

ESRF, 3. -5. June 2019

BPM Resolution Studies at PETRA III

Gero Kube DESY (MDI)

- Introduction
- Comments on BPM Resolution
- Three BPM" Correlation & Prinicipal Components Analysis
- Resolution Studies at PETRA III
- Conclusion

PETRA III @ DESY

• PETRA history

- > 1978 1986: e⁺e⁻ collider (up to 23.3 GeV / beam)
- > 1988 2007: pre-accelerator for HERA (p @ 40 GeV, e @12 GeV)
- since 2007: dedicated 3rd generation light source, commissioned in 2009 TDR: DESY 2004-035
 - \rightarrow 14 beamlines (15 experimental stations) operating in parallel
- from 2014: staged extension project W. Drube et al., 2016 <u>https://doi.org/10.1063/1.4952814</u>
 - \rightarrow *up to 12 additional beamlines* (presently not all of them in operation)

Extension Hall North Paul P. Ewald

Extension Hall East Ada Yonath

Max von Laue Hall

PETRA IV: Overview

• PETRA IV storage ring and pre-accelerators

Design parameter	PETRAIII			PETRA IV		
Energy / GeV	6			6		
Circumference / m	2304			2304		
Operation mode	Continuous	Timing		Brightness	Timing	
Emittance (horz. / vert.) / pm rad	1300 / 10		< 20 / 4	< 50 / 10		

use of existing accelerator tunnel

- \rightarrow asymmetric ring structure
- > additional experimental hall
 - \rightarrow 29 straight ID sections

• time line

presently

 \rightarrow preparation of *Conceptual*

Design Report

PETRA IV: Diffraction Limited Light Source

DLS design

- BPM resolution requirements
 - → single bunch / single turn <20 μ m (assuming 0.5 mA in single bunch → 2.5×10¹⁰ particles bunch)
 - < 100 nm (rms, 200 mA in 1600 bunches) at 300 Hz BW

Gero Kube, DESY / MDI

closed orbit

BPM Resolution

• position determination in circular accelerator

$$= K_{x} \frac{(P_{1}+P_{4}) - (P_{2}+P_{3})}{P_{1}+P_{2}+P_{3}+P_{4}} \qquad y = K_{y} \frac{(P_{1}+P_{2}) - (P_{3}+P_{4})}{P_{1}+P_{2}+P_{3}+P_{4}}$$

• position resolution (small displacements from center)

 $\sigma_{x,y} \propto K_{x,y} \frac{1}{\sqrt{SNR}}$

 $K_{x,y}$: monitor constant

SNR : signal-to-noise ratio

• depends on

Х

- ▶ pickup geometry \rightarrow beam pipe diameter
- \rightarrow button size \rightarrow small correction

- > geometry (button size) \rightarrow signal strength
- \rightarrow infrastructure \rightarrow cable length & attenuation
- read-out electronics

main focus: read-out electronics

goal

▶ performance test \rightarrow existing *Libera Brilliance* readout electronics @ PETRA III

BPM Resolution Measurements

• modern ADCs optimized for cw signals

signal from BPM button \rightarrow far away from cw signal

- BPM resolution with beam generated signals
- BPM signal measurement with beam \rightarrow 2 kinds of jitter
 - beam jitter
 - → real *change of beam angle* and *position* caused by fluctuations in accelerator (ground motion, energy fluctuation, kicks, ...)
 - \rightarrow seen by *several / all* BPMs simultaneously
 - (correlation via beam optics)
 - > noise of BPM electronics
 - \rightarrow quantitiy to be measured
 - \rightarrow **no correlation** between adjacent BPM readings
- common methods for correlation analysis
 - ,,three BPM" correlation method
 - Principal Components Analysis (PCA)

correlation analysis in order to disentangle both jitter sources

brief review

"Three BPM" Correlation Method

principle setup: 3 adjacent BPMs BPM_1 BPM_2 beam

- BPM reads position information $\begin{pmatrix} y_2 \\ y'_2 \end{pmatrix} = \begin{pmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{pmatrix} \begin{pmatrix} y_1 \\ y'_1 \end{pmatrix}$ $y_2 = \gamma_{11}y_1 + \gamma_{12}y'_1 \qquad \bigcirc \qquad (\qquad \alpha \cup \gamma_{12}) \qquad \gamma_{12} \qquad (\qquad \beta \cup \gamma_{12}) \qquad (\qquad \beta$
 - $y_{2} = \gamma_{11}y_{1} + \gamma_{12}y'_{1}$ $y_{3} = \alpha_{11}y_{1} + \alpha_{12}y'_{1}$ $y_{2} = \left(\gamma_{11} \frac{\alpha_{11}\gamma_{12}}{\alpha_{12}}\right)y_{1} + \frac{\gamma_{12}}{\alpha_{12}}y_{3} \Rightarrow y_{2} = X_{21}y_{1} + X_{23}y_{3}$

BPM₃

• difference: measured position vs. expectation

 $\Delta = y_2 - X_{21}y_1 - X_{23}y_3$

• all BPM readings with same error

$$\sigma_{y_1} \sim \sigma_{y_2} \sim \sigma_{y_3} = \sigma_{BPM}$$

$$\Rightarrow \quad \sigma_{BPM} = \frac{\sigma_{\Delta}}{\sqrt{1 + X_{21}^2 + X_{23}^2}}$$

- calculate variance (error propagation) $\sigma_{\Delta}^{2} = \sigma_{y_{2}}^{2} + X_{21}^{2}\sigma_{y_{1}}^{2} + X_{23}^{2}\sigma_{y_{3}}^{2}$
- $\sigma_{\Delta} \rightarrow N$ consecutive position measurements

$$\sigma_{BPM} = \sqrt{\frac{1}{N-1} \frac{\sum_{i=1}^{N} \left\{ y_{2,i} - \left(X_{21} y_{1,i} + X_{23} y_{3,i} \right) \right\}^2}{1 + X_{21}^2 + X_{23}^2}}$$

Gero Kube, DESY / MDI

٥

- connection via transport matrices
 - > no non-linear elements between BPMs
 - $\begin{pmatrix} y_3 \\ y'_3 \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} y_1 \\ y'_1 \end{pmatrix}$

 $= \begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{pmatrix} \begin{pmatrix} y_2 \\ y'_2 \end{pmatrix}$

"Three BPM" Correlation Method (2)

procedure

- N consecutive position measurements with 3 adjacent BPMs
- determination of transfer matrix elements X_{21} , X_{23}
 - \rightarrow <u>straight forward:</u> calculation according to beam optics
 - model independent: *Moore-Penrose* pseudo inverse
- > BPM resolution

$$\rightarrow \text{ evaluate formula } \quad \sigma_{BPM} = \sqrt{\frac{1}{N-1} \frac{\sum_{i=1}^{N} \left\{ y_{2,i} - \left(X_{21} y_{1,i} + X_{23} y_{3,i} \right) \right\}^2}{1 + X_{21}^2 + X_{23}^2}}$$

(least-square estimate for X)

- successive application to all BPMs
 - \rightarrow grouping three adjacent BPMs

example: KEK-B M. Arinaga et al., NIM A499 (2003) 100

- restrictions
 - > no non-linear elements \rightarrow difficult at DLS
 - > same error of BPM readings \rightarrow not possible at PETRA III
 - sometimes weak correlations with neighbour BPMs
 - \rightarrow large uncertainty in BPM resolution (especially with Moore-Penrose)

 $\begin{pmatrix} y_{2,1} \\ \vdots \\ y_{2,N} \end{pmatrix} = \begin{pmatrix} 1 & y_{1,1} & y_{3,1} \\ \vdots & \vdots & \vdots \\ 1 & y_{1,N} & y_{2,N} \end{pmatrix} \begin{pmatrix} X_0 \\ X_{21} \\ X_{22} \end{pmatrix}$

constant

offset ≈ 0

Gero Kube, DESY / MDI

Principal Components Analysis (PCA)

- method of multivariate statistics
 - conversion of set of correlated variables into set of linearly uncorrelated ones
 - \rightarrow principal components (PC)
 - cleansing of correlations in data sets
 - \rightarrow structuring of large data sets, compression, ...
- prinicipal axis determination
 - orientation of first principal axis
 - \rightarrow axis rotation such that overall data variance is maximized (requires centering
 - \rightarrow alternative: minimize projections (hint: χ^2)
 - > orientation of second (third, ...) principal axis
 - \rightarrow remove contribution of 1st PC from data
 - \rightarrow repeat rotation and variance maximization

condition: uncorrelated with (i.e., perpendicular to) first principal component

- mathematics behind
 - form covariance matrix $C \rightarrow$ real & symmetric matrix
 - diagonalization of $C \rightarrow C = V \Lambda V^T$
 - V: formed by orthonormal eigen vectors

eigen vectors \rightarrow principal components

eigen values $(\Lambda) \rightarrow$ amount of variance for PC

sort eigen vectors according to eigen values

Principal Components Analysis (2)

- alternative numerical method \rightarrow Singular Value Decomposition (SVD)
 - instead of *diagonalization* of *covariance matrix*
 - \rightarrow SVD of data matrix **M**
 - relation between *singular* and *eigen values*:

$$\rightarrow \Lambda = \frac{\Sigma^2}{n-1}$$

- advantage
 - \rightarrow SVD numerically more stable (formation of MM^T can cause loss of precision \rightarrow Läuchli matrix)
 - \rightarrow benefit: SVD provides additional information (accelerator physics)
- application to BPM data

$$\rightarrow$$
 BPM data centered

→ normalization:
$$\propto \frac{1}{\sqrt{n m}}$$
 C.X. Wang, SLAC-R-547 (2003)

- exploration of SVD matrix properties
 - \rightarrow U: column vectors contain information about *temporal* pattern (tune, ...)
 - \rightarrow V: column vectors contain information about *spatial* pattern (orbit / β function, ...)

<u>comment</u>: U/V as temporal/spatial vectors \rightarrow depends on orientation of matrix M

 $M = \begin{pmatrix} BPM_1(turn\#1) & \cdots & BPM_n(turn\#1) \\ \vdots & \ddots & \vdots \\ BPM_1(turn\#m) & \cdots & BPM_n(turn\#m) \end{pmatrix} \qquad turns (time coordinate)$

orbit (**space** coordinate)

 $M = U \cdot \Sigma \cdot V^{T}$ (*M* real: $V^* \to V^T$)

$$T$$

$$V^* \rightarrow V^T$$
)
$$V^* Wikipedia$$

$$V = I_m$$

$$V^* = I_n$$

PCA Example

- test measurement @ PETRA III
 - fill pattern: 960 bunches @ 5.6 mA
 - single vertical kick with excitation kicker
 - > 2048 turns recorded
- temporal modes
 - information about tune

- BPM resolution
 - singular values $\sigma_1, \sigma_2, \ldots = 0 \rightarrow$ calculate cleaned orbit data

- SVD analysis
 - > dominant modes (singular values) \rightarrow mode 1 & 2

- spatial modes
 - → information about beam optics → $\beta \propto (v_1^2 + v_2^2)$

PETRA III BPM System

- 11 different pickup types:
 - Max von Laue hall

• 3 different cable types

RFA $^{1\!/\!2'}$, $^{3\!/\!8'}$, $^{7\!/\!8'}$ – 50 Ω

cable lengths: 10m ... 200m

246 individual settings

standard octants:

I. Krouptchenkov et al., Proc. DIPAC 2009, Basel, TUPD03, p. 291

BPM Resolution Studies

• resolution studies @ PETRA III

- > single bunch with Q_b varying
- > single vertical kick with excitation kicker

> 2048 turns

TbT Single Bunch Resolution

- machine studies at PETRA III with existing BPM system
 - Libera Brilliance (Instrumentation Technologies)

Gero Kube, DESY / MDI

Test of Read-out Electronics

Resolution Comparison

 \rightarrow

Gero Kube, DESY / MDI

DEELS 2019 Workshop @ ESRF, 4.6.2019

Gero Kube, DESY / MDI

Closed Orbit & Stability

• long term stability

- user operation: 480 bunches in 100 mA, top-up
- > all Liberas in closed orbit (SA) mode

 \rightarrow

drift compensation (digital signal conditioning, DSC) on

Closed Orbit Resolution

specification: <100nm (rms) in brightness mode (200mA in 1600 bunches) @ BW 300 Hz

first 12 hours (before beam dump):

 $\sigma_{rms} = 20.76 \ nm$ in SA mode (BW 4Hz, $K_{x,y} = 10 \text{mm}$; BW 4Hz \rightarrow see Brilliance+ User Manual, p.34)

\rightarrow	scaling with band width:		Name of the data flow	Туре	Buffer size*	Rate	Bandwidth
$x = \frac{1}{300/4}$		- 8 66	ADC rate data	on demand	1 M atoms (8 MB)	ADC freq.	~20 MHz
	~ sqrt(500/4)	- 8.00	Turn-by-Turn (DDC)	on demand	2 M atoms (64 MB)	rev.freq	0.35*rev.freq
\rightarrow	$\sigma_{rms} = 180 nm$	(@ BW 300Hz)	00Hz) Turn-by-Turn (TDP) on de		2 M atoms (64 MB)	rev.freq	
			Fast Acquisition data	stream		10 kS/s	2 kHz
			Slow Acquisition data	stream		10 S/s	4 Hz

Gero Kube, DESY / MDI

DEELS 2019 Workshop @ ESRF, 4.6.2019

Conclusion

- BPM resolution studies
 - > require correlation analysis in order to disentangle noise and beam generated jitter
 - \rightarrow ,,three BPM" correlation method & PCA
- correlation analysis
 - > ",,three BPM" correlation method \rightarrow not suitable for PETRA III BPM system
 - ▶ PCA \rightarrow powerful tool, not only for resolution studies (e.g. BPM performance evaluation @ SSRF, ...)
 - \rightarrow model independent, but limited by mode mixing

Z.-C. Chen et al., Chinese Physics **38** (2014) 077004 Nucl. Sci and Tech. **25** (2014) 020102

next step: Independent Component Analysis (ICA)

- Libera Brilliance
 - > single bunch resolution \rightarrow specs not fulfilled for PETRA IV
- Libera Brilliance+
 - ▶ single bunch resolution → specs fulfilled @ bunch curent $I_B \approx 0.4$ mA and monitor constant $K_{x,y} = 10$ mm

DDC mode < 20 μ m (rms), TDP mode \approx 10 μ m (rms)

→ closed orbit → specs not fulfilled (< 100 nm @ 300 Hz bandwidth)

 $\sigma_{y,rms} \approx 180 \text{ nm}$ @ 300 Hz bandwidth

and $K_{x,y} = 10 \text{ mm}$

• Libera Spark

 \rightarrow single bunch resolution much better \rightarrow closed orbit: needs stabilization

Gero Kube, DESY / MDI