The development and application of digital BPM signal processors at SSRF

Longwei Lai*, Yongbin Leng, Yingbin Yan

lailongwei@sinap.ac.cn

BI, SSRF

Outline

- Introduction
- Applications on SSRF
- Applications on FEL
- New processors for SHINE

SSRF introduction

- SSRF synchrotron radiation facility @ phase II
- soft x-ray FEL @ user facility
- hard x-ray FEL: SHINE @ tunnel construction

BPM Signal Processor Milestones

MMM Project Start

2010.12 Principle Prototype: RF front-end and Digital Signal Processing

- Lai Longwei, Leng Yongbin*, Yi Xing, et al. DBPM signal processing with field programmable gate arrays[J], NST 22(2011), 129-133.
- Yi Xing, Leng Yongbin*, Lai Longwei, et al. RF front-end for digital beam position monitor signal processor[J], NST 22(2011), 65-69.
- 赖龙伟,冷用斌*,阎映炳,杨桂森等,数字BPM信号处理算法研究,核技术,2010年,第33卷第10期,734-739

• 2011.6 Version-I and Beam Tests

- 易星,冷用斌*,赖龙伟等.基于软件无线电的新型数字束流位置处理器[J],核技术,2012年,第35卷第5期
- X. D. Sun, Y. B. Leng*, An DBPM Calibration Method Implemented on FPGA, IBIC 2012, Tsukuba, Japan
- Leng Yongbin, Yi Xin, Lai Longwei, et al. Online Evaluation of New DBPM Processor at SINAP[C]// Prof of ICALEPCS2011,
- 冷用斌,易星,赖龙伟等.新型数字BPM信号处理器研制进展[J],核技术,2011年,第33卷第5期,326-330
- X.D. Sun, Y.B. Leng. Implementation and integration of a systematic DBPM calibration [J], NST 25(2014), 020401-1-6.
- X.D. Sun, Y.B. Leng. MATLAB Simulation of DBPM Digital Down Conversion [J] AMM, 333(2013), 680-683.
- 赖龙伟,冷用斌,易星等.数字束流位置信号处理算法优化[J],强激光与粒子束,2013年,第25卷第1期,109-113
- 2014.6 Small amount(5) tests
- 2015.6 Optimization, Intelligent Trigger Application Development
- ・ L.W. Lai, Y.B. Leng, AN INTELLIGIENT TRIGGER ABNORMAL BEAM OPERATION MONITORING PROCESSOR AT THE SSRF, IPAC2015
- 赖龙伟,冷用斌等.数字BPM信号处理器研制进展[J],原子能科学技术,2015

• 2016.6 Version-II, Volume Application on SXFEL, DCLS and Sirius LINAC

- L.W. Lai, Y.B. Leng, BATCH APPLICATIONS OF DIGITAL BPM PROCESSORS FROM THE SINAP, IBIC2016
- L.W. Lai, Y.B. Leng, DESIGN AND PERFORMANCE OF DIGITAL BPM PROCESSOR FOR DCLS AND SXFEL, IPAC2017
- 2017.12 Firmware and software upgrade for SXFEL
- L.W.Lai, , et.al, UPGRADE OF DIGITAL BPM PROCESSOR AT DCLS AND SXFEL, IPAC2018
- 2017 Ideas on direct RF sampling BPM processor for C band cavity BPM
- L.W.Lai, et.al, THE APPLICATION OF DIRECT RF SAMPLING SYSTEM ON CAVITY BPM SIGNAL PROCESSING, IBIC2017
- 2018.1 Firmware and software upgrade for SSRF
- L.W.Lai, et.al, THE DEVELOPMENT AND APPLICATIONS OF THE DIGITAL BPM SIGNAL PROCESSOR AT SINAP, FLS2018
- L.W.Lai, et.al, THE DEVELOPMENT AND APPLICATIONS OF DIGITAL BPM SIGNAL PROCESSOR ON SSRF, IBIC2018
- 2019.4 10 units on-line operation on SSRF
- 2019 Start new processor design for SHINE

Processor Overview

Applications on SSRF

Applications on SSRF

Small amount of processors are installed on SSRF:

- LINAC 1/3
- LTB 1/3
- Booster 3/30
- BTS **4**/5
- Storage ring 1/140

More will be installed gradually...

Version-I DBPM Beam Tests on SR@2012

Version-II DBPM Beam Tests on SR@Jan. 2018 200 Power DBPM Pickup divider Amplitude /dB 100 **RF** signal 50 50 10 20 30 40 Frequency /MHz 30 600 40 total number=235 total number=16384 total number=1171 FA10kHz RMS=0.09µm TBT RMS=0.34µm FA50kHz RMS=0.15µm 30 400

K=10mm, Turn-by-turn resolution:0.34µm

Mentrol panel and data

Turn-by-turn data during injection

SSRF Beam Test—Check With Brilliance

BPM pickup sum signal is divided into 8 channels and put into DBPM and Brilliance, similar to beam passing through BPM center. The output position value should be stable.

The DBPM output is drifting when beam current decays from 260mA to 200mA. Brilliance output is stable when crossbars are switched off.

The main reason is the inconsistency between the four channels.

Fit polynomial to data. P = POLYFIT(X,Y,N), N=3 X: SA channel read out Y: current, mA Y=P(1)*X^3 + P(2)*X^2+P(3)*X + P(4)

SSRF Beam Test—Correction

X fits well after correction.

Y not very good.

Correction effect is obvious during injection.

Beam test on booster

Streaming data or capture data for:

- ADC raw data
- turn-by-turn data
- 7.9kHz data(TBT/210), cover ramping period within 2000 points

Bunch Charge Monitor 4 ADCs on wideband RF board make bunch-by-bunch charge measurement with interleaved sampling. Optimization is ongoing.

Interleaved Sampling

Applications on FEL/LINAC

Stripline BPM Processor Cavity BPM Processor BAM processor

DCLS

Sirius LINAC

Mass Application on SXFEL/DCLS

MMMMMM SBPM Evaluation

Vertical displacement is getting larger along the beam direction.

Charge measurement accuracy is getting worse when the beam moving from center.

Phase calibration tests.

Longwei Lai, BI, SSRF

K calibration tests.

Processor for SHINE

Cold button BPM processor Stripline BPM processor Cavity BPM processor

.....

Processor Overview

- standalone structure based on Xilinx SOC
- common platform for beam signal processing...
- FMC ADC and timing mezzanine cards
- IF sampling / RF sampling ADC card, 1MHz repetition rate

Hardware

- Refer to the design of Xilinx ZCU102 evaluation board
- Zynq Ultrascale SOC FPGA ZU19EG
- ≥500MSPS, ≥14bits IF sampling processor(AC&DC), also can be used as BxB processor on synchrotron facility
- RF direct sampling technique (bandwidth >5GHz) is also studied for C band cavity BPM signal processor, ≥14bits
 High IF Superheterodyne Receiver to a Direct RF-Sampling Receiver

FPGA

Table 1: Virtex-5 FPGA Family Members

	Configurable Logic Blocks (CLBs)				Block RAM Blocks				PowerPC	Endpoint		Max RocketlO		Total	Max
Device	Array (Row x Col)	Virtex-5 Slices ⁽¹⁾	Max Distributed RAM (Kb)	DSP48E Slices ⁽²⁾	18 Kb ⁽³⁾	36 Kb	Max (Kb)	CMTs ⁽⁴⁾	Processor Blocks	Blocks for PCI Express	Ethernet MACs ⁽⁵⁾	GTP	GTX	I/O Banks ⁽⁸⁾	User I/O ⁽⁷⁾
XC5VSX50T	120 x 34	8,160	780	288	264	132	4,752	6	N/A	1	4	12	N/A	15	480
XC5VSX95T	160 x 46	14,720	1,520	640	488	244	8,784	6	N/A	1	4	16	N/A	19	640

Zynq UltraScale+ MPSoC: EG Device Feature Summary

Table 13: Zynq UltraScale+ MPSoC: EG Device Feature Summary

	ZU2EG	ZU3EG	ZU4EG	ZU5EG	ZU6EG	ZU7EG	ZU9EG	ZU11EG	ZU15EG	ZU17EG	ZU19EG
Application Processing Unit	Quad-core Arm Cortex-A53 MPCore with CoreSight; NEON & Single/Double Precision Floating Point; 32KB/32KB L1 Cache, 1N									Cache, 1MB	2 Cache
Real-Time Processing Unit	Dual-core Arm Cortex-R5 with CoreSight; Single/Double Precision Floating Point; 32KB/32KB L1 Cache, and TCM										
Embedded and External Memory	256KB On-Chip Memory w/ECC; External DDR4; DDR3; DDR3L; LPDDR4; LPDDR3; External Quad-SPI; NAND; eMMC										
General Connectivity	214 PS I/O; UART; CAN; USB 2.0; I2C; SPI; 32b GPIO; Real Time Clock; WatchDog Timers; Triple Timer Counters										
High-Speed Connectivity	4 PS-GTR; PCIe Gen1/2; Serial ATA 3.1; DisplayPort 1.2a; USB 3.0; SGMII										
Graphic Processing Unit	Arm Mali-400 MP2; 64KB L2 Cache										
System Logic Cells	103,320	154,350	192,150	256,200	469,446	504,000	599,550	653,100	746,550	926,194	1,143,450
CLB Flip-Flops	94,464	141,120	175,680	234,240	429,208	460,800	548,160	597,120	682,560	846,806	1,045,440
CLB LUTs	47,232	70,560	87,840	117,120	214,604	230,400	274,080	298,560	341,280	423,403	522,720
Distributed RAM (Mb)	1.2	1.8	2.6	3.5	6.9	6.2	8.8	9.1	11.3	8.0	9.8
Block RAM Blocks	150	216	128	144	714	312	912	600	744	796	984
Block RAM (Mb)	5.3	7.6	4.5	5.1	25.1	11.0	32.1	21.1	26.2	28.0	34.6
UltraRAM Blocks	0	0	48	64	0	96	0	80	112	102	128
UltraRAM (Mb)	0	0	13.5	18.0	0	27.0	0	22.5	31.5	28.7	36.0
DSP Slices	240	360	728	1,248	1,973	1,728	2,520	2,928	3,528	1,590	1,968
CMTs	3	3	4	4	4	8	4	8	4	11	11
Max. HP I/O ⁽¹⁾	156	156	156	156	208	416	208	416	208	572	572
Max. HD I/O ⁽²⁾	96	96	96	96	120	48	120	96	120	96	96
System Monitor	2	2	2	2	2	2	2	2	2	2	2
GTH Transceiver 16.3Gb/s ⁽³⁾	0	0	16	16	24	24	24	32	24	44	44
GTY Transceivers 32.75Gb/s	0	0	0	0	0	0	0	16	0	28	28
Transceiver Fractional PLLs	0	0	8	8	12	12	12	24	12	36	36
PCIe Gen3 x16	0	0	2	2	0	2	0	4	0	4	5
150G Interlaken	0	0	0	0	0	0	0	1	0	2	4
100G Ethernet w/ RS-FEC	0	0	0	0	0	0	0	2	0	2	4

ZU19EG VS. XC5VSX50T

- \geq 16 times LUTs
- 6.8 times DSP

•

- 7.28 times block RAM
- **1.4** times user I/O
- Quad-core Arm

Notes:

1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.

2. HD = High-density I/O with support for I/O voltage from 1.2V to 3.3V.

3. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s. See Table 14.

Mession overview

AD) Interf	C ace	Signa I (algor	ll Proces Module ithm co	ssing nfig.)		Da C M	ta Flow ontrol anager		Timing Interface	2
Cloo Conf	Clock Config.		1A	Tri	gger nfig.		System Monitor		Interlock Module	
SFI Interf	o ace	SDRAM Interface		(de cor me cor	elay ntrol, ode nfig.	Register Control Manager		r	User IO & LED	
PL PL PL										
АРР	SD	QSPI UAR		ETł	4	USB	HDMI	Driver	OS	PS

Facility	Number
Brazil Sirius LINAC	2+
DCLS	19+
SXFEL test facility	60
SXFEL user facility	50
SSRF	10+
SHINE	300+

Thanks for your attention