

# VNA measurements of 6mm buttons in button block

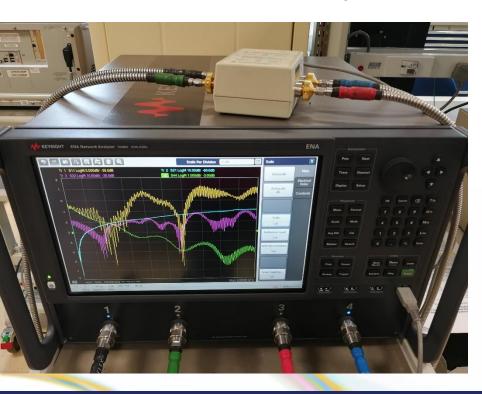
Guenther Rehm

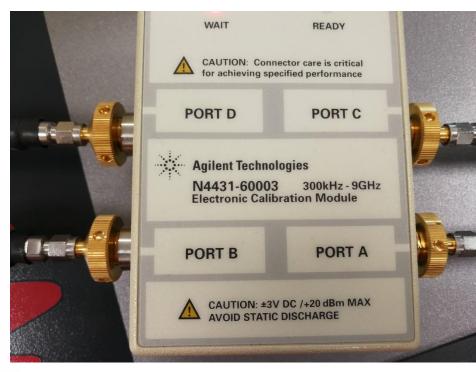


### Outline

- Motivation
- Measurements
- Some initial statistics
- Conclusions



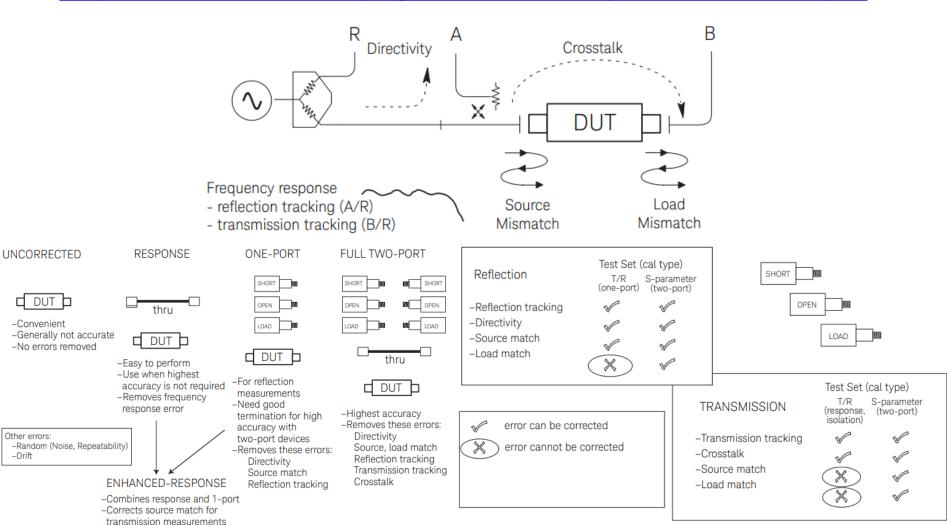

#### Motivation


- Determine electrical centre of button block
- Goal is to use Lambertson method
- Choose classic tool: Vector Network Analyser
- How well can S params be measured @ -80dB?
  - Statistical errors
  - Systematic errors
  - Reproducibility
- Value of 'full S-parameter calibration'



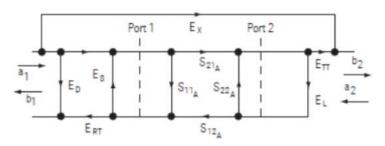
# **Equipment and Settings**

- Keysight E5080A 9kHz-9GHz 4-port VNA
  - Sweep 100kHz-9GHz
  - Power +15dBm
- N4431-60003 4 port electronic calibration unit









### Calibration

Applying Error Correction to VNA Measurements
 http://literature.cdn.keysight.com/litweb/pdf/5965-7709E.pdf



### 12-term Calibration

#### Forward model



E = Fwd Directivity

E, = Fwd Load Match

E = Fwd Source Match

E = Fwd Transmission Tracking

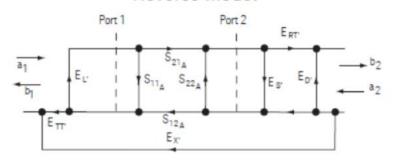
E pt = Fwd Reflection Tracking

E<sub>v</sub> = Fwd Isolation

E p = Rev Directivity

E , . = Rev Load Match

E . = Rev Source Match


E TT = Rev Transmission Tracking

E pt = Rev Reflection Tracking

E X' = Rev Isolation

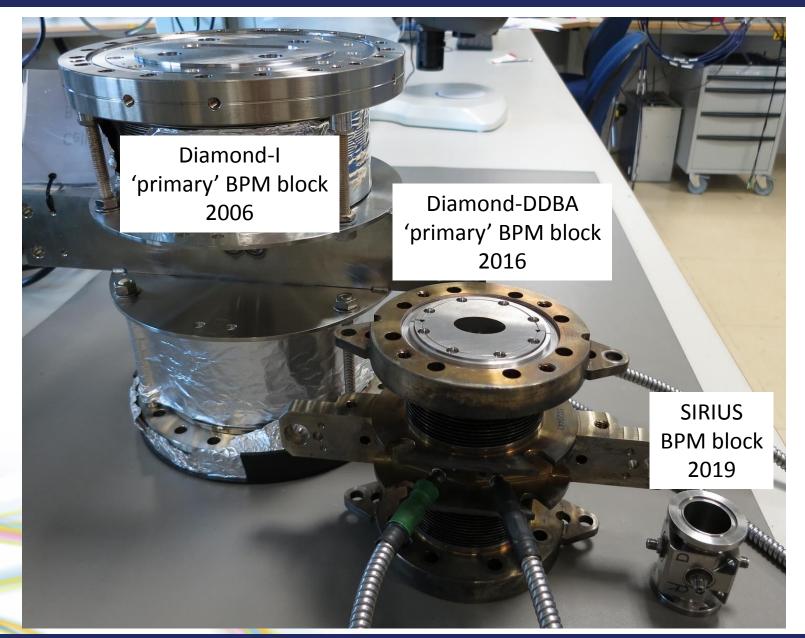
- Notice that each actual S-parameter is a function of all four measured S-parameters
- Analyzer must make forward and reverse sweep to update any one S-parameter

#### Reverse model



$$S_{11a} = \frac{(\frac{S_{11m} - E_{D}}{E_{RT}})(1 + \frac{S_{22m} - E_{D}}{E_{RT}} E_{S}') - E_{L}(\frac{S_{21m} - E_{X}}{E_{TT}})(\frac{S_{12m} - E_{X}'}{E_{TT}})}{(1 + \frac{S_{11m} - E_{D}}{E_{RT}} E_{S})(1 + \frac{S_{22m} - E_{D}'}{E_{RT}} E_{S}') - E_{L}'E_{L}(\frac{S_{21m} - E_{X}}{E_{TT}})(\frac{S_{12m} - E_{X}'}{E_{TT}})}$$

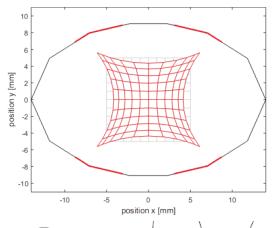
$$S_{21a} = \frac{(\frac{S_{21m} - E_{X}}{E_{TT}})(1 + \frac{S_{22m} - E_{D}'}{E_{RT}} (E_{S}' - E_{L}))}{(1 + \frac{S_{11m} - E_{D}}{E_{RT}} E_{S})(1 + \frac{S_{22m} - E_{D}'}{E_{RT}} (E_{S}') - E_{L}'E_{L}(\frac{S_{21m} - E_{X}}{E_{TT}})(\frac{S_{12m} - E_{X}'}{E_{TT}})}{(1 + \frac{S_{11m} - E_{D}}{E_{RT}} (E_{S} - E_{L}'))}$$

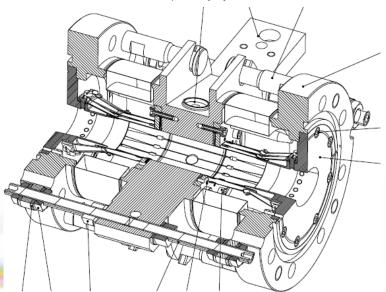

$$S_{12a} = \frac{(\frac{S_{12m} - E_{X}}{E_{TT}})(1 + \frac{S_{11m} - E_{D}}{E_{RT}} (E_{S} - E_{L}'))}{(1 + \frac{S_{11m} - E_{D}}{E_{RT}} E_{S})(1 + \frac{S_{22m} - E_{D}'}{E_{RT}} E_{S}') - E_{L}'E_{L}(\frac{S_{21m} - E_{X}}{E_{TT}})(\frac{S_{12m} - E_{X}'}{E_{TT}})}{(1 + \frac{S_{11m} - E_{D}}{E_{RT}} E_{S}') - E_{L}'E_{L}(\frac{S_{21m} - E_{X}}{E_{TT}})(\frac{S_{12m} - E_{X}'}{E_{TT}})}$$

$$S_{22a} = \frac{(\frac{S_{22m} - E_{D}'}{E_{RT}})(1 + \frac{S_{11m} - E_{D}}{E_{RT}} E_{S}') - E_{L}'E_{L}(\frac{S_{21m} - E_{X}}{E_{TT}})(\frac{S_{12m} - E_{X}'}{E_{TT}})}{(1 + \frac{S_{11m} - E_{D}}{E_{RT}} E_{S}') - E_{L}'E_{L}(\frac{S_{21m} - E_{X}}{E_{TT}})(\frac{S_{12m} - E_{X}'}{E_{TT}})}}{(1 + \frac{S_{11m} - E_{D}}{E_{RT}} E_{S}') - E_{L}'E_{L}(\frac{S_{21m} - E_{X}}{E_{TT}})(\frac{S_{12m} - E_{X}'}{E_{TT}})}$$

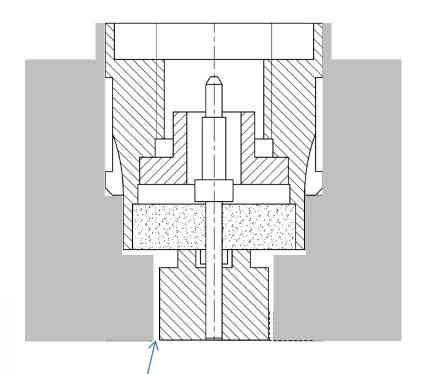
This is just for two ports, with four ports this get even more complicated!




### Generations of Button Blocks





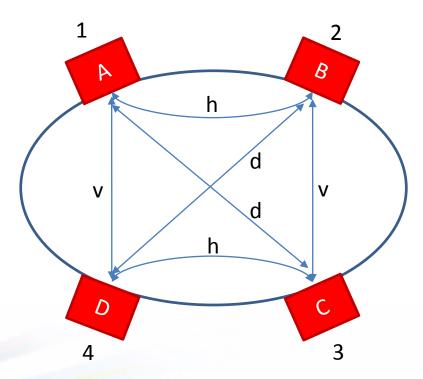


### **DDBA Button Block**

#### 26mm wide, 18mm high





DDBA button is equivalent to ESRF-EBS 6mm button (but with Moly button not 316LN)




0.3mm gap between button and hole

Drawing courtesy FMB Berlin



### Lambertson in 1 minute



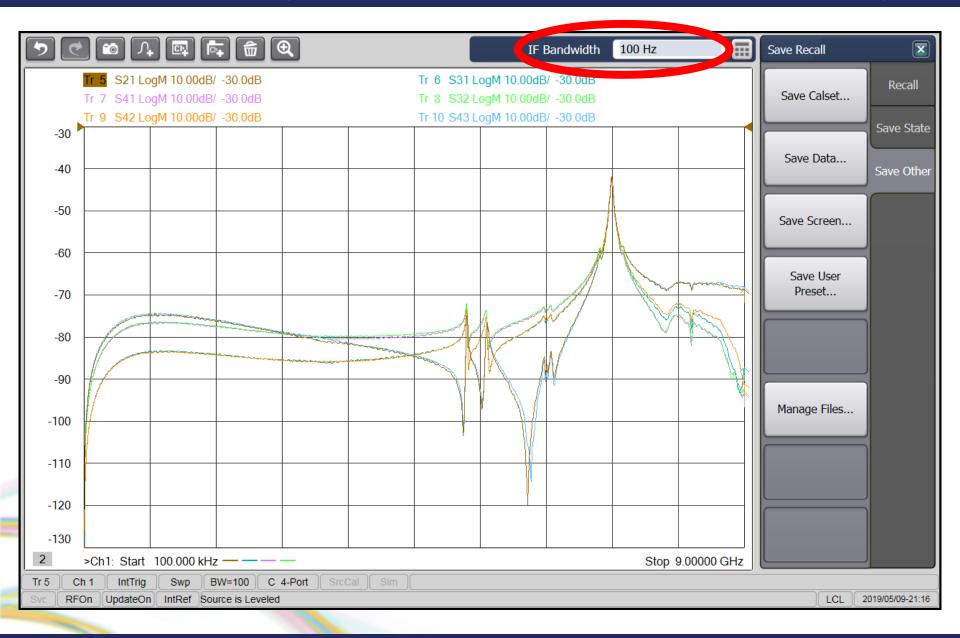
$$S_{21} = AhB$$

$$S_{42} = BdD$$

$$S_{14} = DvA$$

$$\frac{S_{21}S_{14}}{S_{42}} = \frac{AB * DA}{BD} \frac{hv}{d} = A^2 * c_1$$

- Repeat for other buttons
- Repeat with other equations for other Lambertson types



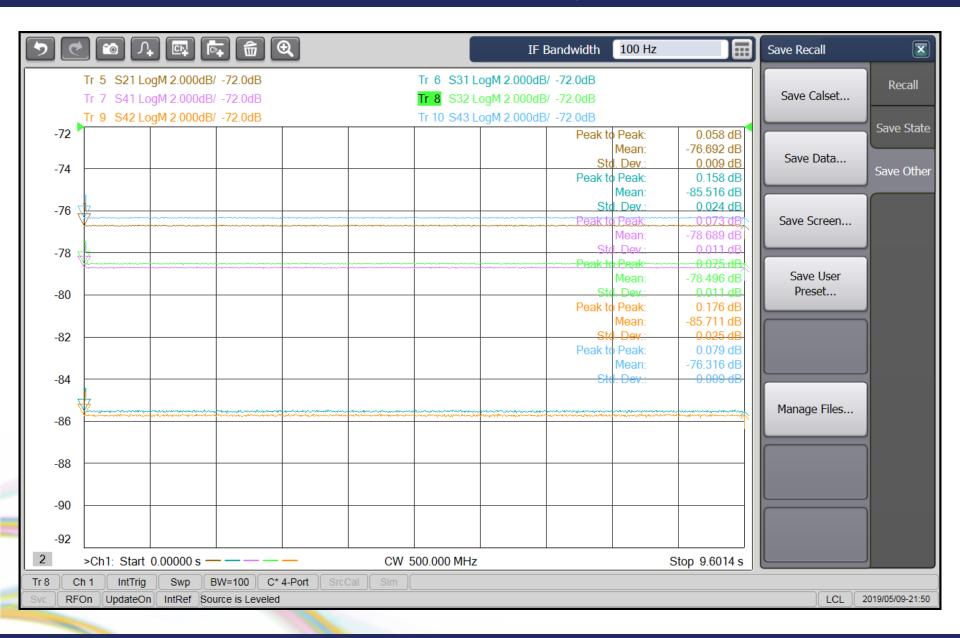

# **DDBA Buttons Sweep**





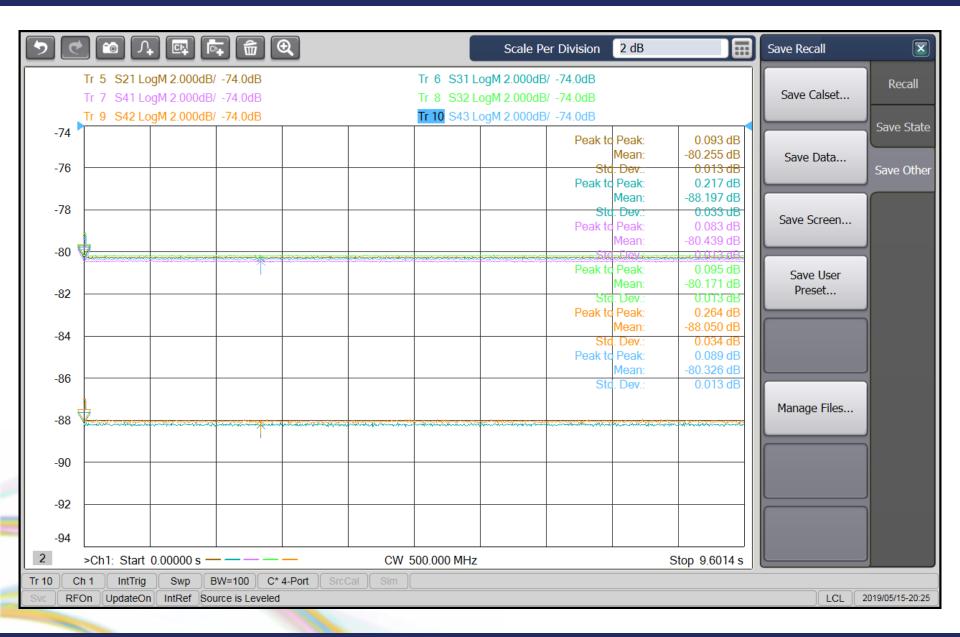
## Improved DDBA buttons Sweep






# diamond 0 Hz Sweep@500MHz over Time






# Low IF Sweep@500MHz





### SIRIUS buttons





# Lambertson Type Analysis

Convert S-parameters to linear gains and XY offsets in matlab:

- Calculate statistics for all three cases
- Compare
  - measurement
  - measurement one day later (not disconnected)
  - three back-to-back measurements
  - disconnect and re-connect



### **Quick Statistics**

All offset calculated for scale factor 7mm and displayed in µm

|       | Day1          | Day2-1 <sup>st</sup> | Day2-2 <sup>nd</sup> | Day2-3 <sup>rd</sup> | Day2-remade   |
|-------|---------------|----------------------|----------------------|----------------------|---------------|
| X1±1σ | 42.4 +/- 3.1  | 42.8 +/- 3.1         | 42.8 +/- 3.1         | 42.8 +/- 3.1         | 40.5 +/- 3.1  |
| Y1±1σ | -67.7 +/- 2.4 | -67.4 +/- 2.3        | -67.3 +/- 2.5        | -67.5 +/- 2.5        | -79.6 +/- 2.5 |
| X2±1σ | 41.5 +/- 3.4  | 42.7 +/- 3.3         | 42.8 +/- 3.3         | 42.7 +/- 3.3         | 40.5 +/- 3.4  |
| Y2±1σ | -66.8 +/- 2.1 | -67.3 +/- 2.0        | -67.2 +/- 2.2        | -67.3 +/- 2.1        | -79.5 +/- 2.2 |
| X3±1σ | 41.8 +/- 2.7  | 42.8 +/- 2.7         | 42.8 +/- 2.7         | 42.9 +/- 2.7         | 40.4 +/- 2.7  |
| Y3±1σ | -67.1 +/- 2.8 | -67.4 +/- 2.8        | -67.2 +/- 3.0        | -67.5 +/- 3.0        | -79.5 +/- 3.0 |



# Conclusions/Discussion

#### VNA:

- Can measure with sufficient resolution
- Reproducibility excellent
- Reconnections produce larger deviations

#### Lambertson:

- Anybody who has the original paper, please forward
- Presumably it requires symmetry in the geometry
- Do the different types tell us something about symmetry?

#### Real BPM:

- Not well matched ports will read differently
- Cables and connectors will change readings again

#### Bluesky:

- Could we add Lambertson like test into BPM?
- Is there value in determining the button capacitance from time domain transformed S<sub>nn</sub> —sweep, would that give comparable button gain?