Quasi PDF as observables

Denn eigentlich unternehmen wir umsonst, das Wesen eines Dinges auszudrücken.

L Del Debbio

Higgs Centre for Theoretical Physics University of Edinburgh

the parton model & deep inelastic scattering

kinematics

$$k = k' + q, \quad Q^2 = -q^2, \quad \nu = q \cdot p$$
$$p^2 = M^2, \quad x = \frac{Q^2}{2\nu}, \quad y = \frac{q \cdot p}{k \cdot p}$$

Bjorken scaling – pointlike constituents

$$\frac{d^2\sigma}{dxdQ^2} = \frac{4\pi\alpha^2}{Q^4} \left\{ \left[1 + (1-y)^2 \right] F_1(x,Q^2) + \frac{1-y}{x} \left[F_2(x,Q^2) - 2xF_1(x,Q^2) \right] \right\}$$

[MRS, 1988]

L Del Debbio

CERN, July 2019 3 / 35

scattering off a parton

$$\frac{d\hat{\sigma}}{dQ^2} = \frac{2\pi\alpha^2 e_q^2}{Q^4} \left[1 + (1-y)^2 \right]$$
$$p_q'^2 = -2p \cdot q \ (x-\xi) = 0$$

$$\frac{d^2\hat{\sigma}}{dxdQ^2} = \frac{4\pi\alpha^2}{Q^4} \left[1 + (1-y)^2\right] \frac{1}{2}e_q^2\delta(x-\xi)$$

parton distribution functions

$$\hat{F}_2(x,Q^2) = x e_q^2 \delta(x-\xi) = x \hat{F}_1(x,Q^2)$$

- F_2 measures the fraction of momentum of the parton
- introduce a probability density $q_0(\xi)$

$$F_{2}(x) = \sum_{q,\bar{q}} \int d\xi \, q_{0}(\xi) \, \hat{F}_{2}(x,Q^{2})$$

= $\sum_{q,\bar{q}} \int d\xi \, q_{0}(\xi) \, x e_{q}^{2} \delta(x-\xi)$
= $\sum_{q,\bar{q}} e_{q}^{2} \, x q_{0}(x)$

QCD corrections

$$d\Phi_2 = \int \frac{d^4r}{(2\pi)^4} \frac{d^4l}{(2\pi)^4} (2\pi)\delta^+ (r^2) (2\pi)\delta^+ (l^2) (2\pi)^4 \delta (p+q-r-l)$$

= $\frac{1}{4\pi^2} \int d^4k \,\delta^+ ((p-k)^2) \,\delta^+ ((k+q)^2)$

$$k^{\mu} = \eta p^{\mu} + \frac{k_T^2 - k^2}{2\eta} n^{\mu} + k_T^{\mu}$$

factorization

$$\hat{F}_2(x,Q^2) = e_q^2 x \left[\delta(1-x) + \frac{\alpha_s}{2\pi} \left(P(x) \log \frac{Q^2}{\kappa^2} + C(x) \right) \right]$$

convolution of the quark structure function (at fixed order) with PDF

$$F_2(x,Q^2) = x \sum_{q,\bar{q}} e_q^2 \left[q_0(x) + \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} q_0(\xi) \times \left(P\left(\frac{x}{\xi}\right) \log \frac{Q^2}{\kappa^2} + C\left(\frac{x}{\xi}\right) \right) + \dots \right]$$

$$= x \sum_{q,\bar{q}} e_q^2 \int_x^1 \frac{d\xi}{\xi} q(\xi,\mu^2) \times \\ \times \left[\delta\left(1 - \frac{x}{\xi}\right) + \frac{\alpha_s}{2\pi} P\left(\frac{x}{\xi}\right) \log \frac{Q^2}{\mu^2} + \dots \right]$$

DIS observables

• PDFs are defined in a given scheme and at a given order in PT

$$F_2(x, Q^2) = \sum_i C_i(x, Q^2/\mu^2) \otimes q_i(x, \mu^2) + \dots$$

- PDFs are nonperturbative quantities not accessible in perturbation theory
- the scale dependence is determined DGLAP equations

$$\mu^{2} \frac{\partial}{\partial \mu^{2}} q(x, \mu^{2}) = \frac{\alpha_{s}}{2\pi} P(x) \otimes q(x, \mu^{2})$$

kinematic cuts

Figure 2: Kinematical coverage of the available experimental data on the nonsinglet structure function in the (x, Q^2) plane.

Experimen	x range	Q^2 range	Ndat	$\langle \sigma_s \rangle$	$\langle \sigma_c \rangle$	$\left\langle \frac{\sigma_c}{\sigma_s} \right\rangle$	$\langle \sigma_N \rangle$	$\langle \sigma_{\rm tot} \rangle$	$\langle \rho \rangle$	(cov)
NMC	$9.0 \ 10^{-3} - 4.7 \ 10^{-1}$	$3.2 - 61 \text{ GeV}^2$	229	103.2	85.6	0.75	72.5	157.5	0.038	0.199
BCDMS	$7.0 \ 10^{-2} - 7.5 \ 10^{-1}$	$8.7 - 230 \text{ GeV}^2$	254	22.3	12.2	0.50	22.3	37.3	0.163	0.085

universality

$$\sigma(H_1H_2 \to X) = \sum_{i,j} \int dx_1 dx_2 \ q_i(x_1, \mu^2) q_j(x_2, \mu^2) \times \hat{\sigma}_{ij \to X}(x_1 x_2 s, \mu^2, \mu_R^2)$$

NNPDF methodology

- parametrise the PDF at some initial scale Q_0^2
- compute the observables (efficiently)

$$F_2(x,Q^2) = C(x,Q^2) \otimes \Gamma(x,Q^2,Q_0^2) \otimes f(x,Q_0^2)$$

$$F_I = \sum_{\alpha} K_{I\alpha} f_{\alpha} \qquad (\text{FK tables})$$

- sufficient accuracy / small bias \hookrightarrow closure tests
- faithful error propagation
 - \hookrightarrow Monte Carlo sampling of exp data (replicas)

methodology

replicas

NNPDF3.1

NNPDF3.1 [1706.00428]

gluon distribution

agreement between different determinations

NNLO, Q = 100 GeV

PDF uncertainties for Higgs physics

[plot courtesy of J Rojo]

PDF uncertainties for new physics

Beenakker et al [1510.00375]

matrix elements

$$\mathcal{M}_{\Gamma,A}(\zeta) = \bar{\psi}(\zeta)\Gamma\lambda_A \operatorname{P}\exp\left(-ig\int_0^\zeta d\eta A(\eta)\right)\psi(0)$$

loffe time distributions

$$M_{\gamma^{\mu},A}(\zeta,P) = \langle P | \mathcal{M}_{\gamma^{\mu},A}(\zeta) | P \rangle$$

Lorentz covariance

$$M_{\gamma^{\mu},A}(\zeta,P) = P^{\mu}h_{\gamma^{\mu},A}(\zeta\cdot P,z^2) + \zeta^{\mu}h'_{\gamma^{\mu},A}(\zeta\cdot P,z^2)$$

PDFs and quasi-PDFs

 $\label{eq:powerset} \mbox{light-cone} \ \mbox{PDF} - P = (P^+, 0, \vec{0}_\perp), \quad \nu = \zeta \cdot P = P^+ \zeta^- \text{:}$

$$f_3(x,\mu) = \int \frac{d\zeta^-}{4\pi} e^{-i(xP^+)\zeta^-} P^+ h_{\gamma^+,3}(\nu, z^2)$$
$$= \int \frac{d\nu}{2\pi} e^{-ix\nu} h_{\gamma^+,3}(\nu, z^2)$$

quasi-PDF, time-independent quantity – $\zeta = (0, 0, 0, z)$:

$$q_3(x,\mu,P_z) = \int \frac{dz}{4\pi} e^{-i(xP_z)z} h_{\gamma^z,3}(\nu,z^2)$$

recent review [K Cichy & M Constantinou 18]

from quasi-PDFs to PDFs

Extracting PDFs from lattice simulations:

- renormalization of the lattice operator
 - RI/MOM prescription
 - $\diamond~$ matching to $\overline{\rm MS}$
 - trace operators and power divergencies
- Euclidean to Minkowski space
- factorization theorem for the renormalized quasi-PDF

$$q_3(x,\mu,P_z) = \int_{-1}^{+1} \frac{dy}{y} C_3\left(\frac{x}{y},\frac{\mu}{|y|P_z}\right) f_3(y,\mu^2) + \dots$$

lattice data as observables

[work in collaboration with K Cichy and T Giani]

$$\mathcal{O}_{\gamma^{0}}^{\mathsf{Re}}\left(zP_{z},z^{2}\right) \equiv \mathsf{Re}\left[\mathsf{h}_{\gamma^{0},3}\left(zP_{z},z^{2}\right)\right] \qquad \mathcal{O}_{\gamma^{0}}^{\mathsf{Im}}\left(zP_{z},z^{2}\right) \equiv \mathsf{Im}\left[\mathsf{h}_{\gamma^{0},3}\left(zP_{z},z^{2}\right)\right]$$

[C Alexandrou et al 18]

lattice observables

evolution basis for PDFs

$$f_3(x,\mu^2) = \begin{cases} u(x,\mu^2) - d(x,\mu^2) & \text{if } x > 0\\ -\bar{u}(-x,\mu^2) + \bar{d}(-x,\mu^2) & \text{if } x < 0 \end{cases}$$

inverse Fourier transform

$$\mathcal{O}_{\gamma^{0}}^{\mathsf{Re}}\left(zP_{z}, z^{2}\right) = \int_{-\infty}^{\infty} dx \, \cos\left(xP_{z}z\right) \int_{-1}^{+1} \frac{dy}{|y|} C_{3}\left(\frac{x}{y}, \frac{\mu}{|y|P_{z}}\right) \, f_{3}\left(y, \mu^{2}\right) \\ \mathcal{O}_{\gamma^{0}}^{\mathsf{Im}}\left(zP_{z}, z^{2}\right) = \int_{-\infty}^{\infty} dx \, \sin\left(xP_{z}z\right) \int_{-1}^{+1} \frac{dy}{|y|} C_{3}\left(\frac{x}{y}, \frac{\mu}{|y|P_{z}}\right) \, f_{3}\left(y, \mu^{2}\right)$$

factorization formula for ME

using the explicit expressions for C_3

$$\begin{split} \mathcal{O}_{\gamma^0}^{\mathsf{Re}}\left(z,\mu\right) &= \int_0^1 dx \; \mathcal{C}_3^{\mathsf{Re}}\left(x,z,\frac{\mu}{P_z}\right) V_3\left(x,\mu\right) = \mathcal{C}_3^{\mathsf{Re}}\left(z,\frac{\mu}{P_z}\right) \circledast V_3\left(\mu^2\right) \\ \mathcal{O}_{\gamma^0}^{\mathsf{Im}}\left(z,\mu\right) &= \int_0^1 dx \; \mathcal{C}_3^{\mathsf{Im}}\left(x,z,\frac{\mu}{P_z}\right) T_3\left(x,\mu\right) = \mathcal{C}_3^{\mathsf{Im}}\left(z,\frac{\mu}{P_z}\right) \circledast T_3\left(\mu^2\right) \end{split}$$

where V_3 and T_3 are the nonsinglet distributions defined by

$$V_{3}(x) = u(x) - \bar{u}(x) - [d(x) - \bar{d}(x)]$$

$$T_{3}(x) = u(x) + \bar{u}(x) - [d(x) + \bar{d}(x)]$$

LO:
$$\mathcal{O}_{\gamma^0}^{\mathsf{Re}}(zP_z, z^2) = \int dx \cos(zP_z x) V_3(x, \mu^2)$$

Bjorken scaling of ME

Real part, LO

systematic errors

- cut-off effects
- finite volume effects
- excited states contamination

- truncation effects
- higher-twist terms
- isospin breaking

Scenario	Cut-off	FVE	Excited states	Truncation
S1	10%	2.5%	5%	10%
S2	20%	5%	10%	20%
S3	30%	$e^{-3+0.062z/a}\%$	15%	30%
S4	0.1	0.025	0.05	0.1
S5	0.2	0.05	0.1	0.2
S6	0.3	$e^{-3+0.062z/a}$	0.15	0.3

closure test - 1

closure test - 2

fit results

outlook

- light-cone PDFs + factorization describe the structure of the proton
- necessary input for the exploitation of LHC, HL-LHC
- current extraction from data is very precise + improving
- lattice data provide complementary information, can be included in global fits like any other data
- identify the areas where a significant phenomenological impact from lattice QCD is possible

global fits

Exp.	Obs.	Ref.	Ndat	Kin ₁	Kin_2 (GeV)	Theory
ATTAS	W,Z 2010	[49]	30 (30/30)	$0 \le \eta_l \le 3.2$	$Q = M_W, M_Z$	MCFM+FEWZ
	W, Z 2011 (*)	[72]	34 (34/34)	$0 \le \eta_l \le 2.3$	$Q = M_W, M_Z$	MCFM+FEWZ
	high-mass DY 2011	[50]	11 (5/5)	$0 \le \eta_l \le 2.1$	$116 \leq M_{ll} \leq 1500$	MCFM+FEWZ
	low-mass DY 2011 (*)	[77]	6 (4/6)	$0 \le \eta_l \le 2.1$	$14 \le M_{ll} \le 56$	MCFM+FEWZ
	$[Z \ p_T \ 7 \ \text{TeV} \ (p_T^Z, y_Z)]$ (*)	[78]	64 (39/39)	$0 \le y_Z \le 2.5$	$30 \le p_T^Z \le 300$	MCFM+NNLO
	$Z p_T 8 \text{ TeV } (p_T^Z, M_{ll})$ (*)	[71]	64 (44/44)	$12 \le M_{ll} \le 150 \text{ GeV}$	$30 \le p_T^Z \le 900$	MCFM+NNLO
ALLAS	$Z p_T 8 \text{ TeV } (p_T^Z, y_Z)$ (*)	[71]	120 (48/48)	$0.0 \le y_Z \le 2.4$	$30 \le p_T^Z \le 150$	MCFM+NNLO
	7 TeV jets 2010	[57]	90 (90/90)	$0 \le y^{\text{jet}} \le 4.4$	$25 \le p_T^{\text{jet}} \le 1350$	NLOjet++
	2.76 TeV jets	[58]	59 (59/59)	$0 \le y^{\text{jet}} \le 4.4$	$20 \le p_T^{\text{jet}} \le 200$	NLOjet++
	7 TeV jets 2011 (*)	[76]	140 (31/31)	$0 \le y^{\text{jet}} \le 0.5$	$108 \le p_T^{\text{jet}} \le 1760$	NLOjet++
	$\sigma_{tot}(t\bar{t})$	[74, 75]	3 (3/3)	-	$Q = m_t$	top++
	$(1/\sigma_{t\bar{t}})d\sigma(t\bar{t})/y_t$ (*)	[73]	10 (10/10)	$0 < y_t < 2.5$	$Q = m_t$	herpa+NNLO
	W electron asy	[52]	11 (11/11)	$0 \le \eta_e \le 2.4$	$Q = M_W$	MCFM+FEWZ
	W muon asy	[53]	11 (11/11)	$0 \le \eta_{\mu} \le 2.4$	$Q = M_W$	MCFM+FEWZ
	W + c total	[60]	5 (5/0)	$0 \le \eta_l \le 2.1$	$Q = M_W$	MCFM
	W + c ratio	[60]	5 (5/0)	$0 \le \eta_l \le 2.1$	$Q = M_W$	MCFM
	2D DY 2011 7 TeV	[54]	124 (88/110)	$0 \le \eta_{ll} \le 2.2$	$20 \leq M_{ll} \leq 200$	MCFM+FEWZ
CMS	[2D DY 2012 8 TeV]	[84]	124 (108/108)	$0 \le \eta_{ll} \le 2.4$	$20 \le M_{ll} \le 1200$	MCFM+FEWZ
CMB	W [±] rap 8 TeV (*)	[79]	22 (22/22)	$0 \le \eta_l \le 2.3$	$Q = M_W$	MCFM+FEWZ
	Z p _T 8 TeV (*)	[83]	50 (28/28)	$0.0 \le y_Z \le 1.6$	$30 \le p_T^Z \le 170$	MCFM+NNLO
	7 TeV jets 2011	[59]	133 (133/133)	$0 \le y^{\text{jet}} \le 2.5$	$114 \le p_T^{\text{jet}} \le 2116$	NLOjet++
	2.76 TeV jets (*)	[80]	81 (81/81)	$0 \le y_{jet} \le 2.8$	$80 \le p_T^{\text{jet}} \le 570$	NLOjet++
	$\sigma_{tot}(t\bar{t})$	[82, 88]	3 (3/3)	-	$Q = m_t$	top++
	$(1/\sigma_{t\bar{t}})d\sigma(t\bar{t})/y_{t\bar{t}}$ (*)	[81]	10 (10/10)	$-2.1 < y_{t\bar{t}} < 2.1$	$Q = m_t$	herpa+NNLO
LHCb	Z rapidity 940 pb	[55]	9 (9/9)	$2.0 \le \eta_l \le 4.5$	$Q = M_Z$	MCFM+FEWZ
	$Z \rightarrow ee$ rapidity 2 fb	[56]	17 (17/17)	$2.0 \le \eta_l \le 4.5$	$Q = M_Z$	MCFM+FEWZ
	$W, Z \rightarrow \mu 7 \text{ TeV} (*)$	[85]	33 (33/29)	$2.0 \le \eta_l \le 4.5$	$Q = M_W, M_Z$	MCFM+FEWZ
	$W, Z \rightarrow \mu 8 \text{ TeV} (*)$	[86]	34 (34/30)	$2.0 \le \eta_l \le 4.5$	$Q = M_W, M_Z$	MCFM+FEWZ

NNPDF3.1 [1706.00428]

kinematic range

lattice perturbation theory

an instructive example [1705.11193]

•
$$O_i(z) = \overline{\psi}(z)\Gamma_i W(z,0)\psi(0)$$

- renormalization pattern: $O_{R,i}^{Y}(z) = Z_{ij}^{X,Y}(z)O_{j}^{X}(z)$
- one-loop computations: $Z = 1 + g^2 C_F / (16\pi^2) Z^{(1)} + \dots$

$$Z^{\text{LR},\overline{\text{MS}}} = 1 + \frac{g^2 C_F}{16\pi^2} \left(\dots + e_2 \frac{|z|}{a} + \dots - 3\log(a^2 \mu^2) \right)$$
$$Z_{12}^{\text{LR},\overline{\text{MS}}} = 0 + \frac{g^2 C_F}{16\pi^2} (\dots)$$

one-loop matching:

$$\mathcal{C}^{\overline{\mathrm{MS}},\mathrm{RI}} = (Z^{\mathrm{LR},\overline{\mathrm{MS}}})^{-1} \cdot (Z^{\mathrm{LR},\mathrm{RI}}) = (Z^{\mathrm{DR},\overline{\mathrm{MS}}})^{-1} \cdot (Z^{\mathrm{DR},\mathrm{RI}})$$

RI/MOM prescription

renormalization condition:

$$\begin{aligned} O_{R,i}(z) &= Z_{ij}(z)O_j(z) \\ \Lambda_i(p,z) &= S(p)^{-1} \left\langle O_i(z)\psi(-p)\bar{\psi}(p) \right\rangle S(p)^{-1} \\ Z_q^{-1}\frac{1}{12} \operatorname{Tr} \left[\Lambda_{R,i}(p,z)(\Lambda_j^{\text{tree}}(p,z))^{-1} \right] \Big|_{p^2 = \mu^2} &= \delta_{ij} \end{aligned}$$

linear divergence from the Wilson line:

$$Z(z) = \mathcal{Z}(z)e^{\delta m|z|/a-c|z|}$$

automatically subtracted in this framework

ETMC [1706.00265], J-W Chen et al [1706.01295]

Euclidean/Minkowski

matrix element at t = 0 is agnostic about space-time signature

$$h_{\gamma^z,3}(z,P_z) = \langle P_z | O_z(z) | P_z \rangle$$

computed from different correlators in Euclidean and Minkowski

$$\langle N(\tau', P_z)O_z(z)N(\tau, P_z)\rangle = \mathcal{ZZ'}\mathcal{M}_z(z, P_z)e^{-\omega_P(\tau'-\tau)} + \dots$$
$$\int d^D y \, d^D y' \, e^{i(P(y'-y))} \, \langle TN(y')O_z(z)N(y)\rangle \sim$$
$$\sim \frac{i\mathcal{Z'}}{P^2 - m^2}\mathcal{M}_z(z, P_z)\frac{i\mathcal{Z}}{P^2 - m^2}$$

Carlson et al [1702.05775], Briceno et al [1703.06072]