Meson interactions at Large N_c from Lattice QCD

Fernando Romero-López

In collaboration with: A. Donini, P. Hernández & C. Pena

University of Valencia, IFIC

fernando.romero@uv.es

CERN, August 2nd, 2019
Overview of meson interactions at Large N_c

1. Motivation
2. Ensembles at Large N_c
3. M_π and F_π at Large N_c
4. Scattering at Large N_c
5. $K \rightarrow \pi\pi$ at Large N_c
6. Summary
Motivation
Let \(\text{QCD} \) be a \(SU(N_c) \) gauge theory

- \(N_c \rightarrow \infty \)
- \(\alpha_s N_c = \text{constant} \)
The Large N_c limit ('t Hooft limit)

- Let QCD be a $SU(N_c)$ gauge theory
 - $N_c \to \infty$
 - $\alpha_s N_c = \text{constant}$

- QCD is dominated by gluon loops and keeps relevant features (i.e. confinement, spontaneous chiral symmetry breaking...)

$\pi \to \pi\pi$
The **Large N_c limit ('t Hooft limit)**

- Let **QCD** be a $SU(N_c)$ gauge theory
 - $N_c \to \infty$
 - $\alpha_s N_c = \text{constant}$

- QCD is dominated by gluon loops and keeps relevant features (i.e. confinement, spontaneous chiral symmetry breaking...)

- In particular, ChPT is still valid at **Large N_c** and it is simpler!
The Large N_c limit ('t Hooft limit)

- Let QCD be a $SU(N_c)$ gauge theory
 - $N_c \rightarrow \infty$
 - $\alpha_s N_c = \text{constant}$

- QCD is dominated by gluon loops and keeps relevant features (i.e. confinement, spontaneous chiral symmetry breaking...)

- In particular, ChPT is still valid at Large N_c and it is simpler!

Example of N_c counting:

1. Gluon loops $\sim N_c^2$

2. Quark loops $\sim N_c$
Chiral Perturbation Theory

ChPT is an EFT for QCD at low energies in terms of mesons.

\[\phi = \begin{pmatrix} \pi^0 + \frac{1}{\sqrt{3}} \eta & \sqrt{2} \pi^+ & \sqrt{2} K^+ \\ \sqrt{2} \pi^- & -\pi^0 + \frac{1}{\sqrt{3}} \eta & \sqrt{2} K^0 \\ \sqrt{2} K^- & \bar{K}^0 & -\frac{2}{\sqrt{3}} \eta \end{pmatrix}, \quad U = e^{i \phi / F_0}, \]

\(U \) transforms as:

\[U \rightarrow L^\dagger UR, \text{ with } L, R \in SU(N_f) \]

The lowest order (\(p^2 \sim M \)) Lagrangian with the QCD symmetries:

\[\mathcal{L}_2 = \frac{F_0^2}{4} \text{tr} \left(\partial_\mu U^\dagger \partial^\mu U \right) + \frac{F_0^2 B}{2} \text{tr} \left(MU + M^\dagger U^\dagger \right), \]

with \(M = \text{diag} (m_u, m_d, m_s) \).
The LO Lagrangian (\mathcal{L}_2) of ChPT is very predictive with few parameters: F_0, B and quark masses.
Chiral Perturbation Theory at NLO and Large N_c

1. The LO Lagrangian (\mathcal{L}_2) of ChPT is very predictive with few parameters: F_0, B and quark masses.
2. At NLO, there are more terms in the Lagrangian with additional couplings (Low Energy Constants):

$$\mathcal{L}_4 = \sum_{i=0}^{10} L_i \mathcal{O}_i.$$
Motivation

Ensembles

M_π & F_π

Scattering

$K \to \pi\pi$

Summary

Chiral Perturbation Theory at NLO and Large N_c

1. The LO Lagrangian (\mathcal{L}_2) of ChPT is very predictive with few parameters: F_0, B and quark masses.

2. At NLO, there are more terms in the Lagrangian with additional couplings (Low Energy Constants):

$$\mathcal{L}_4 = \sum_{i=0}^{10} L_i \mathcal{O}_i.$$

- LECs encode the high energy physics information
- They have different Large N_c behaviour

<table>
<thead>
<tr>
<th>L_i</th>
<th>Value</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2L_1 - L_2$</td>
<td>-0.4 ± 0.2</td>
<td>1</td>
</tr>
<tr>
<td>L_4</td>
<td>-0.0 ± 0.3</td>
<td>1</td>
</tr>
<tr>
<td>L_6</td>
<td>0.0 ± 0.4</td>
<td>1</td>
</tr>
<tr>
<td>L_7</td>
<td>-0.3 ± 0.2</td>
<td>1</td>
</tr>
<tr>
<td>L_2</td>
<td>1.6 ± 0.2</td>
<td>N_c</td>
</tr>
<tr>
<td>L_3</td>
<td>-3.8 ± 0.3</td>
<td>N_c</td>
</tr>
<tr>
<td>L_5</td>
<td>1.2 ± 0.1</td>
<td>N_c</td>
</tr>
<tr>
<td>L_8</td>
<td>0.5 ± 0.2</td>
<td>N_c</td>
</tr>
<tr>
<td>L_9</td>
<td>6.9 ± 0.7</td>
<td>N_c</td>
</tr>
<tr>
<td>L_{10}</td>
<td>-5.2 ± 0.1</td>
<td>N_c</td>
</tr>
</tbody>
</table>

Bijnens & Ecker, 2014
Chiral Perturbation Theory at NLO and Large N_c

1. The LO Lagrangian (\mathcal{L}_2) of ChPT is very predictive with few parameters: F_0, B and quark masses.
2. At NLO, there are more terms in the Lagrangian with additional couplings (Low Energy Constants):

$$\mathcal{L}_4 = \sum_{i=0}^{10} L_i \mathcal{O}_i.$$

- LECs encode the high energy physics information
- They have different Large N_c behaviour
- Large N_c allows for important simplifications!

<table>
<thead>
<tr>
<th>L_i</th>
<th>Value</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2L_1 - L_2$</td>
<td>-0.4 ± 0.2</td>
<td>1</td>
</tr>
<tr>
<td>L_4</td>
<td>-0.0 ± 0.3</td>
<td>1</td>
</tr>
<tr>
<td>L_6</td>
<td>0.0 ± 0.4</td>
<td>1</td>
</tr>
<tr>
<td>L_7</td>
<td>-0.3 ± 0.2</td>
<td>1</td>
</tr>
<tr>
<td>L_8</td>
<td>1.6 ± 0.2</td>
<td>N_c</td>
</tr>
<tr>
<td>L_9</td>
<td>-3.8 ± 0.3</td>
<td>N_c</td>
</tr>
<tr>
<td>L_5</td>
<td>1.2 ± 0.1</td>
<td>N_c</td>
</tr>
<tr>
<td>L_8</td>
<td>0.5 ± 0.2</td>
<td>N_c</td>
</tr>
<tr>
<td>L_9</td>
<td>6.9 ± 0.7</td>
<td>N_c</td>
</tr>
<tr>
<td>L_{10}</td>
<td>-5.2 ± 0.1</td>
<td>N_c</td>
</tr>
</tbody>
</table>

Bijnens & Ecker, 2014
The **Large** N_c limit in Phenomenology

“**Large** N_c-inspired” approximations are usual in phenomenology.

Updated Standard Model Prediction for ε'/ε

Hector Gisberta, Antonio Picha

aDepartament de Física Teòrica, IFIC, Universitat de València – CSIC
Apt. Correus 22085, E-46071 València, Spain

6. The SM prediction for ε'/ε

Taking into account all computed corrections in Eq. (7), our SM prediction for ε'/ε is

\[
\text{Re}(\varepsilon'/\varepsilon) = \left(15 \pm 2\mu \pm 2m_s \pm 2\Omega_{\text{eff}} \pm \frac{61}{N_c}\right) \times 10^{-4}
\]

- Uncertainties from **Large** N_c are hard to estimate.
- Can Lattice QCD improve this?
Properties of light resonances from unitarized Chiral perturbation theory: \(N_c\) behavior and quark mass dependence

J. R. Peláez\(^a\,*\) J. Nebreda\(^a\), G. Ríos\(^a\)

\(^a\)Dept. de Física Teórica II. Universidad Complutense. 28040 Madrid. Spain
Properties of light resonances from unitarized Chiral perturbation theory: N_c behavior and quark mass dependence

J. R. Peláez$^a,^*)$ J. Nebredaa, G. Ríosa

aDept. de Física Teórica II. Universidad Complutense. 28040 Madrid. Spain
Lattice QCD at Large N_c

→ The Large N_c is often very useful. However:

1. Systematic errors are hard to estimate.
2. It fails for few observables: $K \to \pi\pi$ (∋later!)

Lattice QCD can help!

Topics that we aim to address at Large N_c from lattice simulations:

- Meson masses and decay constants
- Meson scattering (isospin-2, isospin-1/ρ, isospin-0)
- $K \to \pi$ and $K \to \pi\pi$
- η' meson
- Tetraquarks
Lattice QCD at Large N_c

→ The Large N_c is often very useful. However:

1. Systematic errors are hard to estimate.
2. It fails for few observables: $K \rightarrow \pi\pi$ (\rightarrow later!)

Lattice QCD can help!

Topics that we aim to address at Large N_c from lattice simulations:

- Meson masses and decay constants
- Meson scattering (isospin-2, isospin-1/ρ, isospin-0)
- $K \rightarrow \pi$ and $K \rightarrow \pi\pi$
- η' meson
- Tetraquarks
Ensembles at Large N_c
Our Large N_c Ensembles with $N_f = 4$

- Iwasaki gauge action and $O(a)$ improved Wilson fermions.

<table>
<thead>
<tr>
<th>Ensemble</th>
<th>N_c</th>
<th>$L \times T$</th>
<th>β</th>
<th>m_0</th>
<th>aM</th>
<th>M (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A301</td>
<td>3</td>
<td>20×36</td>
<td>-</td>
<td>-0.4040</td>
<td>0.2191(36)</td>
<td>570</td>
</tr>
<tr>
<td>A302</td>
<td>3</td>
<td>24×48</td>
<td>1.778</td>
<td>-0.4060</td>
<td>0.1831(17)</td>
<td>480</td>
</tr>
<tr>
<td>A303</td>
<td>3</td>
<td>24×48</td>
<td>-</td>
<td>-0.4070</td>
<td>0.1612(24)</td>
<td>420</td>
</tr>
<tr>
<td>A304</td>
<td>3</td>
<td>32×60</td>
<td>-</td>
<td>-0.4080</td>
<td>0.1384(15)</td>
<td>360</td>
</tr>
<tr>
<td>A401</td>
<td>4</td>
<td>20×36</td>
<td>3.570</td>
<td>-0.3725</td>
<td>0.2035(14)</td>
<td>530</td>
</tr>
<tr>
<td>A402</td>
<td>4</td>
<td>24×48</td>
<td>-</td>
<td>-0.3752</td>
<td>0.1804(7)</td>
<td>470</td>
</tr>
<tr>
<td>A403</td>
<td>4</td>
<td>24×48</td>
<td>-</td>
<td>-0.3760</td>
<td>0.1714(8)</td>
<td>440</td>
</tr>
<tr>
<td>A404</td>
<td>4</td>
<td>32×60</td>
<td>-</td>
<td>-0.3780</td>
<td>0.1397(8)</td>
<td>360</td>
</tr>
<tr>
<td>A501</td>
<td>5</td>
<td>20×36</td>
<td>5.969</td>
<td>-0.3458</td>
<td>0.2128(9)</td>
<td>560</td>
</tr>
<tr>
<td>A502</td>
<td>5</td>
<td>24×48</td>
<td>-</td>
<td>-0.3490</td>
<td>0.1802(6)</td>
<td>470</td>
</tr>
<tr>
<td>A503</td>
<td>5</td>
<td>24×48</td>
<td>-</td>
<td>-0.3500</td>
<td>0.1712(6)</td>
<td>450</td>
</tr>
<tr>
<td>A504</td>
<td>5</td>
<td>32×60</td>
<td>-</td>
<td>-0.3530</td>
<td>0.1328(8)</td>
<td>350</td>
</tr>
<tr>
<td>A601</td>
<td>6</td>
<td>20×36</td>
<td>8.974</td>
<td>-0.3260</td>
<td>0.2150(7)</td>
<td>570</td>
</tr>
<tr>
<td>A602</td>
<td>6</td>
<td>24×48</td>
<td>-</td>
<td>-0.3300</td>
<td>0.1801(5)</td>
<td>470</td>
</tr>
<tr>
<td>A603</td>
<td>6</td>
<td>24×48</td>
<td>-</td>
<td>-0.3311</td>
<td>0.1690(7)</td>
<td>450</td>
</tr>
<tr>
<td>A604</td>
<td>6</td>
<td>32×60</td>
<td>-</td>
<td>-0.3340</td>
<td>0.1354(7)</td>
<td>360</td>
</tr>
</tbody>
</table>

Generated with HiRep, M. Hansen arXiv:1705.11010
Scale Setting at Large N_c

Use observables from Gradient Flow (Lüscher):

$$
\langle t^2 E(t) \rangle = \frac{3}{128\pi^2} \frac{N_c^2 - 1}{N_c} \lambda_{GF}(\mu)
$$

with $\mu = 1/\sqrt{8t}$ and $\lambda_{GF} = N_c g_{GF}^2$ ('t Hooft coupling).

For QCD, t_0 is defined through the implicit equation:

$$
\langle t^2 E(t) \rangle \bigg|_{t=t_0} = 0.3.
$$

Input $\rightarrow \sqrt{t_0}$ from other lattice simulations

Generalization for arbitrary N_c:

$$
\langle t^2 E(t) \rangle \bigg|_{t=t_0} = 0.1125 \frac{N_c^2 - 1}{N_c}, \quad (M\sqrt{t_0}) \bigg|_{M=420 \text{ MeV}} = 0.3090(83)
$$
Mass dependence of t_0

$$t_0(M^2) = t_0^{\text{chiral}} (1 + kM^2) + O(M^4) \xrightarrow{\text{Large } N_c} t_0^{\text{chiral}}$$
Spectrum: $N_c = 6, \, M_\pi = 560$ MeV

\[m_\pi + m_{\eta'} \]

\[2m_\pi \]

\[(\pi\pi)_{I=2} \]

\[(\pi\pi)_{AA} \]

\[\rho \]

\[\eta' \]

\[\pi \]
M_π and F_π at Large N_c
Large N_c scaling of meson masses and decay constants

P. Hernández,¹ C. Pena,² and F. Romero-López¹

¹IFIC (CSIC-UVEG), Edificio Institutos Investigación, Apt. 22085, E-46071 Valencia, Spain
²Departamento de Física Teórica and Instituto de Física Teórica UAM-CSIC,
Universidad Autónoma de Madrid, E-28049 Madrid, Spain

(Dated: July 29, 2019)

We perform an *ab initio* calculation of the N_c scaling of the low-energy couplings of the chiral
Lagrangian of low-energy strong interactions, extracted from the mass dependence of meson masses
and decay constants. We compute these observables on the lattice with four degenerate fermions,
$N_f = 4$, and varying number of colours, $N_c = 3 - 6$, at a lattice spacing of $a \simeq 0.075$ fm. We
find good agreement with the expected N_c scaling and measure the coefficients of the leading and
subleading terms in the large N_c expansion. From the subleading N_c corrections, we can also infer
the N_f dependence, that we use to extract the value of the low-energy couplings for different values
of N_f. We find agreement with previous determinations at $N_c = 3$ and $N_f = 2,3$ and also, our
results support a strong paramagnetic suppression of the chiral condensate in moving from $N_f = 2$
to $N_f = 3$.

Meson decay constant

- The decay constant parametrizes the hadronic part of $\pi^+ \to \ell^+ + \nu$.
- It is defined as:
 \[
 \langle 0|A_\mu(0)|\pi^+(q)\rangle = -iq_\mu \sqrt{2}F_\pi
 \]
 with $A_0 = \bar{q}\gamma_0\gamma_5q$.
- On the lattice:
 \[
 C_A(t) = \langle A_0(0)A_0(t)\rangle \propto F_\pi^2 e^{-M_\pi t}.
 \]
- By simple counting of traces,
 \[
 F_\pi^2 = O(N_c)
 \]
In Chiral Perturbation Theory:

\[
F_\pi = F \left[1 + \frac{M_\pi^2}{F_\pi^2} \left(4L_5(\mu) + 4N_fL_4(\mu) \right) \right. \\
\left. + \frac{N_f}{2} \frac{M_\pi^2}{(4\pi F_\pi)^2} \log \frac{M_\pi^2}{\mu^2} \right]
\]

1. \(F_\pi^2 = O(N_c)\)
2. \(L_5 = O(N_c)\)
3. \(L_4 = O(1)\) \(\xrightarrow{\text{Large } N_c}\) \(F_\pi = F \left[1 + 4 \frac{M_\pi^2}{F_\pi^2} L_5 \right]\)
Large N_c Scaling of Low Energy Constants for F_π

\[
F_\pi = F \left[1 + \frac{M_\pi^2}{F_\pi^2} \left(4L_F \right) + \frac{N_f}{2} \frac{M_\pi^2}{(4\pi F_\pi)^2} \log \frac{M_\pi^2}{\mu^2} \right]
\]

\[
F = \sqrt{N_c} \left(F_0 + \frac{F_1}{N_c} \right)
\]

$L_F = N_c L_F^{(0)} + L_F^{(1)}$
F_π at Large N_c

Simultaneous chiral and N_c fit.
Large N_c scaling of Low Energy Constants for M_π

$$M_\pi^2 = 2Bm \left[1 + \frac{M_\pi^2}{F_\pi^2} \left(8L_M \right) + \frac{1}{N_f} \frac{M_\pi^2}{(4\pi F_\pi)^2} \log \frac{M_\pi^2}{\mu^2} \right]$$

$$B = B_0 + \frac{B_1}{N_c}$$

$L_M = N_c L_M^{(0)} + L_M^{(1)}$
Simultaneous chiral and N_c fit.
Selected Results

From the fit, we can infer the N_c and N_f dependence:

$$\frac{F}{\sqrt{N_c}} = \left[67(3) - 26(4) \frac{N_f}{N_c} \right] \text{ MeV}$$

$N_f = 2 \rightarrow F = 86(3) \text{ MeV}$

$N_f = 3 \rightarrow F = 71(3) \text{ MeV}$
Selected Results

- Predict the decay constant LECs at $N_f = 2$
 \[\bar{\ell}_4 = 5.1(3), \text{ vs. } \text{FLAG 2019} \bar{\ell}_4 = 4.40(28) \]

- Predict the chiral condensates at $N_f = 3$
 \[\Sigma^{1/3}(N_f = 3) = 223(9) \text{ MeV vs. [Fukaya et al.]} 214(6)(24) \text{ MeV} \]

- Predict the ratio of chiral condensates at $N_f = 2, 3$
 \[\frac{\Sigma(N_f = 2)}{\Sigma(N_f = 3)} = 1.49(10) \text{ vs. [Bernard et al.]} 1.51(11) \]

- We find that the subleading parts to the LECs are sizeable.
 For the meson mass LEC we obtain:
 \[\frac{L^{N_f=4}}{N_c} \cdot 10^3 = -0.2(2) + \frac{2.9(6)}{N_c} + O(N_c^{-2}). \]
Scattering at Large N_c
Scattering in infinite volume

- Define asymptotic states: $|\phi_{\text{IN}}\rangle$, $|\phi_{\text{OUT}}\rangle$
- The Scattering Matrix relates these states:
 $$|\phi_{\text{OUT}}\rangle = \hat{S} |\phi_{\text{IN}}\rangle$$
- The Phase Shifts parametrize the S Matrix
 $$\langle \vec{k}\ell m | \hat{S} | \vec{p}\ell m \rangle = S_{\ell} = e^{2\delta_{\ell}(k)} \delta \left(|\vec{k}| - |\vec{p}| \right)$$
- Effective range expansion (s-wave):
 $$k \cot \delta_0 = -\frac{1}{a_0} + \frac{1}{2} rk^2 + O(k^4)$$
Scattering in finite volume

Lüscher method

Make use of finite volume artefacts to study interactions

\[\det [\cot \delta + M] = 0 \]

\[k \cot \delta_0 = -\frac{1}{a_0} + \frac{1}{2} rk^2 + O(k^4) \]

S Matrix \leftrightarrow kinematical quantity
Scattering in finite volume

Lüscher method

Make use of finite volume artefacts to study interactions

\[\text{det} [\cot \delta + M] = 0 \]

\[k \cot \delta_0 = -\frac{1}{a_0} + \frac{1}{2} rk^2 + O(k^4) \]

S Matrix \(\leftrightarrow\) **kinematical quantity** \(\rightarrow\) **scattering length**

For the ground state, a simpler formula is available:

(Huang & Yang, Lüscher, Hansen & Sharpe)

\[E - 2m = \frac{4\pi a_0}{mL^3} \left(1 + c_1 \frac{a_0}{L} + c_2 \left(\frac{a_0}{L} \right)^2 + c_3 \left(\frac{a_0}{L} \right)^3 + \frac{2\pi r (a_0)^2}{L^3} - \frac{\pi a_0}{m^2 L^3} \right) \]

\[\Rightarrow \text{At order } L^{-5}, \text{ the ground state is solely explained by } a_0 \]
Isospin 2 $\pi\pi$ scattering

$\pi^+\pi^+ \to \pi^+\pi^+$ is the simplest application to QCD

Phenomenological value (Ynduráin, 2002)

$$M_\pi a_0^{l=2} = 0.0422(22)$$

- Weakly coupled
- Less noisy
- Extract LECs of ChPT

$$C_{\pi\pi} = \langle \pi\pi(0)\pi^\dagger\pi^\dagger(t) \rangle$$
Motivation

Ensembles

M_π & F_π

Scattering

$K \rightarrow \pi\pi$

Summary

Ensemble

M

π & **F**

Scattering

K → **π**π

Summary

l=2 $\pi\pi$ scattering at Large N_c

In Chiral Perturbation Theory with $N_f = 4$ (Bijnens et al.)

\[
M_\pi a_0^{l=2} = -\frac{M_\pi^2}{16\pi F_\pi^2} \left[1 - \frac{16M_\pi^2}{F_\pi^2} L_{\pi\pi}(\mu) - \frac{M_\pi^2}{32\pi^2 F_\pi^2} \left(\frac{13}{4} \log \frac{M_\pi^2}{\mu^2} - \frac{3}{4} \right) \right]
\]

with $L_{\pi\pi} = L_0 + 2L_1 + 2L_2 + L_3 - 2L_4 - L_5 + 2L_6 + L_8$

$F_\pi^2 = O(N_c)$

$L_0, L_5, L_3, L_8 = O(N_c)$ \(\xrightarrow{\text{Large } N_c}\) $a_0^{l=2} \propto \frac{1}{N_c} (1 + \text{LECs})$

$L_1, L_2, L_4, L_6 = O(1)$

Preliminary results for Isospin 2 $\pi \pi$ scattering

\[\frac{N_c}{3} M_\pi a_{I=2} \]

- Physical value
- $N_c = 3$
- $N_c = 4$
- $N_c = 5$
- $N_c = 6$
Other scattering channels

In a general theory $N_f > 3$, there are more scattering channels (Bijnens et al.)

\[
\begin{align*}
 a^I_{0,\text{tree}} &= \frac{M^2_\pi}{16\pi F^2_\pi} \left(2N - \frac{1}{N} \right), \\
 a^S_{0,\text{tree}} &= \frac{M^2_\pi}{16\pi F^2_\pi} \left(N - \frac{2}{N} \right), \\
 a^A_{1,\text{tree}} &= \frac{M^2_\pi}{48\pi F^2_\pi} N, \\
 a^{SA}_{1,\text{tree}} &= a^{AS}_{1,\text{tree}} = 0, \\
 a^{SS}_{0,\text{tree}} &= -\frac{M^2_\pi}{16\pi F^2_\pi}, \\
 a^{AA}_{0,\text{tree}} &= \frac{M^2_\pi}{16\pi F^2_\pi}.
\end{align*}
\]
Preliminary results for $\pi D_s - KD$ scattering

\[\frac{N_c}{3} M_\pi a_0^{AA} \]

\[\sqrt{\frac{N_c}{3} \frac{M_\pi}{F_\pi}} \]
$K \to \pi\pi$ at Large N_c
Large N_c limit for $K \rightarrow \pi\pi$

Weak decay with two isospin final states, $I = 0, 2 \rightarrow A_0, A_2$
Large N_c limit for $K \rightarrow \pi\pi$

Weak decay with two isospin final states, $I = 0, 2 \rightarrow A_0, A_2$
Large N_c limit for $K \to \pi\pi$

Weak decay with two isospin final states, $I = 0, 2 \to A_0, A_2$

- Diag.(a) has 2 quark loops $\to O(N_c^2)$
- Diag.(b) has 1 quark loop $\to O(N_c)$
- Diag.(c) has 2 quark loops and 4 vertices $\to O(\alpha_s^2 N_c^2) = O(1)$
Large N_c limit for $K \to \pi\pi$

Weak decay with two isospin final states, $I = 0, 2 \to A_0, A_2$

- Diag.(a) has 2 quark loops $\to O(N_c^2)$
- Diag.(b) has 1 quark loop $\to O(N_c)$
- Diag.(c) has 2 quark loops and 4 vertices $\to O(\alpha_s^2 N_c^2) = O(1)$

\Rightarrow For neutral particles, Diag.(a) is not present:

$A(K^0 \to \pi^0\pi^0) = A_0 - \sqrt{2}A_2 = 0$ at Large N_c
Large N_c limit for $K \rightarrow \pi\pi$

Weak decay with two isospin final states, $I = 0, 2 \rightarrow A_0, A_2$

- Diag.(a) has 2 quark loops $\rightarrow O(N_c^2)$
- Diag.(b) has 1 quark loop $\rightarrow O(N_c)$
- Diag.(c) has 2 quark loops and 4 vertices $\rightarrow O(\alpha_s^2 N_c^2) = O(1)$

\begin{align*}
\Rightarrow & \text{For neutral particles, Diag.(a) is not present:} \\
A(K^0 \rightarrow \pi^0\pi^0) = A_0 - \sqrt{2}A_2 = 0 \text{ at Large } N_c
\end{align*}

The Large N_c prediction for $K \rightarrow \pi\pi$ is:

$$\frac{\text{Re } A_0}{\text{Re } A_2} = \sqrt{2}$$
Large N_c limit for $K \to \pi\pi$

- The Large N_c prediction for $K \to \pi\pi$ is (Manohar, Large N QCD):
 \[
 \frac{\text{Re } A_0}{\text{Re } A_2} = \sqrt{2}
 \]

- Experimental values for $K \to \pi\pi$ are very well measured in two isospin channels, $I = 0, 2$ and Large N_c fails.
 \[
 \frac{\text{Re } A_0}{\text{Re } A_2} \approx 22 \gg \sqrt{2}
 \]

- State of the art result by RBC-UKQCD, 2015:
 \[
 \frac{\text{Re } A_0}{\text{Re } A_2} = 31(11),
 \]

- Why does Large N_c fail? Very large $1/N_c$ corrections? Can Lattice QCD help?
Motivation

Ensembles

$M_\pi \& F_\pi$

Scattering

$K \rightarrow \pi \pi$

Summary

Relating $K \rightarrow \pi$ to A_2 and A_0

$\mathcal{H}^{SM}(W^\mu, u, d...) \rightarrow \mathcal{H}_W^{N_f=4}(u, d, c, s) \rightarrow \mathcal{H}_W^{ChPT}(\pi, K, D, \eta)$

$\mathcal{H}_W^{ChPT} \propto g^+ O^+ + g^- O^-$

The tree level result in ChPT for the ratio is:

$$\frac{A_0}{A_2} = \frac{1}{2\sqrt{2}} \left(1 + 3\frac{g^-}{g^+} \right) \xrightarrow{\text{Large } N_c} \sqrt{2}$$

Determine g^\pm from Lattice QCD:

$$A^\pm = \langle K | O^\pm | \pi \rangle \xrightarrow{M_\pi \rightarrow 0} g^\pm$$

$g^\pm \propto$

Color-disconnected $O(N_c^2)$

Color-connected $O(N_c)$
Preliminary results for $K \to \pi$ at Large N_c

\[R^+ = 1 + 1.42/N_c + 2.07/N_c^2 \]
\[R^+ = 1 + 1.04/N_c + 8.15/N_c^2 \]
\[R^- = 1 - 1.39/N_c + 1.34/N_c^2 \]
\[R^- = 1 - 1.53/N_c - 0.05/N_c^2 \]
Preliminary results for $K \rightarrow \pi$ at Large N_c

$$R^+ = 1 + 1.42/N_c + 2.07/N_c^2$$
$$R^- = 1 - 1.39/N_c + 1.34/N_c^2$$
$$R^+ = 1 + 1.04/N_c + 8.15/N_c^2$$
$$R^- = 1 - 1.53/N_c - 0.05/N_c^2$$

Quenching effects at order $1/N_c^2$
Preliminary results for $K \rightarrow \pi$ at Large N_c

\[
R^+ = 1 + \frac{1.42}{N_c} + \frac{2.07}{N_c^2} \\
R^- = 1 + \frac{1.04}{N_c} + \frac{8.15}{N_c^2}
\]

\[
\frac{A_0}{A_2} \bigg|_{N_c=3}^{N_f=4} = 5.7(3)_{\text{stat}}
\]

Quenching effects at order $1/N_c^2$
Summary
Outlook

- Meson masses and decay constants
- Meson scattering (isospin-2, isospin-1/ρ, isospin-0)
- $K \rightarrow \pi$ and $K \rightarrow \pi\pi$
- η' meson
- Tetraquarks

1. Finished
2. Started
3. Planned
Outlook

- Meson masses and decay constants
- Meson scattering (isospin-2, isospin-1/ρ, isospin-0)
- $K \rightarrow \pi$ and $K \rightarrow \pi\pi$
- η' meson
- Tetraquarks

Final goal: getting some understanding of QCD ...
Motivation

Ensembles

M_π & F_π

Scattering

$K \rightarrow \pi \pi$

Summary

Outlook

- Meson masses and decay constants
- Meson scattering (isospin-2, isospin-1/ρ, isospin-0)
- $K \rightarrow \pi$ and $K \rightarrow \pi\pi$
- η' meson
- Tetraquarks

Final goal: getting some understanding of QCD ...
Thanks for your attention!

This project has received funding through the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 713673 and "La Caixa" Foundation
Framework for $K \rightarrow \pi \pi$: weak interactions in ChPT

1. Take the lowest order Lagrangian is written as:
 $$\mathcal{L}_2 = \frac{F^2}{4} \text{tr} \left(\partial_\mu U^\dagger \partial^\mu U \right) + \frac{F^2 B}{2} \text{tr} \left(MU + M^\dagger U^\dagger \right),$$

2. Use covariant derivative with an external left-handed source:
 $$\partial_\mu U \rightarrow D_\mu U = \partial_\mu U + T^a A^a_\mu U,$$

3. Define the left current as:
 $$\mathcal{J}^a_\mu = \frac{\delta \mathcal{L}}{\delta A^a_\mu} = F^2 \text{Tr} \left(T_a U \partial_\mu U^\dagger \right) \leftrightarrow \bar{q} T^a \gamma^L_\mu q$$

4. Build operators with the right irreducible representation of the $SU(4)$ flavour group ($O_{\Gamma=20}, O_{\Gamma=84}$). One needs 4 left indices:
 $$O_\Gamma = t_{ijkl} (U \partial_\mu U^\dagger)_{ij} (U \partial_\mu U^\dagger)_{kl}$$

The electroweak Hamiltonian in ChPT is:

$$\mathcal{H}_W = g^+ O^+_{\Gamma=84} + g^- O^-_{\Gamma=20}$$
U(N_f) Chiral Perturbation Theory

At Large N_c, the flavour singlet becomes a Goldstone boson. A consistent power counting is:

$$\mathcal{O}(\delta) \sim \mathcal{O}(p^2) \sim \mathcal{O}(m_q) \sim \mathcal{O}(m_{\pi}^2) \sim \mathcal{O}(N_c^{-1}).$$

At NNLO for the mass:

$$M_{\pi}^2 = 2m \left(B_0 + \frac{B_1}{N_c} + \frac{B_2}{N_c^2} \right) \left[1 + \frac{1}{N_f} \frac{M_{\pi}^2}{(4\pi F_{\pi})^2} \log \frac{M_{\pi}^2}{\mu^2} \right. \right.

\left. - \frac{1}{N_f} \frac{M_{\eta'}^2}{(4\pi F_{\pi})^2} \log \frac{M_{\eta'}^2}{\mu^2} + 8 \frac{M_{\pi}^2}{F_{\pi}^2} (N_c L^{(0)}_M + L^{(1)}_M) + N_c^2 K^{(0)}_M \left(\frac{M_{\pi}^2}{F_{\pi}^2} \right)^2 \right]$$

Matching of SU(N_f) and U(N_f):

$$[B]_{SU(N_f)} = [B]_{U(N_f)} \left(1 - \frac{1}{N_f} \frac{M_0^2}{(4\pi F_{\pi})^2} \log \frac{M_0^2}{\mu^2} \right),$$

$$\left[L^{(1)}_M \right]_{SU(N_f)} = \left[L^{(1)}_M \right]_{U(N_f)} - \frac{1}{8N_f(4\pi)^2} \left(\log \frac{M_0^2}{\mu^2} + 1 \right),$$