/ gluon \rightarrow hadron processes

Application of neural network (parceptron) in Quantum computer Tested on IBM 5-bit system
(a)

(b)

arXiv:1811.02266

