
Hadronic Physics

 Alberto Ribon
 CERN PH/SFT

 Geant4 Tutorial, CERN, 26-27 March 2019

2

● Reminder:
● Hadronic Models, Cross Sections, Framework, Physics Lists

● NeutronHP (ParticleHP)

● Radioactive Decay

● Biasing in Hadronic Physics

● Exercises

Outline

3

Reminder:
Hadronic Models , Cross Sections ,

Framework , Physics Lists

4

● Hadrons (π±, K±, K°L , p, n, α, etc.), produced in jets and
decays, traverse the detectors (H,C,Ar,Si,Al,Fe,Cu,W,Pb...)

● Therefore we need to model hadronic interactions
 hadron – nucleus -> anything
in our detector simulations

● In principle, QCD is the theory that describes all hadronic
interactions; in practice, perturbative calculations are
applicable only in a tiny (but important!) phase-space region

● the hard scattering at high transverse momentum

whereas for the rest, i.e. most of the phase space
● soft scattering, re-scattering, hadronization, nucleus de-excitation

 only approximated models are available

● Hadronic models are valid for limited combinations of

particle type – energy – target material

Hadronic interactions

5

Partial Hadronic Model Inventory

5

6

6

String model Intra-nuclear cascade model

Pre-equilibrium (Precompound) Equilibrium (Evaporation) models

7

● In Geant4, there is a clear separation between
cross sections – related to the probability of an elastic or
inelastic hadron-nucleus interaction, and therefore to the length
that a hadron projectile flies in a material before interacting –
and final-state models – related to the number, type and
properties of the secondaries produced by the interaction

● For each combination of projectile – energy – target
● ≥ 1 cross sections must be specified in a physics list :

 the first available is used
● 1 or 2 (final-state) models must be specified in a physics list :

 if two, a random number is thrown to
 decide which of the two models to use
– linear probability as a function of the energy, over an interval

called transition region, defined arbitrarily to get smooth
observables

Hadronic Cross Sections and (Final-State) Models

8

Cross Sections

Models

Hadronic Framework

9

Recommended physics list for High-Energy Physics.
Its main components are the following:

● FTF (Fritiof string) model, used above 3 GeV

● BERT (Bertini cascade) model, used below 12 GeV

● Nucleus de-excitation: Precompound + evaporation

● Neutron capture

● Nuclear capture of negatively charged hadrons at rest

● Gamma- and electron-nuclear interactions

● Hadron elastic

● Standard electromagnetic physics

● NO : neutron-HP, radioactive decay, optical photons

FTFP_BERT

10

● FTFP_BERT_HP : as FTFP_BERT, but with NeutronHP for
 neutrons of kinetic energy below 20 MeV

● Shielding : similar to FTFP_BERT_HP, but with Radioactive Decay
 and QMD (Quantum Molecular Dynamics) for ions

– QMD used in the range [100 MeV, 10 GeV] : below BIC, above FTFP

● FTFP_INCLXX : similar to FTFP_BERT, but using INCLXX
 instead of BERT for some particles

– Protons, neutrons, charged pions below 20 GeV; FTFP above 15 GeV

● QGSP_FTFP_BERT : similar to FTFP_BERT, but using QGS
 (Quark Gluon String) model at high energies

– [6, 8] GeV transition BERT − FTFP ; [12, 25] GeV transition FTFP − QGSP

● QGSP_BIC : similar to FTFP_BERT but using QGS and BIC (Binary
 Cascade) instead of FTF and BERT when possible

– Protons, neutrons : BIC < 9.9 GeV , FTFP in [9.5, 25] GeV , QGSP > 12 GeV
Pions & kaons : BERT < 5 GeV , FTFP in [4, 25] GeV , QGSP > 12 GeV

A few other Physics Lists

11

Let's consider the example of FTFP_BERT :
In your main program:

 #include "FTFP_BERT.hh"
 int main(int argc, char** argv) {
 ...
 G4VModularPhysicsList* physicsList = new FTFP_BERT;
 runManager->SetUserInitialization(physicsList);
 ...
 }

● It can be “extended”, e.g. adding radioactive decay :

 #include "G4RadioactiveDecayPhysics.hh"
 int main(int argc, char** argv) {
 ...
 G4VModularPhysicsList* physicsList = new FTFP_BERT;
 physicsList->RegisterPhysics(new G4RadioactiveDecayPhysics);
 runManager->SetUserInitialization(physicsList);
 ...
 }

How to use a Reference Physics List

12

NeutronHP
(ParticleHP)

13

An interesting complication: Neutrons
● Neutrons are abundantly produced

● Mostly “soft” neutrons, produced by the de-excitation of nuclei,
after hadron-nucleus interactions

● It is typically the 3rd most produced particle (after e-, γ)

● Before a neutron “disappears” via an inelastic interaction,
it can have many elastic scatterings with nuclei, and
eventually it can “thermalize” in the environment

● The CPU time of the detector simulation can vary by an
order of magnitude according to the physical accuracy of
the neutron transportation simulation

● For typical high-energy applications, a simple treatment is
enough (luckily!)

● For activation and radiation damage studies, a more precise,
data-driven and isotope-specific treatment is needed,
especially for neutrons of kinetic energy below ~ MeV

14

● High Precision treatment of low-energy neutrons
● Ekin < 20 MeV , down to thermal energies
● Includes 4 types of interactions:

radiative capture, elastic scattering, fission, inelastic scattering
● Based on evaluated neutron scattering data libraries

– G4NDL4.5

– Include both cross sections and final states

– Based on the ENDF/B-VII database

– Pointed by the environmental variable G4NEUTRONHPDATA

● It is precise, but very slow!

● It is not needed for most high-energy applications; useful for:
● cavern background, shielding, radiation damage, radio-protection

● Not used in most physics lists. If you need it, use one of the
_HP physics lists : FTFP_BERT_HP , QGSP_BERT_HP ,
 QGSP_BIC_(All)HP , Shielding(LEND)

NeutronHP

15

● Because of several reasons (binned look-up data tables,
inclusive - incomplete, without correlations – information,
etc.) there will always be small energy non-conservations

● For all types of interactions (elastic, capture, fission and inelastic)
● To avoid that, by default Geant4 uses some “tricks” (e.g. emitting

some gammas) to conserve energy-momentum. This, however, can
affect the average values, so for applications (like nuclear reactors)
which care about energy conservations on average, the following
enviromental variable should be set to avoid any “adjustment”:
G4NEUTRONHP_DO_NOT_ADJUST_FINAL_STATE

● Doppler broadening of the resonances, due to target thermal
motion, is calculated on-the-fly (from T = 0 K values)

● Very CPU intense: for those applications that do not need it, it can
be switched off by setting the environmental variable
G4NEUTRONHP_NEGLECT_DOPPLER

Notes about NeutronHP (1/2)

16

● Geant4 Neutron Data Libraries:
● Data files for element heavier than Uranium are omitted from

public release but can be provided under request
– Only for peaceful applications

● Alternative neutron data libraries for Geant4 are available
from IAEA (https://www-nds.iaea.org/geant4/)
– Based on JEFF, JENDL, CENDL and BROND (instead of ENDF)

neutron data libraries

Notes about NeutronHP (2/2)

https://www-nds.iaea.org/geant4/

17

● For handling elastic scattering at thermal energies < 4 eV
from chemically bound atoms

● At thermal neutron energies, atomic translational motion as well as
vibration and rotation of the chemically bound atoms affect the
neutron scattering cross section and the energy and angular
distribution of secondary neutrons

● Based on the S(α , β) model
● Thermal neutron scattering files from ENDF/B-VII thermal data

– There are ~ 20 materials : al_metal, be_metal, be_beo, benzen,
d_heavy_water, d_ortho_d2, d_para_d2, fe_metal, graphite, h_l_ch4,
h_ortho_h2, h_para_h2, h_polyethylene, h_s_ch4, h_water, h_zrh ,
o_beo, o_uo2, u_uo2, zr_zrh

● Can be activated with the elastic constructor G4ThermalNeutrons

– physicsList → RegisterPhysics(new G4ThermalNeutrons(0));

● Example:
 examples/extended/hadronic/Hadr04

Thermal Scattering

18

● Extension of NeutronHP for : p , d , t , 3He , α
● For high-precision elastic and inelastic interactions below 200 MeV

– Of interest for medical and nuclear physics

● Also data-driven, based on the TENDL database
– Based on TALYS code

– Optional database that can be downloaded from the Geant4 web site
● G4TENDL1.3.2

– Need to be pointed by the environmental variable G4PARTICLEHPDATA

● The two codes, NeutronHP and ParticleHP, have been merged
● Validation in progress, good comparisons so far with MCNP
● Available in the QGSP_BIC_AllHP reference physics list

ParticleHP

19

Radioactive Decay

20

● Based on data files from the Evaluated Nuclear Structure
Data Files (ENSDF), Geant4 knows about ~ 6'500 nuclides
with half life > 1 ns

● ~3'000 ground states + ~3'500 meta-stable states (isomers)
● As of Geant4 10.5 , their properties (Z , A , E , τ , etc.) are in

G4ENSDFSTATE2.2 (pointed by G4ENSDFSTATEDATA)

● Two ways to have unstable nuclides in Geant4 :

1. Radioactive source as a primary particle
– e.g. Na24m :

 /gun/particle ion
 /gun/ion 11 24 0 472. keV

Nuclides in Geant4 (1/2)

21

2. Induced radioactivity (activation) :
 in hadron – nucleus and nucleus – nucleus reactions,
 the de-excitation nuclear models can create nuclides
 with lifetime greater than a threshold:

– 1000 seconds by default, when Radioactive Decay is not used
● Very few nuclides, to avoid CPU overhead for HEP applications
● These nuclides are treated as “stable” (because RDM is not used)

– 1 microsecond by default, when Radioactive Decay is used

Nuclides in Geant4 (2/2)

22

● Process to simulate radioactive decay of (unstable) nuclei,
both in flight and at rest

● So far implemented the following types of decay :
α , β-, β+ , γ (i.e. isomeric transitions, and Internal Conversions (IC))
EC (Electron Capture) , p , n

● Empirical and data-driven
● Data files from Evaluated Nuclear Structure Data Files (ENSDF)

– As of Geant4 10.5 , these are in RadioactiveDecay5.3
pointed by the enviromental variable G4RADIOACTIVEDATA

● These data files contain properties such as:
half-lives, nuclear level structure for parent and daughter nuclides,
type of decay, decay branching ratios, energy of decay process,
etc.

Radioactive Decay

23

Radioactive Decay Chain

24

Atomic Relaxation Model

24

25

● If a daughter of a nuclear decay is an isomer, prompt
de-excitation is done by using G4PhotonEvaporation

● Uses ENSDF files with all known gamma levels
(in total ~ 25'500 levels with half life > 10^-23 s)
for ~ 3'000 isotopes

– As of Geant4 10.5 , these are in PhotonEvaporation5.3
pointed by the enviromental variable G4LEVELGAMMADATA

● Internal conversion (i.e. nuclear de-excitation via emission of
atomic electrons) is enabled as a competing process to
gamma de-excitation

● Nuclides with half life < 1 ns (< 1 μs for biasing) are forced to
decay immediately (can be set via UI command “/grdm/hlThreshold”)

● Option to enable atomic relaxation after decay
● When Radioactive Decay is activated, Fluorescence and Auger

emissions are switched on by default (overriding any EM default
settings). User can use UI command to change this

Gamma (or Electron) Emission

26

● Several options available via UI commands :
● Enable/disable radioactive decay in various geometry volumes

"/grdm/selectVolume" , "/grdm/deselectVolume"
● Limits the nuclei in which radioactive decay can be applied

(useful to limit the decay chain, i.e. to avoid decays of daughters)
"/grdm/nucleusLimits"

● Supply a user-defined radioactive decay datafile for a given isotope
(useful, for instance, to amplify rare decay branches)
"/grdm/setRadioactiveDecayFile"

● Supply a user-defined evaporation datafile for a given isotope
"/grdm/setPhotoEvaporationFile"

● Switch on/off atomic relaxation
"/grdm/applyARM" (default: true)

Sampling Radioactive Decay :
Analogue mode (default)

27

● Several options available via UI commands:
● Set all decay branches equal

"/grdm/BRbias" default: true

● “Splitting” : perform nuclear decay N times for each event
"/grdm/splitNuclei" default: 1

● Activation : integrate decay chain over time windows (in seconds)
 "/grdm/decayBiasProfile" , "/grdm/sourceTimeProfile"
 using Bateman equations
 "/grdm/analogueMC false" (default: true)

● Collimation of decay products
"/grdm/decayDirection" , "/grdm/decayHalfAngle"

Sampling Radioactive Decay :
Biased mode (alternative)

28

● Set environmental variables to point to the data libraries:
● G4ENSDFSTATEDATA -> G4ENSDFSTATE2.2
● G4LEVELGAMMADATA -> PhotonEvaporation5.3
● G4RADIOACTIVEDATA -> RadioactiveDecay5.3

● Add the physics constructor G4RadioactiveDecayPhysics
to a reference physics list

● Or do something like this in your own physics list :
 G4RadioactiveDecay* rDecay = new G4RadioactiveDecay;
 G4PhysicsListHelper* plh = G4PhysicsListHelper::GetPhysicsListHelper();
 rDecay -> SetICM(true); // Internal conversion : obsolete, always true!
 rDecay -> SetARM(true); // Atomic relaxation
 plh -> RegisterProcess(rDecay, G4GenericIon::GenericIon());

● Many options can be set via UI commands

Using Radioactive Decay

29

● examples/extended/radioactivedecay
● rdecay01/

– Shows basic features of the radioactive decay of nuclei :
energy spectrum of emitted particles, time of life, activity

– Analogue mode only, with user-defined RadioactiveDecay
and PhotonEvaporation files

● rdecay02/

– Induced radioactivity by nuclear reactions
– Shows advanced features – e.g. selected decay channels,

time window, etc. – in both analogue and biasing mode
● Activation/

– Induced radioactivity by nuclear reactions
– Shows the evolution of each metastable isomer as a function of time,

taking into account the time of exposure of the beam;
analogue mode only

Examples of using RDM

30

 Biasing in Hadronic Physics

31

● Radioactive Decay
● Via UI commands (see before)

● Cross Sections
● Possibility to scale any hadronic cross section via the method

G4HadronicProcess::BiasCrossSectionByFactor(G4double aScale)

● No UI commands: need to write some code in the physics list, e.g.
theElectronNuclearProcess->BiasCrossSectionByFactor(1000.0);

● Leading Particle Biasing
● At each hadronic interaction, keep only the most energetic particle

(and randomly one particle of each species: meson, baryon, π˚, γ)
via the method:
G4HadFinalState* G4HadLeadBias::Bias(G4HadFinalState* result)

● No UI commands: need to modify the PostStepDoIt method of
hadronic processes (to which we want to apply this biasing) to
create an instance of the class G4HadLeadBias and call its
Bias method

Built-in Biasing in Hadronics

32

● Radioactive Decay ~ OK
● Via UI commands (see before)

● Cross Sections Need your own P.L.
● Possibility to scale any hadronic cross section via the method

G4HadronicProcess::BiasCrossSectionByFactor(G4double aScale)

● No UI commands: need to write some code in the physics list, e.g.
theElectronNuclearProcess->BiasCrossSectionByFactor(1000.0);

● Leading Particle Biasing Too invasive !
● At each hadronic interaction, keep only the most energetic particle

(and randomly one particle of each species: meson, baryon, π˚, γ)
via the method:
G4HadFinalState* G4HadLeadBias::Bias(G4HadFinalState* result)

● No UI commands: need to modify the PostStepDoIt method of
hadronic processes (to which we want to apply this biasing) to
create an instance of the class G4HadLeadBias and call its
Bias method

Built-in Biasing in Hadronics

33

● This is the new and recommended approach for biasing in
Geant4 – not only for hadronics !

● Allow to mix biasing options via “building blocks”
(instead of built-in functionalities)

● Examples available in:

examples/extended/biasing/

we discuss here the following two (relevant for hadronics):

1. GB01/ : cross-sections biasing (i.e. changing the natural xsec)

2. GB02/ : force-collision biasing (i.e. forcing an interaction in a volume)

Note: there is plenty of user code, but nearly all of it can be re-used:
 only a tiny part needs to be customized per use-case !

Note: at whatever level (stepping action, or sensitive detector)
 the statistical weight of a track can be obtained as:
 w = track->GetWeight()

Generic Bias for Hadronics

34

Cross-Section Generic Biasing (GB01)
#include "FTFP_BERT.hh"
#include "G4GenericBiasingPhysics.hh"
…
int main(…) {
 …
 FTFP_BERT* physicsList = new FTFP_BERT;
 G4GenericBiasingPhysics* biasingPhysics = new G4GenericBiasingPhysics;
 biasingPhysics->Bias("gamma");
 biasingPhysics->Bias("neutron");
 physicsList->RegisterPhysics(biasingPhysics);
 …
}

void GB01DetectorConstruction::ConstructSDandField() {
 …
 GB01BOptrMultiParticleChangeCrossSection* biasingOperator =
 new GB01BOptrMultiParticleChangeCrossSection;
 biasingOperator->AddParticle("gamma");
 biasingOperator->AddParticle("neutron");
 biasingOperator->AttachTo(logicVolumeToBias);
}

Enable biasing only for a
 subset of particle types

Possible to define xsec biasing
for sets of particle types in

 specified logical volumes

35

class GB01BOptrMultiParticleChangeCrossSection : public G4VBiasingOperator {
 public:
 …
 void AddParticle(G4String particleName);
 void StartTracking(const G4Track* track);
 private:
 virtual G4VBiasingOperation* ProposeOccurenceBiasingOperation(...);
 virtual void OperationApplied(...);
 …
 std::map<const G4ParticleDefinition*, GB01BOptrChangeCrossSection*> fBOptrForParticle;
 std::vector< const G4ParticleDefinition* > fParticlesToBias;
 GB01BOptrChangeCrossSection* fCurrentOperator;
 G4int fnInteractions;
};

void GB01BOptrMultiParticleChangeCrossSection::AddParticle(G4String particleName) {
 const G4ParticleDefinition* particle =
 G4ParticleTable::GetParticleTable()->FindParticle(particleName);
 ...
 GB01BOptrChangeCrossSection* optr =
 new GB01BOptrChangeCrossSection(particleName);
 fParticlesToBias.push_back(particle);
 fBOptrForParticle[particle] = optr;
}

void GB01BOptrMultiParticleChangeCrossSection::StartTracking(const G4Track* track)
 // Fetch the underneath biasing operator, if any, for the current particle type
 // and store it in fCurrentOperator
}

36

G4VBiasingOperation* GB01BOptrMultiParticleChangeCrossSection::
ProposeOccurenceBiasingOperation(const G4Track* track,
 const G4BiasingProcessInterface* callingProcess) {
 // Examples of limitations imposed to apply the biasing:
 if (track->GetParentID() != 0) return 0; // Limit application of biasing to primary particles only
 if (fnInteractions > 4) return 0; // Limit to at most 5 biased interactions
 if (track->GetWeight() < 0.05) return 0; // Limit to a weight of at least 0.05
 if (fCurrentOperator) return fCurrentOperator->
 GetProposedOccurenceBiasingOperation(track, callingProcess);
 else return 0;
}

void GB01BOptrMultiParticleChangeCrossSection::OperationApplied(...) {
 fnInteractions++; // Count number of biased interactions
 // Inform the underneath biasing operator that a biased interaction occured:
 if (fCurrentOperator) fCurrentOperator->ReportOperationApplied(...);
}

37

class GB01BOptrChangeCrossSection : public G4VBiasingOperator {
 public:
 GB01BOptrChangeCrossSection(G4String particleToBias, G4String name = "ChangeXS");
 …
 virtual void StartRun();
 private:
 virtual G4VBiasingOperation* ProposeOccurenceBiasingOperation(...);
 ...
 using G4VBiasingOperator::OperationApplied;
 virtual void OperationApplied(...);
 std::map< const G4BiasingProcessInterface*, G4BOptnChangeCrossSection* >
 fChangeCrossSectionOperations;
 const G4ParticleDefinition* fParticleToBias;
}

void GB01BOptrChangeCrossSection::StartRun() {
 const G4ProcessManager* processManager = fParticleToBias->GetProcessManager();
 const G4BiasingProcessSharedData* sharedData =
 G4BiasingProcessInterface::GetSharedData(processManager);
 for (size_t i = 0 ; i < (sharedData->GetPhysicsBiasingProcessInterfaces()).size(); i++) {
 const G4BiasingProcessInterface* wrapperProcess =
 (sharedData->GetPhysicsBiasingProcessInterfaces())[i];
 G4String operationName = "XSchange-" +
 wrapperProcess->GetWrappedProcess()->GetProcessName();
 fChangeCrossSectionOperations[wrapperProcess] =
 new G4BOptnChangeCrossSection(operationName);
 }
}

38

G4VBiasingOperation* GB01BOptrChangeCrossSection::
ProposeOccurenceBiasingOperation(...) {
 if (track->GetDefinition() != fParticleToBias) return 0;
 G4double analogInteractionLength =
 callingProcess->GetWrappedProcess()->GetCurrentInteractionLength();
 if (analogInteractionLength > DBL_MAX/10.0) return 0;
 G4double analogXS = 1.0/analogInteractionLength;
 G4BOptnChangeCrossSection* operation =
 fChangeCrossSectionOperations[callingProcess];
 ...
 operation->SetBiasedCrossSection(2.0 * analogXS); //<--- Scaling factor for the xsec !
 operation->Sample();
 …
 return operation;
}

void GB01BOptrChangeCrossSection::OperationApplied(...) {
 G4BOptnChangeCrossSection* operation =
 fChangeCrossSectionOperations[callingProcess];
 if (operation == occurenceOperationApplied) operation->SetInteractionOccured();
}

Alternatively, one could use different
xsec scaling factors according

 to the particle type and/or process type

39

Force-Collision Generic Biasing (GB02)

#include "FTFP_BERT.hh"
#include "G4GenericBiasingPhysics.hh"
…
int main(…) {
 …
 FTFP_BERT* physicsList = new FTFP_BERT;
 G4GenericBiasingPhysics* biasingPhysics = new G4GenericBiasingPhysics;
 biasingPhysics->Bias("gamma");
 biasingPhysics->Bias("neutron");
 physicsList->RegisterPhysics(biasingPhysics);
 …
}

void GB02DetectorConstruction::ConstructSDandField() {
 …
 GB02BOptrMultiParticleForceCollision* biasingOperator =
 new GB02BOptrMultiParticleForceCollision;
 biasingOperator->AddParticle("gamma");
 biasingOperator->AddParticle("neutron");
 biasingOperator->AttachTo(logicVolumeToBias);
}

Possible to define force collision
for sets of particle types in

 specified logical volumes

Enable biasing only for a
 subset of particle types

40

class GB02BOptrMultiParticleForceCollision : public G4VBiasingOperator {
 public:
 ...
 void AddParticle(G4String particleName); // Declare particles to be biased
 virtual void StartTracking(const G4Track* track);
 private:
 virtual G4VBiasingOperation* ProposeNonPhysicsBiasingOperation(...);
 virtual G4VBiasingOperation* ProposeOccurenceBiasingOperation(...);
 virtual G4VBiasingOperation* ProposeFinalStateBiasingOperation(...);
 void OperationApplied(...);
 void ExitBiasing(...);
 std::map< const G4ParticleDefinition*, G4BOptrForceCollision* > fBOptrForParticle;
 std::vector< const G4ParticleDefinition* > fParticlesToBias;
 G4BOptrForceCollision* fCurrentOperator;
};

void GB02BOptrMultiParticleForceCollision::AddParticle(G4String particleName) {
 const G4ParticleDefinition* particle =
 G4ParticleTable::GetParticleTable()->FindParticle(particleName);
 if (particle == 0) { … } // just warning exception and return
 G4BOptrForceCollision* optr =
 new G4BOptrForceCollision(particleName, "ForceCollisionFor" + particleName);
 fParticlesToBias.push_back(particle);
 fBOptrForParticle[particle] = optr;
}

41

G4VBiasingOperation* GB02BOptrMultiParticleForceCollision::
ProposeOccurenceBiasingOperation(...) {
 if (fCurrentOperator)
 return fCurrentOperator->GetProposedOccurenceBiasingOperation(track, callingProcess);
 else return 0;
}

G4VBiasingOperation* GB02BOptrMultiParticleForceCollision::
ProposeFinalStateBiasingOperation(...) {
 if (fCurrentOperator)
 return fCurrentOperator->GetProposedFinalStateBiasingOperation(track, callingProcess);
 else return 0;
}

void GB02BOptrMultiParticleForceCollision::StartTracking(const G4Track* track) {
 const G4ParticleDefinition* definition = track->GetParticleDefinition();
 std::map< const G4ParticleDefinition*, G4BOptrForceCollision* >:: iterator it =
 fBOptrForParticle.find(definition);
 fCurrentOperator = 0;
 if (it != fBOptrForParticle.end()) fCurrentOperator = (*it).second;
}

void GB02BOptrMultiParticleForceCollision::OperationApplied(...) {
 if (fCurrentOperator) fCurrentOperator->ReportOperationApplied(...);
}

void GB02BOptrMultiParticleForceCollision::OperationApplied(...) {
 if (fCurrentOperator) fCurrentOperator->ReportOperationApplied(...);
}

void GB02BOptrMultiParticleForceCollision::ExitBiasing(...) {
 if (fCurrentOperator) fCurrentOperator->ExitingBiasing(track, callingProcess);
}

Possible to impose here some limitations on when to apply biasing,
e.g. only for a certain process type

42

Exercises

43

● Consider the example:
● examples/basic/B4/B4a

● Enlarge the calorimeter (from a typical EM to a typical HAD)

● In the method B4DetectorConstruction::DefineVolumes
increase both nofLayers and calorSizeXY by a factor of 10

● Observe how the execution time changes
● Consider a pi− beam of 10 GeV energy
● With FTFP_BERT physics list
● With FTFP_BERT_HP physics list
● With FTFP_BERT_HP + thermal scattering physics list
● With FTFP_BERT_HP + thermal scattering physics list and

replacing the active material liquidArgon with e.g. G4_WATER

Exercise 1 : NeutronHP

44

● Consider the example:
● examples/extended/radioactivedecay/rdecay01/

● Study the decays of As74
● which has a rather complicated decay scheme in β-, β+ and EC

in both analogue and bias modes
● You can limit the decay chain, i.e. to avoid to decay its daughters

as follows:
 /grdm/nucleusLimits 74 74 33 33

Exercise 2 : Radioactive Decay

45

● Consider the example:
● examples/extended/biasing/GB01

● Run the example (using for instance as input exampleGB01.in)
and compare the following 4 modes:

1. As it is, with biased cross sections for all gamma and neutron
 processes

2. Bias x 100 the cross sections for all gamma processes,
 and x 200 the cross sections for all neutron processes

– Look at the method ProposeOccurenceBiasingOperation ...

3. Keeping biased cross sections only for gamma, but not for neutron

– Simple: it is enough to comment out one line...

4. Bias the cross section only for the “photonNuclear” gamma
 process

– Check the name of the wrapped process:
 callingProcess->GetWrappedProcess()->GetProcessName()

Exercise 3 : Generic Biasing (1/2)

46

● Consider the example:
● examples/extended/biasing/GB02

● Run the example (using for instance as input exampleGB02.in)
and compare the following 4 modes:

1. As it is, with forced interaction for all gamma and neutron
 processes

2. Apply biasing only for the “photonNuclear” gamma process

– Check the name of the wrapped process:
 callingProcess->GetWrappedProcess()->GetProcessName()

After disabling the forced interaction (for any particle)

– Simple: it is enough to comment out one line...

3. With natural cross sections

4. With x 100 bias of the cross section of the “photonNuclear”
 gamma process, for gamma of energy > 50 MeV

– Difficult: copy 2 classes from GB01... and then use one of these in:
 GB020DetectorConstruction::ConstructSDandField

Exercise 3 : Generic Biasing (2/2)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

