

The European Synchrotron

BPM blocks offset calibration using Lamberson method

Benoît Roche, ESRF June 4th, 2019

Outline

Intro

Setup and measurements

From measurements to sensitivities

BPM block offsets

Source of errors On the method itself Impedance mismatch issue Other effects

Conclusion

Page 1 | DEELS2019 - BPM blocks offset calibration using Lamberson method

- V_i is the voltage at the button
- g_i is the gain (or sensitivity) associated with the button
- *G_{ij}* is the capacity coupling coefficient

Reference:

 Calibration of position electrodes using external measurements GR Lambertson - LSAP Note-5, Lawrence Berkeley Laboratory, 1987

An home-made measurement setup:

- Stand-alone setup on a trolley (to go inside the tunnel).
- Automatically switches RF source on all 4 buttons.
- Measures the 3 others.

Measurement of all BPM blocks (c.f. DEELS2018 presentation Link)

Page 4 | DEELS2019 - BPM blocks offset calibration using Lamberson method

Measurements and analysis

Up to now we have performed 1416 measurements (some were performed multiple times to test reproducibility).

Each measurement is associated with multiple parameters:

- Bench used
- Inter-connection cables present or not
- Length of inter-connection cables (short of long)
- BPM position in the cell
- BPM geometry (big or small)
- Chamber number
- Chamber ID

Measurements and analysis

A powerful tool for data analysis was necessary: Python + Pandas + Jupyter was a perfect solution!

	ab	oh h	ob Id	datatima		-	honeh	ham	hom coll	hom and	ophic length			
	cn	cn_b	cn_ia	datetime	meas	meas_on	bench	opm	opm_ceii	bpm_geo	cable_length	U		
199	11	1	SR0112	2018-01-25 11:26:59	[[-0.6171674472892974, 0.1452740323208026, 0.1	chamber	aloha	7	6	b	1	-0.000513	0.186444	0.1593
00	11	1	SR0112	2018-01-25 11:27:08	[[-0.6181674472892951, 0.14127403232080127, 0	chamber	aloha	7	6	b	I	-0.005769	0.187198	0.159
1	11	2	SR0112	2018-01-25 11:35:42	[[-0.7381674472892925, -0.16972596767919867,	chamber	aloha	8	6	b	1	-0.158011	-0.023585	-0.131
202	11	2	SR0112	2018-01-25 11:35:50	[-0.7351674472892924, -0.17172596767919757,	chamber	aloha	8	6	b	1	-0.156344	-0.029674	-0.1274
02	11	1	SR0112	2018-03-06 16:02:30	[-0.7026079267037701, 0.11826369093466127, 0	girder	aloha	7	6	b	1	-0.042220	0.126583	0.0514
3	11	1	SR0112	2018-03-06 16:02:37	[[-0.7036079267037749, 0.1342636909346595, 0.0	girder	aloha	7	6	b	1	-0.040112	0.129453	0.0519
94	11	2	SR0112	2018-03-06 16:04:43	[[-0.6856079267037742, -0.3627363090653404, -0	girder	aloha	8	6	b	1	-0.283932	-0.036198	-0.2321
305	11	2	SR0112	2018-03-06 16:04:49	[[-0.6836079267037718, -0.37973630906533984,	girder	aloha	8	6	b	1	-0.283603	-0.045101	-0.2160
241	11	1	SR0112	2019-04-17 09:40:41	[[0.07867359249451056, 0.2170397704654583, 0.2	tunnel	bonsai	7	6	b	1	0.054158	0.174700	0.183
242	11	2	SR0112	2019-04-17 09:47:58	[[-0.00016820501434722246, -0.1525316524165028	tunnel	bonsai	8	6	b	1	-0.144123	0.007876	-0.054
250	11	1	SR0112	2019-04-17	[-0.13131922131125862,	tunnel	bonsai	7	6	b	1	0.040884	0.196691	0.1984

Figure: A screenshot of the Jupyter notebook for data analysis

Page 6 | DEELS2019 - BPM blocks offset calibration using Lamberson method

Outline

Intro

Setup and measurements

From measurements to sensitivities

BPM block offsets

Source of errors On the method itself Impedance mismatch issue Other effects

Conclusion

Averages over many measurements ("big" geometry):

- row i: button i is used as emitter.
- Diagonal elements m_{ii} are proportional to RF generator's output power.
- This matrix should be symmetrical (theory), but is not despite calibration.
- Spark noise floor is $\approx 105\,dBm.$ Some measurements are only $11\,dB$ above noise floor.

Our implementation of the Lambertson method: Normalise with RF generator's output power (to compensate for drifts):

 $m_{ij} \leftarrow m_{ij} - m_{ii}$

Then remove the average for each element m_{ij} :

$$m_{ij} \leftarrow m_{ij} - \langle m_{ij} \rangle$$

and compute buttons' sensitivity:

We get one value g_i for each button (what I call "sensitivity" of the button). The g's are such that $m_{ij} = g_i g_j$.

Combining all measurements, we get this graph:

Are we sure the dispersion of the results comes from BPM blocks, and not the measurement setup?

Page 10 | DEELS2019 - BPM blocks offset calibration using Lamberson method

Using measured sensitivities, we were able to find "black sheep" among BPM blocks. For instance, this BPM block with a retracted button:

Page 11 | DEELS2019 - BPM blocks offset calibration using Lamberson method

Sensitivities

Chamber #1 and #14 are very similar (from a mechanical point of view), but they are made by two different manufacturers.

Page 12 | DEELS2019 - BPM blocks offset calibration using Lamberson method

Sensitivities

Combining the results from the 2 different measurement campains $(\neq \text{ benches}, \neq \text{ bench operator}, \neq \text{ chamber configuration: naked chamber vs. chamber in the tunnel with interconnection cables}):$

One point on this graph is one button

 \rightarrow clear correlation between the two measurements

Outline

Intro

Setup and measurements

From measurements to sensitivities

BPM block offsets

Source of errors On the method itself Impedance mismatch issue Other effects

Conclusion

Page 14 | DEELS2019 - BPM blocks offset calibration using Lamberson method

From the g's, we can calculate the offset for a centred beam:

$$\begin{aligned} X_{\text{offset}} &= k_X \frac{g_A - g_B - g_C + g_D}{g_A + g_B + g_C + g_D} \\ Y_{\text{offset}} &= \dots \\ Q_{\text{offset}} &= \dots \end{aligned}$$

Page 15 | DEELS2019 - BPM blocks offset calibration using Lamberson method

Taking independently data from two measurement campaigns, we get the same histogram:

 $\sigma_{
m chamber} = 48.3\,\mu{
m m}$ $\sigma_{
m tunnel} = 49.1\,\mu{
m m}$

But are individual values the same?

Page 16 | DEELS2019 - BPM blocks offset calibration using Lamberson method

Now, using one measurement campaign to correct the offset measured during the second campaign:

$$\sigma_{X,\mathrm{un-corr}} = 45.9\,\mu\mathrm{m}$$

 $\sigma_{X,\mathrm{corr}} = 13.5\,\mu\mathrm{m}$

We are able to reduce BPM horizontal offset by a factor 3.4.

Page 17 | DEELS2019 - BPM blocks offset calibration using Lamberson method

Sensitivities

Vertical plane:

Correction in the vertical plan is not as good as in the horizontal plane. Reason?

Page 18 | DEELS2019 - BPM blocks offset calibration using Lamberson method

Outline

Intro

Setup and measurements

From measurements to sensitivities

BPM block offsets

Source of errors

On the method itself Impedance mismatch issue Other effects

Conclusion

On the method itself

My personal questioning:

Are sensitivities the same in these two different situations?

 Subtracting the mean value for every measured value hides a possible systematic offset.

Impedance mismatch issue

If we focus on one measurement channel:

 Reflexion at Spark input was measured to be in the range [-18 dB , -22 dB].

Due to imperfect impedance matching at both ends, the transmission from buttons to the Spark depends on cable lengths.

Page 21 | DEELS2019 - BPM blocks offset calibration using Lamberson method

Impedance mismatch issue

Calculation with:

- Spark $|S_{11}| = -20 \, dB$
- attenuation in the switch box: -6 dB

Transmission vary significantly with cable lengths!

Possible solutions to this problem:

- Add attenuation in the switch box
 - \rightarrow difficult: already at the detection limit of the Spark. and RF source at max power
- Always perform measurements with same Spark and cables. → this is what we did.
- Circulators?

We can think of other sources of errors:

- Inter-connection cables are not perfectly of the same length.
- Temperature drifts of equipments.
- Measurement can depends on exact bending of cables → this effect is unfortunately not negligible.

Outline

Intro

Setup and measurements

From measurements to sensitivities

BPM block offsets

Source of errors On the method itself Impedance mismatch issue Other effects

Conclusion

Page 25 | DEELS2019 - BPM blocks offset calibration using Lamberson method

Conclusion

- Lamberston method requires a carefuly designed setup (weak signals + impedance mismatch).
- It was successful in finding retracted buttons.
- We found a good agreement between different measurement campaigns.
- We intend to use the calculated offsets for the first turns (until beam-based aligment).

But:

- Our implementation of the method does not address systematic errors (e.g. all buttons A with reduced sensitivity).
- Impedance mismatch can also produce strong offsets in a regular BPM measurement (talk for DEELS2020?).

Diagnostics group technicians (benches fabrication + measurement campaigns):

- Fouhed Taoutaou
- Nicolas Benoist
- Franck Uberto

Thanks also to Andriy Nosych for fruitful discussions.

