Offset calibration of single pass BPM

T. Fujita, H. Dewa, M. Masaki, S. Takano

Japan Synchrotron Radiation Research Institute (JASRI)

H. Maesaka

RIKEN / SPring-8 Center

- Motivation
- Gain balance and BPM offset
- Calibration method
- Verification of calibration
- Summary

Motivation

Offset calibration of single pass (SP) BPM prior to the machine commissioning is crucial for successful turns and storage of the first beam in the ring.

Major factor of the **BPM offset** is **gain imbalance** between BPM channels.

Reflection signals in BPM cables (~a few % typical) affect the balance of gains depending on the BPM measurement mode.

For accurate calibration of the SP BPM offset, **proper signal processing procedure** is required distinct from that for the COD mode.

In this presentation, gain imbalance of BPM and its calibration are discussed for both the SP and COD modes. The methods and results of offset calibration are also presented.

Why are the BPM offsets different between COD and single-pass modes?

COD mode

Since signals are filtered to narrow band-width, beam signals and reflection signals are "mixed".

Reflected signals result in multiple reflection.

Multiple reflection depends on distance of reflection points.

 \rightarrow Reflection signals affect BPM offset.

Single Pass mode

Since signals are processed with wide band-width, beam signal and reflection signals are separated in time.

 \rightarrow Reflected signals do not affect BPM offset.

BPM offset depends on the measurement mode. SP mode offset should be calibrated with pulsed RF signal.

Factors of Gain imbalance

A. uneven cable loss including impedance mismatch not only ohmic loss in cables but also reflections due to impedance mismatch
B. uneven gain of electronics gain of step attenuator, BPF, amplifier, ADC, etc.

Calibration Method

including **BPM head**, cable and readout electronics.

Applying the coefficients to beam signals, verify the calibration.

BPM used for the calibration

As a demonstration of the calibration, proposed calibration was applied to prototype of BPM system for SPring-8 upgrade.

Prototype BPM system

- 4 sets of BPM in one block with 20mm separation
 →resolution evaluation by 3BPM method
 →offset evaluation
- installed in the present SPring-8 storage ring
- small mechanical tolerance
 BPM offset due to the tolerance is expected as tens of microns.
- BPM cable test: semi-rigid cable(PEEK, SiO2), corrugate cable (1/2")
- Electronics : Libera brilliance+

Measure beam signals for single pass and COD mode Apply correction coefficients to the data, BPM offset after the calibration is obtained. Verify which calibration is valid (pulse or CW) from the BPM offsets.

vertical aperture, button span were same as SPring-8 upgrade

Single pass offset measured with beam signal

If gain balances are properly corrected, 4 BPM readings come close to one point.

	BPM offset
No correction	scatter ~ 100 μm
CW correction	scatter ~ 100 μm
Pulse correction	scatter ~ 50 μm

Single pass BPM should be calibrated using **pulsed RF signal**. If CW signal is used, the correction does not work well.

COD offset measured with beam signal

2019/June/3,4,5 DEELS2019 T. Fujita

Major factor of calibration error

 Non-linearity of readout electronics? Max ADC during pulse calibration were 2000~6000. (Variation is due to coupling direction of BPM head.)

ADC range : \pm 32767

Beam signals measured for demonstration
 2.25nC, single bunch → 12,000~19,000 count

beam signal : 0.4~0.6 of ADC range calibration signal : 0.06~0.2 of ADC range

Difference in signal level for calibration and non-linearity of readout electronics is one of possibility of calibration error. Non-linearity is not measured yet.

coupling direction	Ex.	coupling (voltage ratio)
vertical	1→4, 2→4,,,,	~-64dB (1)
horizontal	1→2, 3→4,,,	~-67dB (0.7)
diagonal	1→3, 2→4,,,	~-74dB (0.3)

S43, S34

	calibration	beam signal
maxadc	2,000~6,000	12,000~19,000

Summary

- Calibration method of SP BPM offset using pulsed RF signal is proposed and demonstrated.
- This method is free from errors by signal reflections in cables and properly corrects overall gain imbalance for the SP mode due to BPM head, cables and readout electronics.
- Calibration of the the prototype BPM system successfully demonstrated
 - by using the **pulsed signal**,

offset correction for SP measurement with an accuracy of $50 \mu m$,

• by using CW single,

offset correction for COD measurement with an accuracy of 50 μm.

- Factors that limit the accuracy to ~50 μm are currently under investigation.
- One of possible cause of the error is a non-linearity of the BPM electronics.

Thank you for your attention!

Backup slides

BPM offset by Lambertson Method

Calculate BPM offset from S-parameter ₂ S-parameter is only for BPM head.

correction coeff.

BPM voltage measured using libera bri+

```
2018/04/27 during machine tuning
    single bunch
    0.47mA (=2.25nC)
```

Libera bri+

DSC:off Switching:off coeff:unity Level:-60dB

094923	average o	of 880 turn	(maximul	m ADC cou	unt in one-turn)
	電極1	電極2	電極3	電極4	
BPM1	14912	13955	12838	13857	
BPM2	18258	18976	19029	19500	12,000~19,000 count
BPM3	18104	16987	17996	19234	=533 ~ 844 count / 100 pC
BPM4	15429	16148	14346	17340	

Measurement error of S parameter

Statistical error when calibration w/ S parameter is applied.

	(dB) p-p
reproducibility w/o reconnect	0.007
connector reconnect	0.011
character of RP-SMA adapter	0.031
freq. characterictic	0.01
calibration error of NetworkAnalyzer	0.03/(2) ^{0.5}
Total (r.m.s.)	0.041 dB p-p

 \Rightarrow less than 0.1 dB (target)

```
measurement of 0.041 dB p-p
correspond to (dx, dy) = (13 um p-p, 15 um p-p) error in BPM offset.
```

button-to-button coupling

BPM1

-0.083-67.280-73.943-64.098-67.283-0.084-64.221-73.788-73.957-64.230-0.091-67.112-64.070-73.759-67.082-0.081

BPM2

-0.098 -67.326 -73.88 -64.171 -67.326 -0.081 -64.163 -73.857 -73.893 -64.171 -0.101 -67.0 -64.143 -73.831 -67.034 -0.085

BPM3

0.066	-67.923	-74.498	-64.859
67.921	-0.065	-64.835	-74.617
74.497	-64.842	-0.068	-67.870
64.826	-74.591	-67.845	-0.066

BPM4

-67.832	-74.368	-64.647
-0.065	-64.815	-74.497
-64.820	-0.068	-67.690
-74.476	-67.666	-0.066
	-67.832 -0.065 -64.820 -74.476	-67.832-74.368-0.065-64.815-64.820-0.068-74.476-67.666

BPM offset calibration for COD mode

Similar calibration is also possible for **COD mode** using **CW** signal.

- no correction
 - balance error was more than 100 μm
- gain calibration using CW RF balance error decreased ~50 μm
- beam based correction

From voltage response when beam positions are intentionally changed, correction coefficients can be obtained by minimizing the balance error. BPM readings shrank to one position $\pm 30 \ \mu m$.

BPM offset calibration for COD mode

Similar calibration is also possible for **COD mode** using **CW** signal.

below, calibration results are shown.

- no correction : cross-bar switch turned off
- DSC correction : only DSC correction is applied
- DSC+beam based correction
- gain calibration :

Correction Result (Single Pass mode) Single Pass

Before the calibration, (x,y) of single pass was within R=75 μ m. Appling CW correction to the COD data, (x,y) shrank within R=50 μ m.

Both single pass and COD were calibrated within ~50µm.

Correction Result (Single Pass, COD mode)

COD (x,y) without correction scattered R=350um.

Appling CW correction to the COD data, (x,y) shrank within R=50 μ m.

Before the calibration, (x,y) of single pass was within R=75 μ m. Appling CW correction to the COD data, (x,y) shrank within R=50 μ m.