

The European Synchrotron

OASYS, is it a mirage?

Laura Torino DEELS 2019, 05/06/2019 The Synchrotron Radiation (SR) is strongly used by the be beam diagnostics community to perform deferent type of measurements (emittance, position, energy, power load...)

It is useful to simulate SR generation, propagation, and absorption.

🔹 File Edit Data Analysis Macros Windows Graph Misc SRW SRW Pascal Help

Graph3:SOLEdgeOxz1 xz

- X-ray Oriented Program (XOP)
- SHADOW/SHADOWOUI
- Synchrotron Radiation Workshop (SRW)

0-11-10 Several type of software, not compatible, difficult languages, almost no FEdgeOWK_x documentation... SOLEIL 14 mm Straight Section 0.7 m from Bend. Magnet A nightmare! Wavelength : 13.8 µm •SRViewRes() ModifyI mage SOLEd •SRFlux() 6.69541 al/e SR0bsXZEscan() Textbox/N=text0/F=0/A=MC "2,75e-2 eVvr2 Tvr10 x 500vrF=6.7" More Information in the SRW Help File More Information in the SRW Help File Display, Append MatrixContour SOLEdge0x21_x2
 ModifyContour SOLEdge0x21_x2 autoLevels={*,*,6}
 More Information in the SRW Help File Horizontal Position

. . .

B:16 AM 📆 🖻 💷

Source: Z Matrix: SOLEdge0xzK_x

OASYS

Manuel Sanchez del Rio (ESRF) and Luca Rebuffi (APS) "The implemented software architecture allows to obtain not only an intuitive and **very-easy-to-use** graphical interface, but also provides high flexibility and **rapidity for interactive simulations**, allowing to make quick configuration changes to compare multiple beamline configurations" *

* https://www.aps.anl.gov/Science/Scientific-Software/OASYS

Graphical environment for optical (and more) simulation:

- Python based
- Module adds-on
- Communicating packages

Graphical User Interface available for Windows, Linux, macOs

- Worfry: Simple optical wavefront (plane, spherical, Gaussian) propagation tool
- Shadow: Ray tracing simulations + Hybrid: to introduce diffraction (quick and dirty)
- **SRW:** Generation and optical propagation of SR wavefront
- XOPY: Generation and transmission/absorption of SR spectra

EXAMPLE - COMMON SOURCE GENERATION

🥑 untitled*

Eile Edit View Widget Options Help WISEr Tools SRW Tools Shadow Tools

Light Source Setting		
Read/Write File		
Syned File Name/URL Itorino/Oa	sys/EBS_BendingMagnet.json	
Read Syned File	Write Syned File	
ght Source Name	Pinhole Source	
- Electron Beam/Machine Parameters		
Energy [GeV]	6.04	
Energy Spread	0.000937	
Ring Current [A]	0.2	
Electron Beam Properties	From Size/Divergence 🔻	
Horizontal Beam Size [m]	1.162e-05	
Vertical Beam Size [m]	9.14e-06	
Horizontal Beam Divergence [rad]	1.822e-05	
Vertical Beam Divergence [rad]	5.5e-07	

Possibility to create and save different source, common for all the different software, by defining lattice characteristics and <u>beam parameters</u>

EXAMPLE - SOURCE GENERATION - XOP

XOP \rightarrow Generation of the SR spectra

EXAMPLE - SOURCE GENERATION - SHADOW

Ountitled*

1

XOPPY Optics

File Edit View Widget Options Help WISEr Tools SRW Tools Shadow Tools

SHADOW → Random generation of a given number of rays with an energy distributed according to the SR spectra

EXAMPLE - SOURCE GENERATION - SRW

🕐 untitled*

Eile Edit View Widget Options Help WISEr Tools SRW Tools Shadow Tools

SRW → Generation of the SR wavefront at a given energy and a given position

WISEr Optical Elements

WISEr Tools

XOPPY Sources

XOPPY Optics

Ø

Je.

de

THE PINHOLE

F. Ewald, "Beam Size Monitoring at the ESRF: Comparison of different X-ray based techniques" Topical Workshop on Emittance Measurements for Light Sources and FELs, Barcelona, 29-30 Jenuary 2018

The European Synchrotron ESRF

Possibility of defining slits or obstacles and to propagate the x-rays

> Computation might be heavy depending on the number of rays → Possibility to define a loop and iterate the source generation

> > 143.983

1000000

999772

159.5447

80.6398

1 + 1

228

55 Plot XY

NOTE: Very heavy for the computer!

Possibility to retrieve the python script and run it into a cluster!

On the "Info" buttons it is possible to find several info on the simulation and the Python script!

o untitled*

File Edit View Widget Options Help WISEr Tools SRW Tools Shadow Tools

Donding Magnet

ESRF

o untitled*

 untitled* Eile Edit View Widget Options E Oasys Tools Oasys Loop Management Syned Light Sources Syned Optical Elements Wofry Wavefront Propagation Wofry Tools Wofry Tools Shadow Light Sources Shadow Compound Optical 	elp WISEr Tools SRW Tools Shadow Tools SwData BM Light Source Bending Magnet (SRW)	SRWData SRWData Pinhole Screen Screen Screen Screen Screen Screen Screen Screen	Provides python script for native Multi-Electron simulation → Can be manipulated and launched on a cluster!
Shadow Special Elements	SRW Python Script (ME)		x
A Shadow PostProcessor	General Options		
Shadow PreProcessor	✓ Automatic Execution	Python Script System Output	
Shadow Experiments		<pre>from oasys_srw.srwlib import * from uti_plot import *</pre>	
Shadow Loop Management	Refresh Script Reset Fields	import numpy	
Shadow Tools		<pre>#if not srwl_uti_proc_is_master(): exit()</pre>	
))) SRW Light Sources	SRW Native Code: ME	# LIGHT SOURCE	
SRW Optical Elements	Sampling factor for adjusting by by	part beam = SRWLPartBeam()	
SRW Tools	(effective if > 0)	part_beam.Iavg = 0.2 part_beam.partStatMoml.x = 0.0	
SRW Native	Total Nr. of Electrons (Wavefronts) 500000 Nr. of Electrons (Wavefronts) to average on e	part_beam.partStatMoml.y = 0.0 part_beam.partStatMoml.z = -0.19	
	(for MPI calculations)	part_beam.partStatMom1.xp = 0.0 part_beam.partStatMom1.yp = 0.0	
SRW SRW Intensity Degree	Saving periodicity (in terms of Electrons) for the Resulting Intensity 20	part_beam.partStatMoml.gamma = 11819.985235008744 part_beam.artStatMom2[0] = 1.350244000000002e-10	
Python Python Plot of Coh	SR calculation method (1 - undulator)	part_beam.arStatMom2[1] = 0.0	
))) WISEr Light Sources	SR calculation relative accuracy 0.01	part_beam.arStatMom2[2] = 3.31968399999999999-10 part_beam.arStatMom2[3] = 8.35396e-11	
WISEr Optical Elements	Output File Name output_srw_script_me.dat Calculation Total Intensity	<pre>part_beam.arStatMom2[4] = 0.0 part_beam.arStatMom2[5] = 3.025e-13 part_beam.arStatMom2[5] = 0.72000 07</pre>	
WISEr Tools	Calculation Total Intensity	part_beam.arStatMom2[10] = 8.77969e-07	
XOPPY Sources		<pre>magnetic_structure = SRWLMagFldM(_G=0.62, _m=1, _n_or_s=' magnetic_field_containerSDWLMagFldC(_arMagFld=[magnetic_structure])</pre>	
XOPPY Optics		<pre>Python 3.7.3 (default, Mar 27 2019, 17:13:21) [MSC v.1915 Type "help", "copyright", "credits" or "license" for more (PythonConsole) >>></pre>	64 bit (AMD64)] on win32 information.
		Run Script	Save Script to File

SRW Python Script (ME)

ESRF

OVERVIEW AND REFERENCES

OASYS is an intuitive SR generation and propagation software:

- Allows to perform quick simulations step by step
- Useful to "align" and optimize the main parameter
- Computationally heavy but provides Python scripts which might be modified and run in a cluster (after all the optimization has been done!)

You can find the software and the installation how-to in: <u>https://github.com/oasys-kit</u>

The material for the First OASYS School, with some extremely useful slides and several examples can be found in: <u>https://github.com/oasys-kit/oasys_school</u>

A second OASYS school is foreseen soon (in the US...)

