

The b₁ resonance from lattice QCD

Antoni Woss

Advance in Lattice Gauge Theory 2019

CERN

based on work with the **Hadron Spectrum Collaboration**: **AW**, Christopher Thomas, Jo Dudek, Robert Edwards, David Wilson - **arXiv:1904.04136**

hadspec.org

why the b₁?

'natural' spin-parities:
$$J^P = 0^+, 1^-, 2^+, ...$$

e.g.: $\sigma(600), \rho(770), f_2(1270)$

seen in pseudoscalar-pseudoscalar scattering

'unnatural' spin-parities: $J^P=0^-,1^+,2^-,\ldots$

why the b₁?

'natural' spin-parities:
$$J^P=0^+, 1^-, 2^+, ...$$

e.g.: $\sigma(600), \, \rho(770), \, f_2(1270)$

seen in pseudoscalar-pseudoscalar scattering

'unnatural' spin-parities:
$$J^P = 0^{-1+} 2^{-}, \dots$$

e.g.: $h_1(1170), b_1(1235), a_1(1260)$

cannot access quantum numbers in pseudoscalar-pseudoscalar need something else...

e.g.: vector-pseudoscalar scattering

~1()

$$I^{G}(J^{PC}) = 1^{+}(1^{+})$$

b1(1235) DECAY MODES	Fraction (Γ _i /Γ)	Confidence level	р (MeV/c)
$\omega \pi$ [D/S amplitude ratio = 0.277	seen $\pm 0.027]$			348
$\pi^{\pm}\gamma$	$(1.6\pm$	$0.4) imes 10^{-1}$	-3	607
$\eta \rho$	seen			†
$\pi^+\pi^+\pi^-\pi^0$	< 50	%	84%	535
$K^{*}(892)^{\pm}K^{\mp}$	seen			†
$(K\overline{K})^{\pm}\pi^{0}$	< 8	%	90%	248
$K^{0}_{S} K^{0}_{I} \pi^{\pm}$	< 6	%	90%	235
$K^{\bar{0}}_{S}K^{\bar{0}}_{S}\pi^{\pm}$	< 2	%	90%	235
$\phi\pi$	< 1.5	%	84%	147

3 volumes: 2 - 3 fm $L/a_s = 16, 20, 24$ $T/a_t = 128$ $m_{\pi}L \sim 4 - 6$ anisotropic action: $\xi = a_s/a_t \sim 3.5$

Symanzik-improved Wilson-Clover fermions

Distillation (Peardon *et al* 2009) to efficiently handle the many wick contractions

heavier-than-physical light quark masses $m_{\pi} \sim 391 \text{ MeV}$

used in many calculations to-date

earlier lattice studies: Lang et al JHEP 04 162 (2014) Michael & McNeile PRD 73 074506

there are open three-body thresholds

we will return to these later...

necessitates the inclusion of single-mesonlike, two-meson-like and three-meson-like operators in the operator bases

L/a_s	16	20	24
	$22 imes \bar{\psi} \mathbf{\Gamma} \psi$	$22 imes \bar{\psi} \mathbf{\Gamma} \psi$	$22 imes \bar{\psi} \mathbf{\Gamma} \psi$
	$\pi_{[000]}\omega_{[000]}$	$\pi_{[000]}\omega_{[000]}$	$\pi_{[000]}\omega_{[000]}$
	$\pi_{[000]}\phi_{[000]}$	$\pi_{[000]}\phi_{[000]}$	$\pi_{[000]} \phi_{[000]}$
	$ ho_{[000]}\eta_{[000]}$	$ ho_{[000]}\eta_{[000]}$	$ ho_{[000]}\eta_{[000]}$
	$K^*_{[000]}\overline{K}_{[000]}$	$K^*_{[000]}\overline{K}_{[000]}$	$K^*_{[000]}\overline{K}_{[000]}$
			$\{2\}\pi_{[001]}\omega_{[001]}$

optimised η – follows from variational analysis of a matrix of correlation functions of $u\bar{u} + d\bar{d}$ and $s\bar{s}$ quark bilinear operators in relevant irreps

optimised ω and ϕ operators – follows from variational analysis of a matrix of correlation functions of $u\bar{u} + d\bar{d}$ and $s\bar{s}$ quark bilinear operators in relevant irreps

optimised ω and ϕ operators – follows from variational analysis of a matrix of correlation functions of $u\bar{u} + d\bar{d}$ and $s\bar{s}$ quark bilinear operators in relevant irreps

 $\boldsymbol{\omega}$ appears as ground state, $\boldsymbol{\phi}$ appears as first excited state

optimised ρ and K^* operators – follow from variational analysis of a matrix of correlation functions of quark bilinear operators and two-meson operators

will return to these later...

partial-waves

restrict to $[\overrightarrow{P}]A_2$ irreps at non-zero momentum to circumvent the need to disentangle $J^P = 1^-$ contributions

partial-waves

restrict to $[\overrightarrow{P}]A_2$ irreps at non-zero momentum to circumvent the need to disentangle $J^P = 1^-$ contributions focus on the $J^P = 1^+$

spectrum

36 energy levels used to constrain the scattering amplitudes

36 energy levels used to constrain the scattering amplitudes

exclude any energies that appear to show sensitivity to three-body operators

General two-body quantisation condition

$$\det \left[\mathbf{1} + i\boldsymbol{\rho}(E) \cdot \boldsymbol{t}(E) \cdot (\mathbf{1} + i\boldsymbol{\mathcal{M}}(E,L)) \right] = 0$$
phase space
infinite volume scattering
t-matrix
known finite-volume
functions

General two-body quantisation condition

$$\det \left[\mathbf{1} + i\boldsymbol{\rho}(E) \cdot \boldsymbol{t}(E) \cdot (\mathbf{1} + i\mathcal{M}(E, L)) \right] = 0$$

$$\int_{\text{phase space}} \inf \left[\inf \left\{ \operatorname{infinite volume scattering}_{t-\text{matrix}} \right\} \operatorname{known finite-volume}_{t-\text{matrix}} \right]$$

$$\int_{t=\binom{t(\pi\omega\{3S_1\}|\pi\omega\{3S_1\})}{t(\pi\omega\{3S_1\}|\pi\omega\{3D_1\})} \frac{t(\pi\omega\{3S_1\}|\pi\phi\{3S_1\})}{t(\pi\omega\{3D_1\}|\pi\phi\{3S_1\})} \frac{t(\pi\omega\{3S_1\}|\pi\phi\{3S_1\})}{t(\pi\phi\{3S_1\}|\pi\phi\{3S_1\})} \right]$$
K-matrix approach:
$$\mathbf{t}^{-1} = \mathbf{K}^{-1} - i\boldsymbol{\rho}$$
Simple phase space

$$\mathbf{t}^{-1} = \mathbf{K}^{-1} + oldsymbol{I}$$
 Chew-Mandelstam phase space

many parameterisations

$$K_{\ell J a, \ell' J b}(s) = \frac{g_{\ell J a}(s) g_{\ell' J b}(s)}{m^2 - s} + \sum_{n=0}^{N} \gamma_{\ell J a, \ell' J b}^{(n)} \cdot s^n$$

levels from the determinant

 $det \left[\mathbf{1} + i\boldsymbol{\rho}(E) \cdot \boldsymbol{t}(E) \cdot (\mathbf{1} + i\boldsymbol{\mathcal{M}}(E,L))\right] = 0$

$$\chi^2 / N_{\rm dof} = \frac{36.8}{36-5} = 1.19.$$

poles & couplings

poles & couplings

pole position at various pion masses

brief summary

calculated lattice spectra in a number of irreps using single-, two- and three- 0.8 meson operators

brief summary

 $\rho_a \rho_b \left| t_{\ell a, \ell' b} \right|^2$ $J^{P} = 1^{+}$ $m_{\pi} \sim 391 \,\mathrm{MeV}$ $\left(\pi\omega\left\{{}^{3}S_{1}\right\}\middle|\pi\omega\left\{{}^{3}S_{1}\right\}\right)$ calculated lattice spectra in a number of irreps using single-, two- and three-0.8 meson operators 0.6 calculated three-coupled vector-0.4 pseudoscalar amplitudes 0.2 $\left(\pi\phi\{{}^{3}S_{1}\}\big|\pi\phi\{{}^{3}S_{1}\}\right)$ 0.02 $\left(\pi\omega\left\{{}^{3}S_{1}\right\}|\pi\omega\left\{{}^{3}D_{1}\right\}\right)$ $\left(\pi\omega\left\{{}^{3}D_{1}\right\}\middle|\pi\omega\left\{{}^{3}D_{1}\right\}\right)$ 0.002 1300 1500 1250 1350 1400 1450 ଷତ 000 0000 000 0 00 **0** 00 0 ୦ଡ 0 0 ଡ଼ 00 ο 0 1250 1300 1400 1450 1500 1350 $-m_R$ 200 200 600 -50 |c| Γ_R -100 $\pi\omega\{{}^{3}S_{1}\}$ b_1 -150 $\pi\omega\{^{3}D_{1}\}$ $\pi \phi\{\!\!\!^3\!S_1\!\}$ +

brief summary

region of study includes the opening of several two- and three-meson thresholds:

necessitates the inclusion of single-meson-like, two-meson-like and threemeson-like operators in the basis region of study includes the opening of several two- and three-meson thresholds:

necessitates the inclusion of single-meson-like, two-meson-like and threemeson-like operators in the basis

previous talks have discussed the construction of single-meson-like and twomeson-like operators region of study includes the opening of several two- and three-meson thresholds:

necessitates the inclusion of single-meson-like, two-meson-like and threemeson-like operators in the basis

previous talks have discussed the construction of single-meson-like and twomeson-like operators

what about three-meson-like?

one way is to iteratively apply the two-meson construction

efficient at interpolating energies near the corresponding two-meson noninteracting energies

$$E_{\text{n.i.}}^{(2)} = \sqrt{m_1^2 + |\vec{p_1}|^2} + \sqrt{m_2^2 + |\vec{p_2}|^2}$$

three-meson construction

efficient at interpolating energies near the corresponding three-meson noninteracting energies

$$E_{\rm n.i.}^{(3)} = \sqrt{m_1^2 + |\vec{p_1}|^2} + \sqrt{m_2^2 + |\vec{p_2}|^2} + \sqrt{m_3^2 + |\vec{p_3}|^2}$$

however, these operators pay no attention to interactions in the two-meson subsystems...

as an example consider isospin-2 $\pi\pi\pi$

previous construction would attempt to describe isospin-1 $\pi\pi$ using only $\pi\pi$ -like operators...

we know this is bad...

rather build three-meson-like operators that incorporate subsystem interactions

use optimised two-meson operators in the three-meson operator construction

by design we anticipate these operators to efficiently interpolate energies near

$$E_{\text{n.i.}}^{(2+1)} = E_{\mathbb{R}_{12}^{\mathfrak{n}}}^{\Lambda_{12}}(\vec{p}_{12}) + \sqrt{m_3^2 + |\vec{p}_3|^2},$$

finite-volume energies in the two-
meson subsystem in irrep $[\vec{p}_{12}]\Lambda_{12}$

as an example consider $\pi\pi\eta$ transforming in $[000]T_1^+$

 $\vec{p}_1 = [000], \vec{p}_2 = [000], \vec{p}_3 = [000]$

$$\underbrace{\overbrace{[000]A_1^-}^{(I^G=1^-)}}_{\pi} \otimes \underbrace{\overbrace{[000]A_1^-}^{(I^G=1^-)}}_{\pi} \otimes \underbrace{\overbrace{[000]A_1^-}^{(I^G=0^+)}}_{\eta} \to [000]A_1^-$$

as an example consider $\pi\pi\eta$ transforming in $[000]T_1^+$

 $\vec{p}_1 = [000], \vec{p}_2 = [000], \vec{p}_3 = [000]$

$$\underbrace{\underbrace{[000]A_1^-}_{\pi} \otimes \underbrace{[000]A_1^-}_{\pi} \otimes \underbrace{[000]A_1^-}_{\pi} \otimes \underbrace{[000]A_1^-}_{\eta} \otimes \underbrace{[000]A_1^-}_{\eta} \to [000]A_1^-$$

 $\vec{p}_1 = [001], \vec{p}_2 = [001], \vec{p}_3 = [000]$

$$\underbrace{[001]A_2}_{\pi} \otimes \underbrace{[001]A_2}_{\pi} \otimes \underbrace{[001]A_2}_{\pi} \otimes \underbrace{[000]A_1^-}_{\eta} \to \underbrace{[000]T_1^+}_{\eta} \oplus \dots$$

as an example consider $\pi\pi\eta$ transforming in $[000]T_1^+$

 $\vec{p}_1 = [000], \vec{p}_2 = [000], \vec{p}_3 = [000]$

$$\underbrace{\underbrace{[000]A_1^-}_{\pi} \otimes \underbrace{[000]A_1^-}_{\pi} \otimes \underbrace{[000]A_1^-}_{\pi} \otimes \underbrace{[000]A_1^-}_{\eta} \otimes \underbrace{[000]A_1^-}_{\eta} \to [000]A_1^-$$

 $\vec{p}_1 = [001], \vec{p}_2 = [001], \vec{p}_3 = [000]$

two distinct two-meson subsystems:

First:

 $\vec{p}_1 = [001], \vec{p}_2 = [001], \vec{p}_3 = [000]$

Second:

 $\vec{p}_1 = [001], \vec{p}_2 = [001], \vec{p}_3 = [000]$

three-meson-like operators example

PhysRevD.87.034505

three-meson-like operators example

Second:

PhysRevD.93.094506

lots of excellent work on a general quantisation condition for three-particle scattering

not quite ready for use in systems such as $\pi\pi\eta$ or $\pi\overline{K}K$ in isospin-1

as a crude test of how three-body amplitudes may influence the spectra and our determination of the two-body amplitudes, approximate ρ and K^* as `stable'

systematic tests – `three-body' amplitudes

as a crude test of how three-body amplitudes may influence the spectra and our determination of the two-body amplitudes, approximate ρ and K^* as `stable'

take `*stable'* masses to be the pole masses determined in previous scattering calculations

systematic tests – `three-body' amplitudes

as a crude test of how three-body amplitudes may influence the spectra and our determination of the two-body amplitudes, approximate ρ and K^* as `stable'

take `*stable'* masses to be the pole masses determined in previous scattering calculations

this appears to be reasonable when the ρ and K^* are at zero momentum: at these volumes ground-state appears dominated by $q\bar{q}'$ -like operators

PhysRevD.91.054008

PhysRevD.87.034505

fit the 5 coupled-channels to the lattice spectra: 36 levels + 12 additional levels

fit the 5 coupled-channels to the lattice spectra: 36 levels + 12 additional levels

 $m_R = 1387(7) \text{ MeV}$ $\Gamma_R = 122(12) \text{ MeV}$

fit the 5 coupled-channels to the lattice spectra: 36 levels + 12 additional levels

summary & outlook

summary & outlook

a step in understanding the role of non-zero intrinsic spin in scattering: essential to calculate, e.g. a_1 , π_1 , Z_c

this calculation provides a good testing ground for extensions to the three-body formalism to incorporate isospin and coupled channels

desirable to determine the behaviour $_{0.002}$ of the pole and couplings at a lower pion mass

summary & outlook

a step in understanding the role of non-zero intrinsic spin in scattering: essential to calculate, e.g. a_1 , π_1 , Z_c

this calculation provides a good testing ground for extensions to the three-body formalism to incorporate isospin and coupled channels

desirable to determine the behaviour $_{0.002}$ of the pole and couplings at a lower pion mass

thank you for listening!

backup

 $t(\pi\omega\{{}^{3}\!S_1\}|\pi\omega\{{}^{3}\!S_1\})$

e.g.: single-channel K-matrix with one pole: $\chi^2/N_{dof} = \frac{15.1}{20-2} = 0.84$

backup – two-channel phase-shifts + mixing-angles

backup – three-channel phase-shifts + mixing-angles

backup – operator tables

L/a_s	16	20	24	L/a_s	16	20	24
$\rho_{[000],T_1^-}$	$\begin{array}{c} 26 \times \bar{\psi} \mathbf{\Gamma} \psi \\ 3 \times \pi \pi \end{array}$	$26 \times \bar{\psi} \mathbf{\Gamma} \psi$ $2 \times \pi \pi$	$12 imes \bar{\psi} \mathbf{\Gamma} \psi$	$\bar{K}^{*}_{[000], T_{1}^{-}}$	$6 \times \bar{\psi} \Gamma \psi$	$16 \times \bar{\psi} \mathbf{\Gamma} \psi$	$9 \times \bar{\psi} \Gamma \psi$
$\rho_{[001], A_1}$	$8 \times \bar{\psi} \Gamma \psi$ $4 \times \pi \pi$	$18 \times \bar{\psi} \Gamma \psi$ $4 \times \pi \pi$	$ \frac{18 \times \bar{\psi} \Gamma \psi}{4 \times \pi \pi} $	$K^*_{[001], A_1}$	$8 \times \bar{\psi} \mathbf{\Gamma} \psi$ $2 \times \pi K$	$ \begin{array}{l} 16 \times \bar{\psi} \mathbf{\Gamma} \psi \\ 6 \times \pi K \end{array} $	$8 imesar\psi {f \Gamma} y$
$ ho_{[011], A_1}$	$\frac{27 \times \bar{\psi} \Gamma \psi}{3 \times \pi \pi}$	$\frac{27 \times \bar{\psi} \Gamma \psi}{3 \times \pi \pi}$	$\frac{27 \times \bar{\psi} \Gamma \psi}{3 \times \pi \pi}$	$K^*_{[011], A_1}$	$8 \times \bar{\psi} \mathbf{\Gamma} \psi$ $3 \times \pi K$	$ \begin{array}{c} 26 \times \bar{\psi} \mathbf{\Gamma} \psi \\ 6 \times \pi K \end{array} $	
$ ho_{[111], A_1}$	$8 \times \bar{\psi} \Gamma \psi$ $3 \times \pi \pi$	$21 \times \bar{\psi} \Gamma \psi$ $3 \times \pi \pi$	$21 \times \bar{\psi} \Gamma \psi$ $3 \times \pi \pi$	$K^*_{[111], A_1}$	$8 \times \bar{\psi} \Gamma \psi$ $4 \times \pi K$	$9 \times \bar{\psi} \Gamma \psi$ $4 \times \pi K$	$9 \times \bar{\psi} \Gamma v$

L/a_s	16	20
	$14 imes ar{\psi} \mathbf{\Gamma} \psi$	$14 \times \bar{\psi} \mathbf{\Gamma} \psi$
$a_{0[001], A_1}$	$4 \times \pi \eta$	$4 \times \pi \eta$
	$2 imes \bar{K}K$	$2 \times \bar{K}K$
	$18 \times \bar{\psi} \mathbf{\Gamma} \psi$	$18 \times \bar{\psi} \mathbf{\Gamma} \psi$
$a_{0[011], A_1}$	$4 \times \pi \eta$	$4 \times \pi \eta$
	$2 \times \bar{K}K$	$2 imes \bar{K}K$
		$15 \times \bar{\psi} \Gamma \psi$
$a_{0[111], A_1}$		$4 \times \pi \eta$
		$2 \times \bar{K}K$
backup – operator tables

L/a_s	16	20	24
$[001]A_2$	$12 imes \bar{\psi} \mathbf{\Gamma} \psi$	$12 imes \bar{\psi} \mathbf{\Gamma} \psi$	$12 imes \bar{\psi} \mathbf{\Gamma} \psi$
	$\pi_{[000]}\omega_{[001]}$	$\pi_{[000]}\omega_{[001]}$	$\pi_{[000]}\omega_{[001]}$
	$\pi_{[000]}\phi_{[001]}$	$\pi_{[001]}\omega_{[000]}$	$\pi_{[001]}\omega_{[000]}$
	$\rho_{[001]}\eta_{[000]}$	$\pi_{[000]}\phi_{[001]}$	$\pi_{[000]}\phi_{[001]}$
	$a_{0[001]}\pi_{[000]}$	$ ho_{[001]}\eta_{[000]}$	$ ho_{[001]}\eta_{[000]}$
	$\pi_{[001]}\omega_{[000]}$	$a_{0[001]}\pi_{[000]}$	$K^*_{[001]}\bar{K}_{[000]}$
	$K^*_{[001]}\bar{K}_{[000]}$	$K^*_{[001]} \bar{K}_{[000]}$	$\rho_{[001]}^{1}\eta_{[000]}$
	$ ho_{[000]}\eta_{[001]}$		$\rho_{[000]}\eta_{[001]}$
	$\pi_{[001]}\phi_{[000]}$		$\pi_{[001]}\phi_{[000]}$
			$K^*_{[000]}\bar{K}_{[001]}$
			$\{2\}\pi_{[001]}\omega_{[011]}$
			$\{2\}\pi_{[011]}\omega_{[001]}$

L/a_s	16	20	24
	$20 imes \bar{\psi} \mathbf{\Gamma} \psi$	$20 imes ar{\psi} \mathbf{\Gamma} \psi$	$20 imes ar{\psi} \Gamma \psi$
	$\pi_{[001]}\omega_{[001]}$	$\pi_{[001]}\omega_{[001]}$	$\pi_{[001]}\omega_{[001]}$
	$ ho_{[001]}\eta_{[001]}$	$ ho_{[001]}\eta_{[001]}$	$\pi_{[000]}\omega_{[002]}$
$[002]A_2$	$K^*_{[001]}ar{K}_{[001]}$	$\pi_{[000]}\omega_{[002]}$	$ ho_{[001]}\eta_{[001]}$
	$\pi_{[000]}\omega_{[002]}$	$\pi_{[001]}\phi_{[001]}$	$\pi_{[001]}\phi_{[001]}$
	$\pi_{[001]}\phi_{[001]}$	$K^*_{[001]}ar{K}_{[001]}$	$K^*_{[001]}\bar{K}_{[001]}$
	$\rho_{[001]}^{\tt l}\eta_{[001]}$	$a_{0[001]}\pi_{[001]}$	$\pi_{[000]}\phi_{[002]}$

L/a_s	16	20	24
$[011]A_2$	$21\times \bar{\psi} \pmb{\Gamma} \psi$	$21\times \bar{\psi} {\bf \Gamma} \psi$	$21 imes \bar{\psi} \mathbf{\Gamma} \psi$
	$\pi_{[000]}\omega_{[011]} \ \pi_{[000]}\phi_{[011]}$	$\pi_{[000]}\omega_{[011]} \ \pi_{[000]}\phi_{[011]}$	$\pi_{[000]}\omega_{[011]}$ $\{2\}\pi_{[001]}\omega_{[001]}$
	$ ho_{[011]}\eta_{[000]}$ $K^*_{intermal}ar{K}_{[000]}$	$\{2\}\pi_{[001]}\omega_{[001]}$	$\pi_{[000]}\phi_{[011]}$
	$\{2\}\pi_{[001]}\omega_{[001]}$	$\mu_{[011]} \eta_{[000]} = a_{0[011]} \pi_{[000]}$	$ ho_{[011]} \omega_{[000]} ho_{[011]} \eta_{[000]}$
	$a_{0[011]}\pi_{[000]}$	$K^*_{[011]}\bar{K}_{[000]}$	
	$\pi_{[011]}\omega_{[000]}$		

L/a_s	16	20	24
$[111]A_2$	$15 imes \bar{\psi} \mathbf{\Gamma} \psi$	$15\times \bar{\psi} {\bf \Gamma} \psi$	$15 imes \bar{\psi} \mathbf{\Gamma} \psi$
	$\pi_{[000]}\omega_{[111]}$	$\pi_{[000]}\omega_{[111]}$	$\pi_{[000]}\omega_{[111]}$
	$\pi_{[000]}\phi_{[111]}$	$\pi_{[000]}\phi_{[111]}$	$\pi_{[000]}\phi_{[111]}$
	$ ho_{[111]}\eta_{[000]}$	${2}\pi_{[001]}\omega_{[011]}$	${2}\pi_{[001]}\omega_{[011]}$
	$K^*_{[111]}ar{K}_{[000]}$	$ ho_{[111]}\eta_{[000]}$	$\{2\}\pi_{[011]}\omega_{[001]}$
	$\{2\}\pi_{[001]}\omega_{[011]}$	$K^*_{[111]}\bar{K}_{[000]}$	$ ho_{[111]}\eta_{[000]}$
	$\pi_{[111]}\omega_{[000]}$	$a_{0[111]}\pi_{[000]}$	$\pi_{[111]}\omega_{[000]}$
	$\{2\}\pi_{[011]}\omega_{[001]}$		$K^*_{[111]}\bar{K}_{[000]}$

backup – higher partial-waves

$$\boldsymbol{K}(s) = \frac{1}{m^2 - s} \begin{pmatrix} g_{\pi\omega\{^3S_1\}}^2 & g_{\pi\omega\{^3S_1\}} g_{\pi\omega\{^3D_1\}} & 0\\ g_{\pi\omega\{^3S_1\}} g_{\pi\omega\{^3D_1\}} & g_{\pi\omega\{^3D_1\}}^2 & 0\\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} \gamma_{\pi\omega\{^3S_1\},\pi\omega\{^3S_1\}}^{(0)} & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & \gamma_{\pi\phi\{^3S_1\},\pi\phi\{^3S_1\}}^{(0)} \end{pmatrix}$$

used with the Chew-Mandelstam prescription with $\operatorname{Re} I_a(s=m^2)=0$

$$m = (0.2465 \pm 0.0007 \pm 0.0001) \cdot a_t^{-1}$$

$$g_{\pi\omega\{^3S_1\}} = (0.106 \pm 0.007 \pm 0.007) \cdot a_t^{-1}$$

$$g_{\pi\omega\{^3D_1\}} = (1.08 \pm 0.47 \pm 0.28) \cdot a_t$$

$$\gamma_{\pi\omega\{^3S_1\},\pi\omega\{^3S_1\}}^{(0)} = -0.35 \pm 0.19 \pm 0.18$$

$$\gamma_{\pi\phi\{^3S_1\},\pi\phi\{^3S_1\}}^{(0)} = 0.90 \pm 0.24 \pm 0.27$$

$$\chi^2/N_{\text{dof}} = \frac{36.8}{36-5} = 1.19.$$

backup – systematic tests $g(^{3}D_{1})$ **variation**

backup – **mixed P**-waves

$$(I^G)J^{PC} = (1^+)1^{+-} \xrightarrow{\rightarrow \pi\omega \rightarrow \pi(\pi\pi\pi)} \xrightarrow{\rightarrow \dots}$$

E852 experiment PLB541 35 (2002)