Higgs analysis with QC

12 / Feb / 2019

Ryu Sawada

ICEPP, University of Tokyo

Introduction

- As a starting point of using QC for physics analysis, I tried following a presentation at a CERN QC workshop
- The original study by Wen Guan, Winsconsin-Madison
 - ttH, $H \rightarrow \gamma \gamma$
 - IBM Qiskit with SVM Quantum Kernel (QSVM)
 - He tried running the program on QC and CPU (simulation).
 - · Result
 - Couldn't use enough events on QC due to the limitation of the payload size.
 - The execution in Simulator is limited by the memory size.
 - 34 GB for 31 qubits
 - 47 GB for 8 qubits for 200 events with full entanglement

Support Vector Machine

- Support vector machine (SVM) is a supervised machine learning algorithm to classify data (set of variables) into two or more classes.
- Internally, it makes higher dimensional "feature" space to separate nonlinearly.
 - For example, if we define a new axis as $z = x \times y$, we can separate the data shown below by a plane z = 1.
- The complexity of classical SVM algorithms is approximately proportional to N³.
- Quantum version can be proportional to log(N) by,
 - performing inner products of the vectors in parallel
 - converting the SVM training to an approximate least-square problem which is subsequently solved it by the quantum matrix inversion algorithm

arXiv:1307.0471 [quant-ph], arXiv:1410.1054 [quant-ph]

Data used this time

- Kaggle Higgs ML Challenge data
 - Signal : $H \rightarrow \tau \tau$ (had τ + lep τ)
 - BG : ttbar, Z, W which contains τ in the final states.
 - Training data
 - ~30 variables
 - Signal : ~90k events, BG : ~160k events
- c.f.: results in the ML challenge
 - The best one uses Gradient Boost Classifier with the success rate of 84%
 - The best SVM result was 76%.

The algorithm

- Based on the QSVM code in an example code in Qiskit.
- In QSVM the number of classical feature (= input variables) is equal to the number of qubits.
- So far I used only two inputs (should be able to increase).

R.Sawada

Test on IBM Q

- On real QC (IBM Q 16 Melbourne),
 - With 50 training sample
 - Couldn't run with a "GENERIC ERROR: 400", maybe due to too large payload ?
 - By reducing the number of training sample to 1, the error has gone, but the training didn't end in ~5 hours...
- On HPC (IBM Q QASM Simulator)
 - It runs successfully in 20 minutes.
- On a local computer with simulation (Intel silver 10 core 2.2GHz)
 - It runs successfully in 10 minutes.

Summary

- QSVM can be a good algorithm to use on existing QC because it does not require too many qubits.
 - The number of qubits is equal to the number of input variables.
- We can start using QSVM algorithm for physics analyses using an example code in Qiskit.
- However, it does not seem to be possible run it on "public" IBM Q machines due to limited payload size (?).
- In order to do practical analysis, we probably need much higher number of training samples.
 - How about other QC
 - Other IBM Q machines (like Tokyo or Austin) which are reserved for members of IBM Q network
 - · Google ?
 - Rigetti ?

Variable list

EventId DER_mass_MMC DER_mass_transverse_met_lep DER_mass_vis DER pt h DER_deltaeta_jet_jet DER_mass_jet_jet DER_prodeta_jet_jet DER_deltar_tau_lep DER_pt_tot DER_sum_pt DER_pt_ratio_lep_tau DER_met_phi_centrality DER_lep_eta_centrality PRI_tau_pt PRI_tau_eta PRI_tau_phi

PRI_lep_pt PRI_lep_eta PRI_lep_phi PRI met PRI_met_phi PRI_met_sumet PRI_jet_num PRI_jet_leading_pt PRI_jet_leading_eta PRI_jet_leading_phi PRI_jet_subleading_pt PRI_jet_subleading_eta PRI_jet_subleading_phi PRI_jet_all_pt Weight Label