Boosting hotQCD

Mattia Dalla Brida*, Leonardo Giusti, Michele Pepe

Università di Milano-Bicocca INFN, Sezione di Milano-Bicocca

Advances in Lattice Gauge Theory 2019 August $6^{\rm th}$ 2019, CERN, Geneve

Introduction

The goal

QCD equation of state (EoS)

 $s(T), p(T), \varepsilon(T)$

Thermodynamics

 $s(T) = \frac{\partial p(T)}{\partial T}$ $Ts(T) = p(T) + \varepsilon(T)$

Why is this interesting?

- ► Fundamental property of QCD
- Heavy-ion collisions
- Cosmology
- ▶ ...

What do we know?

- EoS of $N_{\rm f} = 2 + 1$ QCD for $T \lesssim 500 \,{\rm MeV}$
- First exploratory results up to $T \approx 1 2 \,\mathrm{GeV}$
- ► Most results use variants of staggered fermions Wilson quarks are catching up ... (tmfT Colla

(Bazavov et al. '14; Borsanyi et al. '14; Bali et al. '14; \ldots)

(Borsanyi et al. '16; Bazavov, Petreczky, Weber '18)

(tmfT Collab. '16; WHOT-QCD Collab. '18; MDB, Giusti, Pepe '18; ...)

Introduction

A non-perturbative problem

Asymptotic freedom

$$\alpha_{\rm s}(\mu \approx T) \stackrel{T \to \infty}{\longrightarrow} 0$$

 \Rightarrow PT should work at large T

Free quarks & gluons gas

7.6 7.4

Problems

SU(3) YM – $T_c \approx 300 \,\mathrm{MeV}$

O(g²

+ Data

- ▶ PT at finite *T* shows very **poor convergence**
 - Works only up to a **finite** order: no matter how **small** α_s is! (Lindé '80)
 - ▶ Here "O(g^6) + Data" at $T \approx 68 \,\text{GeV}$ is $\approx 50\%$ of the correction to free gas
- Resummation techniques seem to improve convergence but cf. (Andersen et al. '16)
 - Uncertainties are hard to quantify reliably within PT
 - Lindé issue is **not** solved

Introduction

A difficult non-perturbative problem

Free energy

$$f = -p = -\frac{T}{V}\ln \mathcal{Z}$$

Trace anomaly

(Boyd et al. '96; Umeda et al. '09; ...)

$$\frac{I(T)}{T^4} \equiv \frac{\varepsilon - 3p}{T^4} = T \frac{\mathrm{d}}{\mathrm{d}T} \left(\frac{p}{T^4}\right)$$

Pressure

$$\frac{p(T)}{T^4} = \frac{p(T_0)}{T_0^4} + \int_{T_0}^T \mathrm{d}T' \, \frac{I(T')}{T'^5}$$

Lattice obs. $(\widehat{A} \equiv \text{lattice})$

$$\widehat{I}(T) = -\frac{T}{V} \frac{\mathrm{d}\ln\widehat{\mathcal{Z}}}{\mathrm{d}\ln a} = \frac{T}{V} \left(a \frac{\mathrm{d}\vec{b}}{\mathrm{d}a} \right) \left\langle \frac{\partial\widehat{S}_{\mathrm{QCD}}}{\partial\vec{b}} \right\rangle_{T}$$

(HotQCD Bazavov et al. '14)

non-int, limit

QCD with $N_{\rm f} = 2 + 1$ quarks

$$\vec{b} = \{g_0(a), m_{0,f}(a), \ldots\} \notin \text{LCP}$$

Renormalization

$$I(T) = \lim_{a \to 0} \widehat{I}_R(T) = \lim_{a \to 0} \left[\widehat{I}(T) - \widehat{I}(0) \right] \Big|_{\overline{b}}$$

Problem

The renormalization unnaturally ties together two separate physical scales

$$L^{-1} \ll T \ll a^{-1} \text{ AND } L^{-1} \sim m_{\pi} \Rightarrow L/a = O(100) \text{ for } T = O(1 \text{ GeV})$$

16

12

8

0

The energy-momentum tensor

Back to basics

EMT (continuum)

(Callan, Coleman, Jackiw '71; ...)

$$\begin{aligned} \mathcal{T}^{R}_{\mu\nu} &= \mathcal{T}_{\mu\nu} = \mathcal{T}^{F}_{\mu\nu} + \mathcal{T}^{G}_{\mu\nu} \\ \mathcal{T}^{F}_{\mu\nu} &= \frac{1}{4} \left\{ \overline{\psi} \gamma_{\mu} \overset{\leftrightarrow}{D}_{\nu} \psi + \overline{\psi} \gamma_{\nu} \overset{\leftrightarrow}{D}_{\mu} \psi \right\} - \delta_{\mu\nu} \mathcal{L}^{F} \qquad \mathcal{T}^{G}_{\mu\nu} &= \frac{1}{g_{0}^{2}} F^{a}_{\mu\alpha} F^{a}_{\nu\alpha} - \delta_{\mu\nu} \mathcal{L}^{G} \end{aligned}$$

Entropy density

$$Ts(T) = p(T) + \varepsilon(T)$$
 $\varepsilon = \langle \mathcal{T}_{00} \rangle_T$ $p = -\langle \mathcal{T}_{kk} \rangle_T$

EMT (lattice)

(Caracciolo et al. '90 '91 '92)

 $\mathcal{T}^{R}_{\mu\nu} = \mathcal{T}^{R,[6]}_{\mu\nu} + \mathcal{T}^{R,[3]}_{\mu\nu} + \mathcal{T}^{R,[1]}_{\mu\nu} \qquad \mathcal{T}_{\mu\neq\nu} \in [6]; \quad \mathcal{T}_{00} - \mathcal{T}_{kk} \in [3]; \quad \mathcal{T}_{\mu\mu} \in [1]$

•
$$\mathcal{T}^{R,[6,3]}_{\mu\nu} = Z^{[6,3]}_F(g_0)\mathcal{T}^{F,[6,3]}_{\mu\nu} + Z^{[6,3]}_G(g_0)\mathcal{T}^{G,[6,3]}_{\mu\nu}$$

 $\blacktriangleright \langle \mathcal{T}_{\mu\mu} \rangle_T / T^4 \stackrel{a \to 0}{\propto} (aT)^{-4}$

Novel approaches

- Thermal QFT in a moving frame
- Ward identities with flowed probes
- $\mathcal{T}^{R}_{\mu\nu}$ from small flow-time expansion (s. next talk!)

(Giusti, Meyer '13)

(Patella et al. '13)

(Suzuki '13)

Thermodynamics in a moving frame

The relativistic fluid

(Minkowski space)

Rest frame

$$\mathcal{T}_{\mu\nu} = \begin{pmatrix} \varepsilon & 0 & 0 & 0\\ 0 & p & 0 & 0\\ 0 & 0 & p & 0\\ 0 & 0 & 0 & p \end{pmatrix}$$

Moving frame

$$\mathcal{T}_{0k} = \gamma^2 (p + \varepsilon) v_k \qquad v \equiv \text{velocity}, \ \gamma = \frac{1}{\sqrt{1 - v^2}}$$
$$\mathcal{T}_{00} = \gamma^2 (p + \varepsilon) - p \qquad \mathcal{T}_{jk} = \gamma^2 (p + \varepsilon) v_j v_k + p \, \delta_{jk}$$

Entropy density (u

using
$$Ts = p + \varepsilon$$
)

$$Ts = rac{\mathcal{T}_{0k}}{\gamma^2 v_k} \qquad [\,T \equiv ext{temp. rest frame}\,]$$

Kinematic relations

$$\mathcal{T}_{0k} = \frac{v_k}{1 + v_k^2} \left(\mathcal{T}_{00} + \mathcal{T}_{kk} \right) \qquad [v_k \neq 0]$$

Thermodynamics in a moving frame

Shifted boundary conditions (continuum)

Thermal QCD path integral $[L = \infty]$

$$\mathcal{Z}(L'_{0},\theta) = \int [DA] [D\overline{\psi}] [D\psi] e^{-S_{\text{QCD}}[A,\overline{\psi},\psi]} \qquad \begin{array}{l} A_{\mu}(L'_{0},\boldsymbol{x}) = A_{\mu}(0,\boldsymbol{x}) \\ \psi(L'_{0},\boldsymbol{x}) = -e^{i\theta} \psi(0,\boldsymbol{x}) \end{array}$$

Euclidean boost / SO(4) rotation $\left[\boldsymbol{\xi} = -i\boldsymbol{v}; \ \gamma = (1 + \boldsymbol{\xi}^2)^{-1/2} \right]$

$$\begin{array}{ccc} \mathcal{L}_{\text{QCD}} & \mathcal{L}_{\text{QCD}} \\ A_{\mu}(L'_{0}, \boldsymbol{x}) = A_{\mu}(0, \boldsymbol{x}) & \xrightarrow{\text{SO}(4)} & A_{\mu}(L_{0}, \boldsymbol{x}) = A_{\mu}(0, \boldsymbol{x} - \boldsymbol{\xi}L_{0}) & [L'_{0} = L_{0}/\gamma] \\ \psi(L'_{0}, \boldsymbol{x}) = -e^{i\theta}\psi(0, \boldsymbol{x}) & \psi(L_{0}, \boldsymbol{x}) = -e^{i\theta}\psi(0, \boldsymbol{x} - \boldsymbol{\xi}L_{0}) \end{array}$$

Partition function

$$\mathcal{Z}(L_0,\boldsymbol{\xi},\theta) = \operatorname{Tr}\left\{e^{-L_0(\hat{H}-i\boldsymbol{\xi}\cdot\hat{\boldsymbol{P}}_{\theta})}\right\}$$

Free energy

$$f(L_0, \boldsymbol{\xi}, \theta) = -\frac{1}{L_0 V} \ln \mathcal{Z}(L_0, \boldsymbol{\xi}, \theta) \qquad f(L_0, \boldsymbol{\xi}, \theta) \stackrel{V \to \infty}{=} f(L_0 / \gamma, 0, \theta)$$

Entropy density

$$Ts(T) = -\frac{\langle \mathcal{T}_{0k} \rangle_{\boldsymbol{\xi},\theta=0}}{\gamma^2 \boldsymbol{\xi}_k} \qquad T = \frac{\gamma}{L_0}$$

Thermodynamics in a moving frame

Shifted boundary conditions (lattice)

Thermal QCD path integral $[L = \infty]$

$$\widehat{\mathcal{Z}}(L'_{0},\theta) = \int [DA][D\overline{\psi}][D\psi] e^{-S_{\text{LQCD}}[U,\overline{\psi},\psi]} \qquad \begin{array}{l} U_{\mu}(L'_{0},\boldsymbol{x}) = U_{\mu}(0,\boldsymbol{x}) \\ \psi(L'_{0},\boldsymbol{x}) = -e^{i\theta}\psi(0,\boldsymbol{x}) \end{array}$$

Euclidean boost / SO(4) rotation $\left[\boldsymbol{\xi} = -i\boldsymbol{v}; \ \gamma = (1 + \boldsymbol{\xi}^2)^{-1/2} \right]$

$$\begin{array}{c} \mathcal{L}_{\text{LQCD}} & \mathcal{L}_{\text{LQCD}} \\ U_{\mu}(L'_{0}, \boldsymbol{x}) = U_{\mu}(0, \boldsymbol{x}) & \swarrow & U_{\mu}(L_{0}, \boldsymbol{x}) = U_{\mu}(0, \boldsymbol{x} - \boldsymbol{\xi}L_{0}) \\ \psi(L'_{0}, \boldsymbol{x}) = -e^{i\theta}\psi(0, \boldsymbol{x}) & \psi(L_{0}, \boldsymbol{x}) = -e^{i\theta}\psi(0, \boldsymbol{x} - \boldsymbol{\xi}L_{0}) \end{array}$$

Partition function

$$\widehat{\mathcal{Z}}(L_0,\boldsymbol{\xi},\boldsymbol{\theta}) = \operatorname{Tr}\left\{e^{-L_0(\hat{H}-i\boldsymbol{\xi}\cdot\hat{\boldsymbol{P}}_{\boldsymbol{\theta}})}\right\}$$

Free energy

$$\widehat{f}(L_0,\boldsymbol{\xi},\theta) = -\frac{1}{L_0 V} \ln \widehat{\mathcal{Z}}(L_0,\boldsymbol{\xi},\theta) \qquad \widehat{f}(L_0,\boldsymbol{\xi},\theta) \stackrel{\text{Var}}{\Longrightarrow} \widehat{f}(L_0/\gamma,0,\theta)$$

Entropy density

$$Ts(T) = \lim_{a \to 0} -\frac{\langle \mathcal{T}_{0k}^R \rangle_{\boldsymbol{\xi}, \theta = 0}}{\gamma^2 \xi_k} \qquad T = \frac{\gamma}{L_0}$$

Renormalization of the EMT

Ward identities (continuum)

Momentum identities

$$\langle \mathcal{T}_{0k} \rangle_{\boldsymbol{\xi},\theta} = -\frac{\partial}{\partial \boldsymbol{\xi}_k} f(L_0, \boldsymbol{\xi}, \theta)$$

$$L_0 \langle \overline{\mathcal{T}}_{0k}(x_0) \mathcal{O} \rangle_{\boldsymbol{\xi},\theta,c} = \frac{\partial}{\partial \boldsymbol{\xi}_k} \langle \mathcal{O} \rangle_{\boldsymbol{\xi},\theta} \qquad \overline{\mathcal{T}}_{0k}(x_0) = \int_V \mathrm{d}\boldsymbol{x} \, \mathcal{T}_{0k}(x_0, \boldsymbol{x})$$

Baryon number identities

$$\begin{split} i\langle V_0\rangle_{\boldsymbol{\xi},\theta} &= L_0 \frac{\partial}{\partial \theta} f(L_0, \boldsymbol{\xi}, \theta) \\ \langle \overline{V}_0(x_0)\mathcal{O}\rangle_{\boldsymbol{\xi},\theta,c} &= i \frac{\partial}{\partial \theta} \langle \mathcal{O}\rangle_{\boldsymbol{\xi},\theta} \qquad \qquad V_0(x) = \overline{\psi}(x)\gamma_0\psi(x) \end{split}$$

Other identities

$$\begin{aligned} \frac{\partial}{\partial\xi_{k}}\frac{\partial}{\partial\theta}f &= \frac{\partial}{\partial\theta}\frac{\partial}{\partial\xi_{k}}f \quad \Rightarrow \quad -i\frac{\partial}{\partial\xi_{k}}\langle V_{0}\rangle_{\boldsymbol{\xi},\theta} = L_{0}\frac{\partial}{\partial\theta}\langle\mathcal{T}_{0k}\rangle_{\boldsymbol{\xi},\theta} \\ \langle\mathcal{T}_{0k}\rangle_{\boldsymbol{\xi},\theta} &= \frac{\xi_{k}}{1-\xi_{k}^{2}}\left(\langle\mathcal{T}_{00}\rangle_{\boldsymbol{\xi},\theta} - \langle\mathcal{T}_{kk}\rangle_{\boldsymbol{\xi},\theta}\right) + \mathsf{FV} \end{aligned}$$

Renormalization of the EMT

Ward identities (lattice)

Momentum identities

$$\begin{aligned} \langle \mathcal{T}_{0k}^{R} \rangle_{\boldsymbol{\xi},\theta} &= -\frac{\partial}{\partial \boldsymbol{\xi}_{k}} \widehat{f}(L_{0},\boldsymbol{\xi},\theta) + \mathcal{O}(a) \\ L_{0} \langle \overline{\mathcal{T}}_{0k}^{R}(x_{0}) \mathcal{O} \rangle_{\boldsymbol{\xi},\theta,c} &= \frac{\partial}{\partial \boldsymbol{\xi}_{k}} \langle \mathcal{O} \rangle_{\boldsymbol{\xi},\theta} + \mathcal{O}(a) \end{aligned}$$

Baryon number identities

$$\begin{split} &i\langle \widetilde{V}_0 \rangle_{\boldsymbol{\xi},\theta} = L_0 \frac{\partial}{\partial \theta} \widehat{f}(L_0, \boldsymbol{\xi}, \theta) \\ &\langle \overline{\widetilde{V}}_0(x_0) \mathcal{O} \rangle_{\boldsymbol{\xi},\theta,c} = i \frac{\partial}{\partial \theta} \langle \mathcal{O} \rangle_{\boldsymbol{\xi},\theta} \qquad \widetilde{V}_0(x) = \frac{1}{2} \left[\overline{\psi}(x)(\gamma_0 - 1) e^{i\theta} U_0(x) \psi(x + \hat{0}) + \text{c.c.} \right] \end{split}$$

Other identities

$$-i\frac{\partial}{\partial\xi_{k}}\langle\widetilde{V}_{0}\rangle_{\boldsymbol{\xi},\theta} = L_{0}\frac{\partial}{\partial\theta}\langle\mathcal{T}_{0k}^{R}\rangle_{\boldsymbol{\xi},\theta} + \mathcal{O}(a)$$
$$\langle\mathcal{T}_{0k}^{R}\rangle_{\boldsymbol{\xi},\theta} = \frac{\xi_{k}}{1-\xi_{k}^{2}}\left(\langle\mathcal{T}_{00}^{R}\rangle_{\boldsymbol{\xi},\theta} - \langle\mathcal{T}_{kk}^{R}\rangle_{\boldsymbol{\xi},\theta}\right) + \mathcal{O}(a) + \mathsf{FV}$$

O(a)-improvement of the EMT

Massless case

Lattice action

O(a)-improved Wilson fermions

Lattice EMT

(Caracciolo et al. '90 '91 '92)

$$\begin{aligned} \mathcal{T}^{G}_{\mu\nu} &= \frac{1}{g_{0}^{2}} \widehat{F}^{a}_{\mu\rho} \widehat{F}^{a}_{\nu\rho} - \delta_{\mu\nu} \widehat{\mathcal{L}}^{G} \\ \mathcal{T}^{F}_{\mu\nu} &= \frac{1}{8} \left\{ \overline{\psi} \gamma_{\mu} \begin{bmatrix} \overleftrightarrow{\nabla}^{*}_{\nu} + \overleftrightarrow{\nabla}_{\nu} \end{bmatrix} \psi + \overline{\psi} \gamma_{\nu} \begin{bmatrix} \overleftrightarrow{\nabla}^{*}_{\mu} + \overleftrightarrow{\nabla}_{\mu} \end{bmatrix} \psi \right\} - \delta_{\mu\nu} \widehat{\mathcal{L}}^{F} \end{aligned}$$

 $\mathsf{O}(a)$ -counterterms ($m_{\mathrm{q},R} = 0; i \in [6,3]$)

similar problem to (Capitani et al. '00)

$$\mathcal{O}_{1,\mu\nu} = \overline{\psi}\sigma_{\mu\rho}F_{\nu\rho}\psi\,;\quad \mathcal{O}_{2,\mu\nu} = \overline{\psi}\left\{\stackrel{\leftrightarrow}{D}_{\mu},\stackrel{\leftrightarrow}{D}_{\nu}\right\}\psi\,;\quad \mathcal{O}_{3,\mu\nu} = \partial_{\rho}\left(\overline{\psi}\sigma_{\mu\rho}\stackrel{\leftrightarrow}{D}_{\nu}\psi\right)$$

$$\mathcal{T}_{\mu\nu,\mathbf{I}}^{R,[i]} = Z_G^{[i]}(g_0)\mathcal{T}_{\mu\nu}^{G,[i]} + Z_F^{[i]}(g_0)\left\{\mathcal{T}_{\mu\nu}^{F,[i]} + a\delta\mathcal{T}_{\mu\nu}^{F,[i]}\right\} \quad \delta\mathcal{T}_{\mu\nu}^{F,[i]} = \sum_{k=1,2,3} c_k^{[i]}(g_0)\widehat{\mathcal{O}}_{k,\mu\nu}^{[i]}$$

Remarks

- ► $c_k^{[i]}(g_0) = \mathcal{O}(g_0^2)$
- \mathcal{O}_2 and \mathcal{O}_3 can be neglected when considering $\langle \mathcal{T}^{R,[i]}_{\mu\nu,\mathbf{I}} \rangle_{\boldsymbol{\xi},\theta}$
- ► In finite volume NO spontaneous chiral symmetry breaking $\Rightarrow \langle \delta \mathcal{T}_{\mu\nu}^{F,[i]} \rangle_{\boldsymbol{\xi},\theta} = O(a)$ Note that this is also true in **infinite volume** if $T > T_c!$

O(*a*)-improvement of the EMT

Mass-degenerate case

O(a)-improved parameters

$$\begin{split} \tilde{g}_0^2 &= g_0^2 \left(1 + b_{\rm g}(g_0) a m_{\rm q} \right) \qquad m_{\rm q} = m_0 - m_{\rm crit} \\ \tilde{m}_{\rm q} &= m_{\rm q} \left(1 + b_{\rm m}(g_0) a m_{\rm q} \right) \end{split}$$

O(am)-counterterms ($m_{q,R} = m; i \in [6,3]$)

$$\mathcal{O}_{4,\mu\nu} = m \,\mathcal{T}^G_{\mu\nu}; \quad \mathcal{O}_{5,\mu\nu} = m \,\mathcal{T}^F_{\mu\nu}$$

O(a)-improved EMT

$$\mathcal{T}_{\mu\nu,\mathrm{I}}^{R,[i]} = Z_G^{[i]}(\tilde{g}_0)\mathcal{T}_{\mu\nu,\mathrm{I}}^{G,[i]} + Z_F^{[i]}(\tilde{g}_0)\mathcal{T}_{\mu\nu,\mathrm{I}}^{F,[i]}$$

with

$$\begin{aligned} \mathcal{T}_{\mu\nu,\mathrm{I}}^{G,[i]} &= \left(1 + \boldsymbol{b}_{T}^{G,[i]}(\boldsymbol{g}_{0}) a m_{\mathrm{q}}\right) \mathcal{T}_{\mu\nu}^{G,[i]} & \boldsymbol{b}_{T}^{G,[i]} = \mathrm{O}(\boldsymbol{g}_{0}^{2}) \\ \mathcal{T}_{\mu\nu,\mathrm{I}}^{F,[i]} &= \left(1 + \boldsymbol{b}_{T}^{F,[i]}(\boldsymbol{g}_{0}) a m_{\mathrm{q}}\right) \left\{ \mathcal{T}_{\mu\nu}^{F,[i]} + a \delta \mathcal{T}_{\mu\nu}^{F,[i]} \right\} & \boldsymbol{b}_{T}^{F,[i]} = 1 + \mathrm{O}(\boldsymbol{g}_{0}^{2}) \end{aligned}$$

Remarks

- For non-degenerate quarks we have one additional b coefficient of $O(g_0^4)$
- Assuming aT ≪ 1, O(am)-effects are expected to be small (≤ 1%) for the light quarks once T ≥ 1 GeV
- Perturbative estimates for the improvement coefficients are likely sufficient at these high temperatures

A test in perturbation theory

Renormalization constants and improvement coefficients at one-loop order

Ward identities

$$\langle \mathcal{T}_{0k,\mathrm{I}}^{R,[6]} \rangle_{\boldsymbol{\xi},\boldsymbol{\theta}} = -\frac{\partial}{\partial \xi_k} \widehat{f}(L_0,\boldsymbol{\xi},\boldsymbol{\theta}) \quad \langle \mathcal{T}_{0k,\mathrm{I}}^{R,[6]} \rangle_{\boldsymbol{\xi},\boldsymbol{\theta}} = \frac{\xi_k}{1-\xi_k^2} \left(\langle \mathcal{T}_{00,\mathrm{I}}^{R,[3]} \rangle_{\boldsymbol{\xi},\boldsymbol{\theta}} - \langle \mathcal{T}_{kk,\mathrm{I}}^{R,[3]} \rangle_{\boldsymbol{\xi},\boldsymbol{\theta}} \right)$$

Renormalization constants

$$Z_G(g_0) = 1 + g_0^2 \left[N Z_G^{(1),N} + \frac{1}{N} Z_G^{(1),\frac{1}{N}} + N_f Z_G^{(1),F} \right] + \mathcal{O}(g_0^4)$$

$$Z_F(g_0) = 1 + g_0^2 C_F Z_F^{(1)} + \mathcal{O}(g_0^4)$$

Results: Unimproved and O(a)-improved Wilson for both [6,3]

Perfect agreement with the literature (when available) (Caracciolo *et al.* '92; Capitani, Rossi '95) O(a)-improvement coefficients

$$c_k(g_0) = \mathcal{O}(g_0^2) \quad b_T^F(g_0) = 1 + g_0^2 b_T^{F,(1)} + \mathcal{O}(g_0^4) \quad b_T^G(g_0) = g_0^2 b_T^{G,(1)} + \mathcal{O}(g_0^4)$$

Results: O(a)-improved Wilson for both [6,3]

Perfect agreement with the literature (when available) (Capitani et al. '00) For geeks

- ▶ $L_0/a = 4 32$, $R = L/L_0 = 5 15$, several $\boldsymbol{\xi}$ and $\boldsymbol{\theta}$ values
- ▶ Gauge zero-mode removal $\Rightarrow R \rightarrow \infty$ extrapolations
- Coordinate space calculation based on FFT

Towards the EoS at high temperature

General strategy

Master equation

$$\frac{s(T)}{T^3} = \lim_{a \to 0} -\frac{L_0^4 \langle \mathcal{T}_{0k,1}^R \rangle_{\boldsymbol{\xi}, \theta = 0}}{\gamma^6 \xi_k} \qquad T = \frac{\gamma}{L_0}$$

Lattice set-up

▶ $N_{\rm f} = 3$ O(a)-improved Wilson quarks with shifted bc., $\pmb{\xi} = (1,0,0)$

Lines of constant physics

- ▶ 8 values of $T \approx 2.8 80 \, {\rm GeV}$ fixed by $\bar{g}_{\rm SF}^2(\mu = T/\gamma)$
- ▶ $L_0/a = 6, 8, 10(, 12)$ and $L/a = 288 \Rightarrow TL \approx 34 17$
- $m_{q,R} = O(a^2)$, i.e., massless quarks
- PT values improvement coefficients

Systematic effects

- ► Mass effects: s(T)|_m = s(T)|_{m=0} + O(m²/T²) Expected to be quite small for light quarks for T ≥ 2.8 GeV Actual size needs to be estimated at the smaller T's
- ► Finite size effects: $s(T)|_L = s(T)|_{L=\infty} + O(e^{-mL})$ w/ m = O(T) (Given L/a = 96 simulations and measure of m(T) to estimate actual size
- O(a)-effects: Monitor size of O(a)-counterterms

(MDB et al. '16, '18; Campos et al. '18)

(Giusti, Meyer '13)

Towards the EoS at high temperature

Some preliminary results. Perturbative Z's have been used for illustration! Vertical scale should not be taken at face value!

Remarks

- $N_{\rm ms} = 100, 250, 450$ for $L_0/a = 6, 8, 10$
- $\operatorname{Var}(s(T))/s(T)^2 \propto (L_0/a)^8$; $\tau_{\text{int}} \lesssim 2 \,\mathrm{MDUs}$
- About 1% error for $L_0/a = 10$
- Small discretization errors (?)

Conclusions & Outlook

Conclusions

- QCD in a moving frame is a **powerful** framework for thermodynamics studies
- Offers alternative ways for computing thermodynamics quantities
- Provides many Ward identities for the non-perturbative renormalization of the EMT
- The framework passes with flying colours an analysis to 1-loop order in PT
- ▶ Preliminary results on the bare entropy are **encouraging**

Outlook

- ▶ The non-perturbative renormalization of the EMT is on its way
- ► Accurate determination of the EoS of N_f = 3 QCD in a totally unexplored temperature range
- ► How accurate is PT in this regime?
- ► Heavy-quark effects? PT or non-PT?

