

ALBA optical fiber BLMs

Angel Olmos (on behalf of the ALBA and ICCUB/SiUB teams)

DEELS19, ESRF - Grenoble

MOTIVATION

- We suspected to have a Physical Aperture problem in our MPW chamber
- Vertical bumps seem to point out towards a chamber misalignment
- In order to diagnose, many Bergoz BLMs were placed on the chamber (top/bottom)
- Results were contradictory and so we decided to look for other methods
- Development of a BLM based on optical fibers, which will provide integrated losses all along the chamber and possibilities of losses location

PARTS OF THE SYSTEM

- Beam lost monitor system based on scintillating optical fibers + SiPM detectors
- Possibility to identify the place of the losses
- Preliminary tests of remote control done using a skippy-TANGO interface

PARTS OF THE SYSTEM

- MUSIC board developed by ICCUB/SiUB team
- It takes care of the SiPM reading + digitalization
- Provides analog/digital signals to scope (debugging) and data to Raspberry PI

LAB TESTS

Losses location / Delay Distribution

Delay time between the signals from the SiPM at both ends of the fiber, processed with MUSIC ASIC and recorded with Scope.

LAB TESTS

Losses location / Delay Distribution

Histogram summation for all the delay times from the different positions

Enough resolution to distinguish two losses with 20cm of separation in a 2m optical fiber

TESTS WITH BEAM Setup

Scope Mode

- Debug mode not intended for normal operation, just for calibration
- Example of turn by turn losses during a TopUp injection cycle

Calibration

SiPM response calibration with beam turned to be too complicated

Counting Mode

Example: Losses during normal Beamlines operation

Counting Mode

Example: Beam lost and reinjection

Counting Mode

Example: Acquired losses during a beam scraping

From 29-Nov-2018 23:00:02 until 30-Nov-2018 06:33:44

Counting Mode

Example: Single Bunch operation

TESTS WITH BEAM Losses Location Mode

Not yet done !!!

Too different channels counts even after calibration

Sudden counts increase w/o correlation to other machine parameters

Counts fluctuation with time

Counts fluctuation with time

120 storage ring Bergoz BLMs

								chine 5), other	From 2	io May	2010 0	0.20.01	until 2	1 110,	2010 0	7.67.60							
																								_
																								_
)	12:00	15:00	18:00	21:00	00:00	03:00	06:00	09:00	12:00	15:00	18:00	21:00	00:00	03:00	06:00	09:00	12:00	15:00	18:00	21:00	00:00	03:00	06:00	09:00
	_			_							3	งปลง	15											

Counts fluctuation with time

Comparison wrt Bergoz BLM with higher counts

Counts fluctuation with time

Comparison wrt Injection Bump

Spurious counts / glitches

Spurious counts / glitches

Comparison wrt closest Bergoz BLM

SUMMARY

- Preliminary results show that it should work as an standard BLM
- Extra feature of losses location to be tested
- Problems with RaspberryPI hanging → Replaced by NUC-PC seems to work ... but it is Windows
- Too different channels counts even after calibration
- Extremely sensible to fibers placing on the SiPM → company needed to perform proper connectorized setup
- Sudden counts increase w/o correlation to other machine parameters
- TANGO Device Server not yet fully operational

Many thanks for you attention!!

EXTRA SLIDES

SiPM Hamamatsu

S13360-3050CS

MPPC for precision measurement, Photosensitive area: 3.0 x 3.0 mm, Pixel pitch: 50 µm

The S13360 series is an MPPC (SiPM) for precision measurement. It inherits the superb low afterpulse characteristics of its predecessor and further provides lower crosstalk and lower dark count. They are suitable for precision measurement, such as flow cytometry, DNA sequencer, laser microscope, and fluorescence measurement, that requires low noise characteristics.

Features

-Reduced crosstalk and dark count (compared to previous products) -Outstanding photon counting capability (outstanding photon detection effeciency against incident photons) -Compact -Operates at room temperature -Low voltage operation -High gain -Excellent time resolution -Immune to the effects of magnetic fields -Operates with simple readout circuits

Standard grades and properties

Scintillating fibers¹

SCSF-78	Blue		450	2.8	>4.0	High luminescence High attenuation length		
SCSF-81	Blue	Refer to catalogue	437	2.4	>3.5	High attenuation length		
SCSF-3HF (1500)	Green		530	7	>4.5	Radiation resistance		

1. Tested using non-S type, 1 mmφ.

2. Measured using bialkali PMT and UV light (254 nm).

Transmission Loss

SCSF-78 / SCSF-81 / SCSF-3HF(1500)

Fiber Kuraray SCSF-78

1mm diameter

Technical Data

Emission Spectra

SCSF-78

SCSF-78

From 28-May-2019 09:21:05 until 31-May-2019 07:57:29