Heavy-to-light decay form factors on $N_f = 2 + 1 + 1$ HISQ ensembles

Elvira Gámiz

(Lattice Fermilab and MILC Collaborations)

UNIVERSIDAD DE GRANADA

Centro Andaluz de Física de

Parículas Elementales

 Advances in lattice gauge theory, CERN, 31 July 2018 ·

Introduction

Precise determinations of CKM matrix elements:

$$V_{CKM} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ & B \to \pi \tau \nu, B_s \to K \ell \nu \\ & \Lambda_b \to p \ell \nu \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ D \to \pi \ell \nu & D \to K \ell \nu & B_{(s)} \to D_{(s)} \left(D^*_{(s)}\right) \ell \nu \\ & |V_{td}| & |V_{ts}| & |V_{tb}| \\ B \to \pi \ell \ell & B \to K \ell \ell \end{pmatrix}$$

Tensions: Inclusive-Exclusive determinations of $|V_{ub}|$ and $|V_{cb}|$.

Introduction

Long-standing tension between exclusive and inclusive determinations of the CKM matrix elements $|V_{cb}|$ and $|V_{ub}|$ at the $\sim 3\sigma$ level.

 $|V_{cb}|^{B \to D^*}$ inclus.-exclus. tension not resolved by BGL vs CLN (Belle (untagged) 1809.03290 and BaBar 1903.1002 results not included in plots) From Belle 1809.03290 and FNAL/MILC 2014 $|V_{cb}|^{\text{CLN}} = (38.4 \pm 0.9) \cdot 10^{-3}$ $|V_{cb}|^{\text{BGL}} = (38.3 \pm 1.0) \cdot 10^{-3}$

Update of plot in 1711.08085. CKM unitarity band from CKMfitter

 $|V_{ub}|^{FLAG2019} = 3.73(14) \cdot 10^{-3}$

Good consistency between lattice and experimental shapes and commensurate errors

$$|V_{ub}|^{\text{inclusive}, \text{HFLAV2017}} = (4.52 \pm 0.15^{+0.11}_{-0.14}) \cdot 10^{-3} \sim 3\sigma \text{ disagreement.}$$

 $|V_{ub}|^{FLAG2019} = 3.73(14) \cdot 10^{-3}$

Good consistency between lattice and experimental shapes and commensurate errors

$$|V_{ub}|^{\text{inclusive}, \text{HFLAV2017}} = (4.52 \pm 0.15^{+0.11}_{-0.14}) \cdot 10^{-3} \sim 3\sigma \text{ disagreement.}$$

Leptonic determinations

- * Less precise (dominated by exp. errors on $\mathcal{B}(B \to \tau \nu)$)
- * BaBar and Belle results don't agree very well.

 $|V_{ub}|^{FLAG2019} = 3.73(14) \cdot 10^{-3}$

 $|V_{ub}|^{\text{inclusive}, \text{HFLAV2017}} = (4.52 \pm 0.15^{+0.11}_{-0.14}) \cdot 10^{-3} \sim 3\sigma \text{ disagreement.}$

Leptonic determinations

* Less precise (dominated by exp. errors on $\mathcal{B}(B \to \tau \nu)$)

* BaBar and Belle results don't agree very well.

Important role for **Belle II** for both leptonic and semileptonic

Alternative way of getting $|V_{ub}|$: $B_s \to K\ell\nu$.

- * Three LQCD calculations of the relevant form factors:
 HPQCD 1406.2279, RBC/UKQCD 1501.05373, FNAL/MILC 1901.02561
- * LQCD error smaller than for $B \rightarrow \pi$ form factors

Alternative way of getting $|V_{ub}|$: $B_s \to K\ell\nu$.

- * Three LQCD calculations of the relevant form factors: HPQCD 1406.2279, RBC/UKQCD 1501.05373, FNAL/MILC 1901.02561
- * LQCD error smaller than for $B \rightarrow \pi$ form factors
- * Experimentally: Under investigacion by LHCb, expected to be measured at the $\Upsilon(5S)$ run at Belle-II

(maybe 5-10% precision for the decay rate at Belle-II)

Introduction: Lepton Flavor Universality tests

Tension between **Belle** and **BaBar**

Plot from 1904.08794

Belle 2019: $R(D) = 0.307 \pm 0.037 \pm 0.016$ (consistent with SM), $R(D^*) = 0.283 \pm 0.018 \pm 0.014$

World average at $\sim 3\sigma$ from SM.

Introduction: *b* rare decays (FCNC)

Flavor-changing neutral currents $b \to q$ transitions are potentially sensitive to NP effects $B \to K^* \gamma$, $B \to K^{(*)} \ell^+ \ell^-$, $B \to \pi \ell^+ \ell^-$

Introduction: b rare decays (FCNC)

Flavor-changing neutral currents $b \to q$ transitions are potentially sensitive to NP effects $B \to K^* \gamma$, $B \to K^{(*)} \ell^+ \ell^-$, $B \to \pi \ell^+ \ell^-$

Sets of tensions between SM predicions and experimentally measured $b \rightarrow s \ell^+ \ell^-$ observables

Branching fraction measurements: $B^0 \to K^{*0} \mu^+ \mu^-$, $B^+ \to K^{(*)+} \mu^+ \mu^-$, $B_s \to \phi \mu^+ \mu^-$

Angular analyses: $B^+ \to K^{(*)+}\mu^+\mu^-$, $B_s \to \phi\mu^+\mu^-$

Tests of Lepton Flavour Universality (μ/e): $B^0 \to K^{*0}\mu^+\mu^-$, $B^+ \to K^{(*)+}\mu^+\mu^-$

Very small sensitivity to hadronic form factors $\sim 10^{-4}$

$$R_{K^{(*)}}(q_{min}^2, q_{max}^2) \equiv \frac{\int_{q_{min}^2}^{q_{max}^2} dq^2 d\mathcal{B}(B \to K^{(*)} \mu^+ \mu^-)}{\int_{q_{min}^2}^{q_{max}^2} dq^2 d\mathcal{B}(B \to K^{(*)} e^+ e^-)}$$

Introduction: Rare decays (FCNC)

Lepton Flavour Universality Tests

1904.02440 Belle preliminary

Belle (ATLAS?) but not CMS

LHCb will reach $\sim 1.5\%$ precision for the branching fractions at both low and high $q^2.$ J. Albrecht et al 1709.10308

Introduction: Neutral-current *b* decays

For $B \rightarrow P\ell\ell$, hadronic contributions are parametrized in terms of matrix elements of current (vector, axial and tensor) operators through three form factors

$$f_+$$
 , f_0 (for $m_\ell \neq 0$) and f_T

+ non-factorizable contributions

Allow the calculation of branching fractions, angular observables and LFUV quantities

Extract CKM matrix elements $|V_{td,ts}|$ or constrain Wilson coefficients C_9 and C_{10} .

Introduction: Neutral-current *b* decays

For $B \rightarrow P\ell\ell$, hadronic contributions are parametrized in terms of matrix elements of current (vector, axial and tensor) operators through three form factors

$$f_+$$
 , f_0 (for $m_\ell \neq 0$) and f_T

+ non-factorizable contributions

Allow the calculation of branching fractions, angular observables and LFUV quantities

Extract CKM matrix elements $|V_{td,ts}|$ or constrain Wilson coefficients C_9 and C_{10} .

- * Non-factorizable contributions under control? New physics or charm-loops?
- * This talk: Form factors for $h \rightarrow l$ decays.

Current status: Form factors for $B \to K \ell^+ \ell^-$

 $B \to K \ell^+ \ell^-$: HPQCD 1306.0434, 1306.2384, FNAL/MILC, 1509.06235

Overlapping ensemble sets (asqtad MILC $N_f = 2 + 1$) but different lattice actions:

```
HPQCD: NRQCD b + HISQ u, d, s
```

FNAL/MILC: Fermilab b + asqtad u, d, s

Consistent results for $f_{0,+,T}$, and with LCSR

Khodjamarian et al 1006.4945

Form factors for $B \to K \ell^+ \ell^-$

From D. Du et al 1510.02349, FNAL/MILC 1509.06235 (non-factorizable contributions under control?)

 $1-2\sigma$ experiment-SM tensions.

focus on large bins above and below charmoninum resonances 25

$B \to K \ell^+ \ell^-$: Lepton Flavor Universality Tests

 $(1 - R_K)^{\text{HPQCD}} = 0.00074 \pm 0.00035$, $(1 - R_{K^+})^{\text{FNAL/MILC}} = 0.00050 \pm 0.00043$

SM predictions for these ratios pretty insensitive to form factors and non-factor. contributions.

$B \rightarrow K\ell^+\ell^-$: Lepton Flavor Universality Tests

 $(1 - R_K)^{\text{HPQCD}} = 0.00074 \pm 0.00035$, $(1 - R_{K^+})^{\text{FNAL/MILC}} = 0.00050 \pm 0.00043$ $(1 - R_{K^+})^{\text{LHCb 2019}} = 0.154^{+0.060}_{-0.054} (stat)^{+0.014}_{-0.016} (syst)$

compatible/tension with SM at 2.5σ

SM predictions for these ratios pretty insensitive to form factors and non-factor. contributions.

$B \rightarrow K\ell^+\ell^-$: Lepton Flavor Universality Tests

 $(1 - R_K)^{\text{HPQCD}} = 0.00074 \pm 0.00035$, $(1 - R_{K^+})^{\text{FNAL/MILC}} = 0.00050 \pm 0.00043$ $(1 - R_{K^+})^{\text{LHCb 2019}} = 0.154^{+0.060}_{-0.054} (stat)^{+0.014}_{-0.016} (syst)$

compatible/tension with SM at 2.5σ

SM predictions for these ratios pretty insensitive to form factors and non-factor. contributions.

* LHCb expects a reduction by a factor of 4 by 2025.

Form factors for $B \to \pi \ell^+ \ell^-$

FNAL/MILC, 1507.01618, **D. Du et al.** 1510.02349 Take f_+ and f_0 from combined fit of lattice + experimental data for $B \to \pi \ell \nu$ (assume not significant NP effects at tree level).

The largest error is the one from the form factors.

Form factors for $B \to \pi \ell^+ \ell^-$

FNAL/MILC, 1507.01618, **D. Du et al.** 1510.02349 Take f_+ and f_0 from combined fit of lattice + experimental data for $B \to \pi \ell \nu$ (assume not significant NP effects at tree level).

The largest error is the one from the form factors.

D. Du et al. 1510.02349 SM prediction for $R_{\pi} = \frac{\mathcal{B}(B \to \pi \tau \nu_{\tau})}{\mathcal{B}(B \to \pi \ell \nu)} = 0.641(17).$

Expected to be measured at Belle-II, possible to determine at LHCb

Rare semileptonic *B* decays to $\nu \bar{\nu}$ states

D. Du et al. 1510.02349 With FNAL/MILC form factors

Predictions for both neutral and charged channels: complementary information (also $|V_{td,ts}|$)

* Theoretically clean (no problem with charm LD contributions)

* Difficult to measure experimentally, Belle-II expected precision $\sim 10\%$ for $B \to K$

$$\mathcal{B}(B^0 \to \pi^0 \nu \bar{\nu}) \cdot 10^7 = 0.668(41)(49)(16)$$
$$\mathcal{B}(B^0 \to K^0 \nu \bar{\nu}) \cdot 10^7 = 40.1(2.2)(4.3)(0.9)$$
$$\mathcal{B}(B^+ \to \pi^+ \nu \bar{\nu}) \cdot 10^6 = 9.62(1)(92); \ \mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) \cdot 10^6 = 4.94(52)(6)$$

Rare semileptonic *B* **decays: CKM parameters**

* *B*-mixing results HPQCD 1907.01025, RBC/UKQCD 1812.08791, FNAL/MILC, 1602.03560

- * $B \rightarrow K(\pi)\mu^+\mu^-$ results from **D**. **Du et al**, 1510.02349
- * Full/tree CKM unitarity results come from CKMfitter's fit 2018 using all inputs/only observable mediated at tree level of weak interactions.

Fermilab Lattice/MILC program for $b(c) \rightarrow s(d)$ decays

FNAL/MILC 1901.02561 on MILC asqtad $N_f = 2 + 1$ ensembles. Valence sector: Fermilab b + asqtad l, s

Analysis led by Yuzhi Liu

- * Errors: $\mathcal{O}(\alpha_s a^2), \mathcal{O}(\alpha_s a, a^2) f((m_b a)^2)$
- * Scale set with r_1 , with $r_1^{a=0} = 0.3117(22) \text{ fm}$
- * Partially quenched: $m'_s \neq m_s$
- * Lattice data $\in [17.4, 23.2] \, {
 m GeV}^2$ (Kaon momentum up to $\frac{2\pi}{N_s}(1, 1, 1)$

FNAL/MILC 1901.02561 on MILC asqtad $N_f = 2 + 1$ ensembles. Valence sector: Fermilab b + asqtad l, s

Analysis led by Yuzhi Liu

- * Errors: $\mathcal{O}(\alpha_s a^2), \mathcal{O}(\alpha_s a, a^2) f((m_b a)^2)$
- * Scale set with r_1 , with $r_1^{a=0} = 0.3117(22) \text{ fm}$
- * Partially quenched: $m'_s \neq m_s$

* Lattice data $\in [17.4, 23.2] \, {
m GeV}^2$ (Kaon momentum up to $rac{2\pi}{N_s}(1, 1, 1)$

- # Chiral-continuum extrapolation with NLO HMrSChPT in SU(2) hard-kaon limit + NNLO analytic terms.
 - * Small adjustments to the physical m_b

Use BCL parametrization for z-expansion (with K = 4).

* Kinematic constraint $f_+(0) = f_0(0)$ enforced (without constraint, results satisfy $f_+(0) = f_0(0)$ within errors)

Tension with HPQCD (especially at low q^2). Good agreement with RBC/UKQCD.

Predictions for differential decay rates: Ratios for LFU tests: $\Gamma(B_s \to K \tau \nu) / \Gamma(B_s \to K \mu \nu) = 0.836(34)$

Forward-backward asymmetry: (θ_l : angle between charged lepton and B)

$$A_{FB}^{\ell} = \int_{0}^{1} \frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{\ell}} d\cos\theta_{\ell} - \int_{-1}^{0} \frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{\ell}} d\cos\theta_{\ell}$$
$$\propto |p_{K}^{2}| \frac{m_{\ell}^{2}}{q^{2}} Re\left[f_{+}(q^{2})f_{0}^{*}(q^{2})\right]$$

Lepton polarization asymmetry:

$$A_{\rm pol}^{\ell} = \frac{d\Gamma^{-}/dq^{2} - d\Gamma^{+}}{d\Gamma^{-}/dq^{2} + d\Gamma^{+}} \propto f(|f_{+}(q^{2})|, |f_{0}(q^{2})|)$$

Predictions for differential decay rates:

Ratios for LFU tests: $\Gamma(B_s \to K \tau \nu) / \Gamma(B_s \to K \mu \nu) = 0.836(34)$

Forward-backward asymmetry: (θ_l : angle between charged lepton and B)

$$A_{FB}^{\ell} = \int_{0}^{1} \frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{\ell}} d\cos\theta_{\ell} - \int_{-1}^{0} \frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{\ell}} d\cos\theta_{\ell}$$
$$\propto |p_{K}^{2}| \frac{m_{\ell}^{2}}{q^{2}} Re\left[f_{+}(q^{2})f_{0}^{*}(q^{2})\right]$$

Lepton polarization asymmetry:

$$A_{\rm pol}^{\ell} = \frac{d\Gamma^{-}/dq^{2} - d\Gamma^{+}}{d\Gamma^{-}/dq^{2} + d\Gamma^{+}} \propto f(|f_{+}(q^{2})|, |f_{0}(q^{2})|)$$

Also provides ratios of f_+ and f_0 for $B_s \to K\ell\nu$ and $B_s \to D_s\ell\nu$ as functions of q^2 : useful for the determination of $|V_{ub}/V_{cb}|$.

(in progress)

* MILC $N_f = 2 + 1 + 1$ HISQ ensembles

- * MILC $N_f = 2 + 1 + 1$ HISQ ensembles
- * Lüscher-Weisz, one-loop Symanzik and tadpole improved gauge action $\to \mathcal{O}(\alpha_s^2 a^2)$
- * Valence l, s, c quarks are always described with HISQ action $\rightarrow \mathcal{O}(\alpha_s a^2)$
- * Scale set with ω_0/a

- * MILC $N_f = 2 + 1 + 1$ HISQ ensembles
- * Lüscher-Weisz, one-loop Symanzik and tadpole improved gauge action $\to \mathcal{O}(\alpha_s^2 a^2)$
- * Valence l, s, c quarks are always described with HISQ action $\rightarrow \mathcal{O}(\alpha_s a^2)$
- * Scale set with ω_0/a

A Clover action with Fermilab interpretation for $b \to \mathcal{O}(\alpha_s a, a^2) f((m_b a)^2)$ **B** HISQ action for heavy quarks, $m_c \leq m_h \leq m_b \to \mathcal{O}(\alpha_s a^2) f((m_h a)^2)$

$B_{(s)} \rightarrow \pi(K) \ell \nu$: charged currents

Extraction of $|V_{ub}|$: $B \to \pi \ell \nu$ and $B_s \to K \ell \nu$.

$B \to \pi(K)\ell^+\ell^-$: flavour-changing neutral currents

Flavor-changing neutral currents $b \to q$ transitions are potentially sensitive to NP effects $B \to K^* \gamma$, $B \to K^* \ell^+ \ell^-$,

 $B \to \pi(K)\ell^+\ell^-, B_s \to K\ell^+\ell^-$

Most important contributions to all this type of decays are expected to come from matrix elements of current (vector, axial and tensor) operators

Need vector, f_+ , scalar, f_0 and tensor, f_T form factors from LQCD

$$rac{d\Gamma}{dq^2} = (ext{known}) \left| V_{tb} V^*_{td(s)}
ight|^2 \left\{ f_+(q^2), f_0(q^2), f_T(q^2)
ight\}$$
Form factors for $B_{(s)} \to K(\pi)$

Taking Lorentz and discrete symmetries into account:

$$\langle P(k)|\mathcal{V}^{\mu}|B(p)\rangle = f_{+}(q^{2})\left(p^{\mu}+k^{\mu}-\frac{M_{B}^{2}-M_{P}^{2}}{q^{2}}q^{\mu}\right) + f_{0}(q^{2})\frac{M_{B}^{2}-M_{P}^{2}}{q^{2}}q^{\mu}$$

$$egin{aligned} &\langle P(k)|\mathcal{S}|B(p)
angle &=& f_0(q^2)rac{M_B^2-M_P^2}{m_b-m_q} \ &\langle P(k)|\mathcal{T}^{\mu
u}|B(p)
angle &=& f_T(q^2)rac{2}{M_B+M_P}\left(p^{\mu}k^{
u}-p^{\mu}k^{
u}
ight) \end{aligned}$$

Form factors for $B_{(s)} \to K(\pi)$

Taking Lorentz and discrete symmetries into account:

$$\begin{split} \langle P(k) | \mathcal{V}^{\mu} | B(p) \rangle &= f_{+}(q^{2}) \left(p^{\mu} + k^{\mu} - \frac{M_{B}^{2} - M_{P}^{2}}{q^{2}} q^{\mu} \right) + f_{0}(q^{2}) \frac{M_{B}^{2} - M_{P}^{2}}{q^{2}} q^{\mu} \\ &= \sqrt{2M_{B}} \left[k_{\perp}^{\mu} f_{\perp}(E_{P}) + v^{\mu} f_{\parallel}(E_{P}) \right], \quad v = p/M_{B} \\ \langle P(k) | \mathcal{S} | B(p) \rangle &= f_{0}(q^{2}) \frac{M_{B}^{2} - M_{P}^{2}}{m_{b} - m_{q}} \\ \langle P(k) | \mathcal{T}^{\mu\nu} | B(p) \rangle &= f_{T}(q^{2}) \frac{2}{M_{B} + M_{P}} \left(p^{\mu} k^{\nu} - p^{\mu} k^{\nu} \right) \end{split}$$

and then

$$f_{\perp}(E_P) = \frac{\langle P(k) | \mathcal{V}^i | B(p) \rangle}{\sqrt{2M_B}} \frac{1}{k^i}$$

$$f_{\parallel}(E_P) = \frac{\langle P(k) | \mathcal{V}^0 | B(p) \rangle}{\sqrt{2M_B}}$$

$$f_T(q^2) = \frac{M_B + M_P}{\sqrt{2M_B}} \frac{\langle P(k) | \mathcal{T}^{0i} | B(p) \rangle}{\sqrt{2M_B}} \frac{1}{k^i}$$

Correlation Functions

Ratios of 3- and 2-point correlation functions

$$\bar{R}^{\mu(\nu)} \equiv \frac{\bar{C}_{3}^{\mu(\nu)}(t,T;\boldsymbol{k})}{\sqrt{\bar{C}_{2,P}(t;\boldsymbol{k})\bar{C}_{2,H}(T-t;\boldsymbol{k})}} \sqrt{\frac{2E_{P}^{(0)}}{e^{-E_{P}^{(0)}}e^{-M_{H}^{(0)}(T-t)}}}$$

Correlation Functions

Ratios of 3- and 2-point correlation functions

Suppress oscillating and excited states:

$$\bar{C}_{3}^{\mu(\nu)}(t,T;\boldsymbol{k}) \equiv \frac{e^{-E_{P}^{(0)}t}e^{-M_{H}^{(0)}(T-t)}}{8} \qquad \left[\frac{C_{3}^{\mu(\nu)}(t,T;\boldsymbol{k})}{e^{-E_{P}^{(0)}t}e^{-M_{H}^{(0)}(T-t)}} + \frac{C_{3}^{\mu(\nu)}(t+1,T;\boldsymbol{k})}{e^{-E_{P}^{(0)}(t+1)}e^{-M_{H}^{(0)}(T-t-1)}} + \frac{C_{3}^{\mu(\nu)}(t+1,T;\boldsymbol{k})}{e^{-E_{P}^{(0)}(t+1)}e^{-E_{P}^{(0)}(T-t-1)}} + \frac{C_{3}^{\mu(\nu)}(t+1,T;\boldsymbol{k})}{e^{-E_{P}^{(0)}(t+1)}e^{-E_{P}^{(0)}(T-t-1)}}}$$

$$\bar{R}^{\mu(\nu)} \equiv \frac{\bar{C}_{3}^{\mu(\nu)}(t,T;\boldsymbol{k})}{\sqrt{\bar{C}_{2,P}(t;\boldsymbol{k})\bar{C}_{2,H}(T-t;\boldsymbol{k})}} \sqrt{\frac{2E_{P}^{(0)}}{e^{-E_{P}^{(0)}}e^{-M_{H}^{(0)}(T-t)}}}$$

$$\rightarrow F^{\mu(\nu)} \left[1 - F_P e^{-\Delta M_P t} - F_P e^{-\Delta M_H (T-t)} + \ldots \right] + \mathcal{O} \left(\Delta M_P^2, \Delta M_P \Delta M_H, \Delta M_H^2 \right)$$

$$egin{aligned} f_{\perp}(E_P) &= & Z_{\perp} rac{F^i(m{k})}{k^i} \ f_{\parallel}(E_P) &= & Z_{\parallel} F^4(m{k}) \ f_T(E_P) &= & Z_T rac{M_H + M_P}{\sqrt{2M_H}} rac{F^{4i}(m{k})}{k^i} \end{aligned}$$

$b \rightarrow s(d)$ decays on MILC $N_f = 2 + 1 + 1$ HISQ ensembles

A Fermilab *b*

Analysis led by Zech Gelzer

Simulation data

Parameters for physical-mass ensembles

$\approx a({\rm fm})$	$N_s^3 imes N_t$	am'_l	am'_s	am_c'	k_b'	$N_{ m conf} imes N_{ m sour}$
0.15	$32^3 \times 48$	0.002426	0.06730	0.8447	0.07732	3630×8
0.12	$48^3 \times 64$	0.001907	0.05252	0.6382	0.08574	986×8
0.088	$64^3 \times 96$	0.0012	0.0363	0.432	0.09569	1535×8
0.057	$96^3 imes 192$	0.0008	0.022	0.260	0.10604	1027 imes 8

Correlation Functions and Fits

* $J = \mathcal{V}^{\mu}, \mathcal{T}^{0i}$

* Two values of T and 8 time sources.

* Light (HISQ) quarks sources: random wall.

* Heavy (Fermilab) quarks sources: local +1S-smeared.

* P momenta generated up to

 $m{k} = (2, 2, 2) imes 2\pi/(aN_s)$ (7 values)

$$\begin{split} C_2^B(t;\mathbf{0}) &= \sum_{\boldsymbol{x}} \left\langle \mathcal{O}_B(t,\boldsymbol{x}) \ \mathcal{O}_B^{\dagger}(0,\mathbf{0}) \right\rangle, \quad C_2^P(t;\boldsymbol{k}) = \sum_{\boldsymbol{x}} \left\langle \mathcal{O}_P(t,\boldsymbol{x}) \ \mathcal{O}_P^{\dagger}(0,\mathbf{0}) \right\rangle e^{-i\boldsymbol{k}\cdot\boldsymbol{x}}, \\ C_3^{\mu(\nu)}(t,T;\boldsymbol{k}) &= \sum_{\boldsymbol{x},\boldsymbol{y}} e^{i\boldsymbol{k}\cdot\boldsymbol{y}} \left\langle \mathcal{O}_P(0,\mathbf{0}) \ J^{\mu(\nu)}(t,\boldsymbol{y}) \ \mathcal{O}_B^{\dagger}(T,\boldsymbol{x}) \right\rangle \end{split}$$

Correlation Functions and Fits

* $J = \mathcal{V}^{\mu}, \mathcal{T}^{0i}$

* Two values of T and 8 time sources.

* Light (HISQ) quarks sources: random wall.

* Heavy (Fermilab) quarks sources: local +
1S-smeared.

* P momenta generated up to

 $m{k} = (2, 2, 2) \times 2\pi/(aN_s)$ (7 values)

$$\begin{split} C_2^B(t;\mathbf{0}) &= \sum_{\boldsymbol{x}} \left\langle \mathcal{O}_B(t,\boldsymbol{x}) \ \mathcal{O}_B^{\dagger}(0,\mathbf{0}) \right\rangle, \quad C_2^P(t;\boldsymbol{k}) = \sum_{\boldsymbol{x}} \left\langle \mathcal{O}_P(t,\boldsymbol{x}) \ \mathcal{O}_P^{\dagger}(0,\mathbf{0}) \right\rangle e^{-i\boldsymbol{k}\cdot\boldsymbol{x}}, \\ C_3^{\mu(\nu)}(t,T;\boldsymbol{k}) &= \sum_{\boldsymbol{x},\boldsymbol{y}} e^{i\boldsymbol{k}\cdot\boldsymbol{y}} \left\langle \mathcal{O}_P(0,\mathbf{0}) \ J^{\mu(\nu)}(t,\boldsymbol{y}) \ \mathcal{O}_B^{\dagger}(T,\boldsymbol{x}) \right\rangle \end{split}$$

* Mostly nonperturbative matching: $Z_J = \rho_J \sqrt{Z_{V_{bb}^4} Z_{V_{qq}^4}}$ with ρ_J calculated perturbat. at one loop and $Z_{V_{bb}^4}$, $Z_{V_{qq}^4}$ nonperturbatively.

** Introduce a blinding factor through the renormalization factors.

Correlators and Fits: $B \rightarrow K$ on phys. a = 0.057 fm

Form factors from direct (combined) fits to all correlation functions: Preliminary

(consistent with fits to ratios \overline{R} of 3-point over 2-point functions)

Form factors for $B \to \pi$

Preliminary

Note: Correct renomalization ho_J factors missing. Only $\sqrt{Z_{V_{bb}^4} Z_{V_{qq}^4}}$ included.

Form factors for $B \to K$

Preliminary

Note: Correct renomalization ho_J factors missing. Only $\sqrt{Z_{V_{bb}^4} Z_{V_{qq}^4}}$ included.

Form factors for $B_s \to K$

Preliminary

Note: Correct renomalization ho_J factors missing. Only $\sqrt{Z_{V_{bb}^4} Z_{V_{qq}^4}}$ included.

Chiral-continuum interp./extrap.: $B_s \rightarrow K$

We extrapolate the form factors to the continuum and interpolate to the physical quark masses using SU(2) HMrS χ PT

$$f_J = f_J^{(0)} \times \left(1 + \delta f_J^{logs} + \delta f_J^{NLO} + \delta f_J^{N^2LO} + \dots\right) \times \left(1 + \delta f_J^b\right)$$

$$f_J^{(0)} = \frac{g_\pi}{f_\pi (E_P + \Delta_P^*)}$$

$$\delta f_J^{NLO} = c_J^l \chi_l + c_J^s \chi_s + c_J^E \chi_E + c_J^{E^2} \chi_E^2 + c_J^{a^2} \chi_{a^2}$$

*
$$\Delta_P^* = \left(M_{B^*}^2 - M_{B_s}^2 - M_P^2\right)/(2M_{B_s})$$
, where M_{B^*} is a 1^- or 0^+ mass
* f_J^{logs} : nonanalytic functions of m_l, a .

* f_{J}^{b} : b-quark discretization effects,

$$\mathcal{O}\left((a\Lambda)^2, \alpha_s a\Lambda, \alpha_s (a\Lambda)^2\right) \times \text{ mistmach functions } (am_b, \alpha_s) \times h_J^i.$$

* Perturbative part of Z_J implemented with priors: $\tilde{\rho}_J = 1 + \tilde{\rho}_J^{(1)} \alpha_s + \tilde{\rho}_J^{(2)} \alpha_s^2$

Chiral-continuum interp./extrap.: $B_s \rightarrow K$

Preliminary

Preliminary

- * f_{\perp} and f_{\parallel} fit simultaneously.
- * Central fit: NLO SU(2) HMrS χ PT + N^2LO analytic terms.

Error budget for $B_s \to K$

Preliminary and missing perturbative ρ_J factors

Error budget for $B_s \to K$

Preliminary and missing perturbative ρ_J factors

Compared to previous **FNAL/MILC**:

Similar $a \rightarrow$ similar statistics, smaller discretization (HISQ)

Physical m'_l ensembles \rightarrow remove chiral extrapolation error

Outlook

On-going calculation of form factors f_0, f_+, f_T for $B \to \pi$, $B \to K$, $B_s \to K$ with Fermilab *b* and HISQ l, s, c on HISQ $N_f = 2 + 1 + 1$ MILC ensembles.

- * 4 lattice spacings, 7 ensembles (including 4 with phys. masses)
- * Mostly non-perturbative renormalization.
- * Chiral+continuum fits: NLO HMrSChPT in SU(2) hard-kaon limit + NNLO analytic terms.

Outlook

On-going calculation of form factors f_0, f_+, f_T for $B \to \pi$, $B \to K$, $B_s \to K$ with Fermilab *b* and HISQ l, s, c on HISQ $N_f = 2 + 1 + 1$ MILC ensembles.

- * 4 lattice spacings, 7 ensembles (including 4 with phys. masses)
- * Mostly non-perturbative renormalization.
- * Chiral+continuum fits: NLO HMrSChPT in SU(2) hard-kaon limit + NNLO analytic terms.

Need to do

- * Renormalization coefficients: calculate ρ_J , get $Z_{V_{bb,qq}^4}$ with better stat.
- * z expansions and finalize systematic error budgets.
- * Phenomenology: $|V_{ub}|$, $|V_{td}|$, $|V_{ts}|$, confront branching fractions and angular observables with experiment, make predictions for the not yet measured quantities.
- * Correlated ratios for different processes

$h \rightarrow s(d)$ decays on MILC $N_f = 2 + 1 + 1$ HISQ ensembles

B HISQ heavy

Analysis led by William Jay

All-HISQ decay constants analysis

It is feasible to do B physics with HISQ: Decay constants

Avoid large lattice artifact including data with $am_h < 0.9$ (black solid line)

Use HQET-inspired model for extrapolating to the B mass.

All-HISQ decay constants analysis

It is feasible to do B physics with HISQ: Decay constants

Avoid large lattice artifact including data with $a m_h < 0.9$ (black solid line)

Use HQET-inspired model for extrapolating to the B mass.

* Errors: 0.2-0.3% for c decay constants, 0.6-0.7% for b decay constants.

Largest systematic errors: choice of fit model (continuum extrapolation errors), correlator fits (excited-state contamination).

All-HISQ decay constants analysis

 $(f_{\pi,PDG}$ also important systematic for charmed decay constants)

* Controversy with EW radiative corrections needed to exract $|V_{ud}|$ from superallowed β decays: Seng, Gorchtein, Patel, Ramsey-Musolf 1807.10197, Czarnecki, Marciano, Sirlin 1907.06737

Simulation data

Data generated for all-HISQ heavy semileptonic project until middle July 2019

$$B \to K, B \to \pi, B_s \to K$$

(and $D \to K, D \to \pi, D_s \to K$)
 $B_{(s)} \to D_{(s)}$

$\approx a({\rm fm})$	$N_S^{3} imesN_t$	am'_l	am'_s	am_c'	am_h/am_c
0.15	$32^3 \times 48$	0.002426	0.06730	0.8447	0.9, 1, 1.1
0.12	$24^3 \times 64$	0.0102	0.0509	0.635	0.9, 1, 1.4
0.12	$32^3 \times 64$	0.00507	0.0507	0.628	0.9, 1, 1.4
0.12	$48^3 \times 64$	0.001907	0.05252	0.6382	0.9, 1, 1.4
0.088	$48^3 \times 96$	0.00363	0.0363	0.430	0.9, 1, 1.5, 2, 2.5
0.088	$64^3 \times 96$	0.0012	0.0363	0.432	0.9, 1, 1.5, 2, 2.5
0.057	$64^3 \times 144$	0.0024	0.024	0.286	0.9, 1, 2, 3, 4

Simulation data

Data generated for all-HISQ heavy semileptonic project until middle July 2019

$$B \to K, B \to \pi, B_s \to K$$

and $D \to K, D \to \pi, D_s \to K$)
 $B_{(s)} \to D_{(s)}$

Include partially-quenched data: fine-tuning light quark masses, isospin-breaking effects.

$\approx a({\rm fm})$	$N_S^3 imes N_t$	am'_l	am'_s	am_c'	am_h/am_c
0.15	$32^3 \times 48$	0.002426	0.06730	0.8447	0.9, 1, 1.1
0.12	$24^3 \times 64$	0.0102	0.0509	0.635	0.9, 1, 1.4
0.12	$32^3 \times 64$	0.00507	0.0507	0.628	0.9, 1, 1.4
0.12	$48^3 \times 64$	0.001907	0.05252	0.6382	0.9, 1, 1.4
0.088	$48^3 \times 96$	0.00363	0.0363	0.430	0.9, 1, 1.5, 2, 2.5
0.088	$64^3 \times 96$	0.0012	0.0363	0.432	0.9, 1, 1.5, 2, 2.5
0.057	$64^3 \times 144$	0.0024	0.024	0.286	0.9, 1, 2, 3, 4

Correlation Functions

- * Random wall sources.
- * 4 values of T generated, 3 more being generated in some ensembles.
- * 6-8 time sources.
- * Local scalar and temporal vector currents, point-split spatial vector currents.

** S and \mathcal{V}_i are taste singlets \rightarrow parent $H_{(s)}$ has spin-taste $\gamma_5 \times \gamma_5$ (Goldstone meson).

** \mathcal{V}_0 and $\mathcal{T}_{\mu\nu}$ have taste $\gamma_0 \rightarrow \text{parent } H_{(s)}$ has spin-taste $\gamma_0 \gamma_5 \times \gamma_0 \gamma_5$ (non-Goldstone meson).

Correlation Functions

* P momenta data generated up to $\mathbf{k} = (4,0,0) \times 2\pi/(aN_s)$ (8 values)

$$\begin{split} C_2^{H_{(s)}}(t;\boldsymbol{k}) &= \sum_{\boldsymbol{x}} \left\langle \mathcal{O}_{H_{(s)}}(t,\boldsymbol{x}) \ \mathcal{O}_{H_{(s)}}^{\dagger}(0,\boldsymbol{0}) \right\rangle e^{-i\boldsymbol{k}\cdot\boldsymbol{x}}, \quad C_2^{P}(t;\boldsymbol{k}) = \sum_{\boldsymbol{x}} \left\langle \mathcal{O}_{P}(t,\boldsymbol{x}) \ \mathcal{O}_{P}^{\dagger}(0,\boldsymbol{0}) \right\rangle e^{-i\boldsymbol{k}\cdot\boldsymbol{x}}, \\ C_3^{\mu(\nu)}(t,T;\boldsymbol{k}) &= \sum_{\boldsymbol{x},\boldsymbol{y}} e^{i\boldsymbol{k}\cdot\boldsymbol{y}} \left\langle \mathcal{O}_{P}(0,\boldsymbol{0}) \ J^{\mu(\nu)}(t,\boldsymbol{y}) \ \mathcal{O}_{H_{(s)}}^{\dagger}(T,\boldsymbol{x}) \right\rangle \\ \tilde{C}_3^{\mu}(t,T;\boldsymbol{k}) &= \sum_{\boldsymbol{x},\boldsymbol{y}} e^{i\boldsymbol{k}\cdot\boldsymbol{y}} \left\langle \mathcal{O}_{H_{(s)}'}(0,\boldsymbol{0}) \ J^{\mu}(t,\boldsymbol{y}) \ \mathcal{O}_{H_{(s)}}^{\dagger}(T,\boldsymbol{x}) \right\rangle \end{split}$$

Comparison of noise-to-signal at $a \approx 0.12 \text{fm}$

Fermilab heavy b vs HISQ h

- * Physical l, s and c masses
- * Source-sink separation T = 15, 16.

*
$$m_h = 1.4 m_c$$

Typical fit range:

$$\sim [2 - 13]$$

To suppress oscillating-state contributions for better visualization, an averaging scheme has been applied over neighboring time slices.

Extracting the form factors

Using the Ward identity $q_{\mu}\langle P|\mathcal{V}_{\text{lat}}^{\mu}|H\rangle Z_{V_{\text{lat}}^{\mu}} = (m_h - m_q)\langle P|\mathcal{S}|H\rangle$ and the definition of the form factors

$$f_{0}(q^{2}) = \frac{m_{h} - m_{q}}{M_{H}^{2} - M_{P}^{2}} \langle P|S|H\rangle_{q^{2}} \text{ no renor. needed}$$

$$f_{+}(q^{2}) = \frac{1}{2M_{H}} \frac{(M_{H} - M_{P})(m_{h} - m_{q})\langle P|S|H\rangle - q^{2}Z_{V^{0}}\langle P|V^{0}|H\rangle}{k^{2}}$$

$$= \frac{1}{2M_{H}} \left[Z_{V^{0}} \langle P|V^{0}|H\rangle + \frac{M_{H} - M_{P}}{k^{i}} Z_{V^{i}} \langle P|V^{i}|H\rangle \right]$$

$$f_{T}(q^{2}) = \frac{M_{H} + M_{P}}{\sqrt{2M_{H}}} Z_{T} \frac{\langle P|T^{0i}|H\rangle}{\sqrt{2M_{H}}}$$

Extracting the form factors

Using the Ward identity $q_{\mu}\langle P|\mathcal{V}_{\text{lat}}^{\mu}|H\rangle Z_{V_{\text{lat}}^{\mu}} = (m_h - m_q)\langle P|\mathcal{S}|H\rangle$ and the definition of the form factors

$$f_{0}(q^{2}) = \frac{m_{h} - m_{q}}{M_{H}^{2} - M_{P}^{2}} \langle P|\mathcal{S}|H\rangle_{q^{2}} \text{ no renor. needed}$$

$$f_{+}(q^{2}) = \frac{1}{2M_{H}} \frac{(M_{H} - M_{P})(m_{h} - m_{q})\langle P|\mathcal{S}|H\rangle - q^{2}Z_{V^{0}}\langle P|\mathcal{V}^{0}|H\rangle}{k^{2}}$$

$$= \frac{1}{2M_{H}} \left[Z_{V^{0}} \langle P|\mathcal{V}^{0}|H\rangle + \frac{M_{H} - M_{P}}{k^{i}} Z_{V^{i}} \langle P|\mathcal{V}^{i}|H\rangle \right]$$

$$f_{T}(q^{2}) = \frac{M_{H} + M_{P}}{\sqrt{2M_{H}}} Z_{T} \frac{\langle P|\mathcal{T}^{0i}|H\rangle}{\sqrt{2M_{H}}}$$

* For the local temporal current, with both mesons at rest:

$$Z_{V^0} \langle P | \mathcal{V}_0 | H \rangle_{q_{\max}^2} = \frac{m_h - m_q}{M_H - M_P} \langle P | \mathcal{S} | H \rangle_{q_{\max}^2}$$

Extracting the form factors

Using the Ward identity $q_{\mu}\langle P|\mathcal{V}_{\text{lat}}^{\mu}|H\rangle Z_{V_{\text{lat}}^{\mu}} = (m_h - m_q)\langle P|\mathcal{S}|H\rangle$ and the definition of the form factors

$$f_{0}(q^{2}) = \frac{m_{h} - m_{q}}{M_{H}^{2} - M_{P}^{2}} \langle P|\mathcal{S}|H\rangle_{q^{2}} \text{ no renor. needed}$$

$$f_{+}(q^{2}) = \frac{1}{2M_{H}} \frac{(M_{H} - M_{P})(m_{h} - m_{q})\langle P|\mathcal{S}|H\rangle - q^{2}Z_{V^{0}}\langle P|\mathcal{V}^{0}|H\rangle}{k^{2}}$$

$$= \frac{1}{2M_{H}} \left[Z_{V^{0}} \langle P|\mathcal{V}^{0}|H\rangle + \frac{M_{H} - M_{P}}{k^{i}} Z_{V^{i}} \langle P|\mathcal{V}^{i}|H\rangle \right]$$

$$f_{T}(q^{2}) = \frac{M_{H} + M_{P}}{\sqrt{2M_{H}}} Z_{T} \frac{\langle P|\mathcal{T}^{0i}|H\rangle}{\sqrt{2M_{H}}}$$

* For the local temporal current, with both mesons at rest:

$$\mathbf{Z}_{\mathbf{V}^0} \langle P | \mathcal{V}_0 | H \rangle_{q_{\max}^2} = \frac{m_h - m_q}{M_H - M_P} \langle P | \mathcal{S} | H \rangle_{q_{\max}^2}$$

* Renormalization factors Z_{V^i}, Z_T : Under investigation. ** First step: Mostly non-perturbative renormalization?

Correlation Functions and Fits Example: $D \rightarrow \pi$ at $a \approx 0.12$ fm with phys. quark masses

Preliminary

- * Combined correlated fit to
- 2-point and 3-point
- functions
 - (ratio \bar{R} 3pt- and 2-point functions for visualization)

Correlation Functions and Fits Example: $D \rightarrow \pi$ at $a \approx 0.12 \text{fm}$ with phys. quark masses

- * Similar results for all currents and most of the momenta.
- * Add larger values of T: Better constrain of ground state contributions

Correlation Functions and Fits

Example: 3-point correlation function with S insertion and $\mathbf{k} = (1, 0, 0)$

2+1 states for π channel

and 4+2 for ${\it D}$ channel

Check stability

Correlation Functions and Fits

Example: 3-point correlation function with S insertion and $\mathbf{k} = (1, 0, 0)$

Preliminary: $D \rightarrow \pi$ form factors

Physical masses for light and heavy masses $= 0.9m_c$. Three lattice spacings $a \approx 0.088, 0.12, 0.15$ fm

Note: No renormalization included.

Preliminary: Pion dispersion relation

(for physical quark masses ensembles)

On-going calculation of form factors f_0, f_+, f_T for $H \rightarrow P$, $H \rightarrow H'$ processes with the HISQ action for all flavors on HISQ $N_f = 2 + 1 + 1$ MILC ensembles.

- * So far: 4 lattice spacings, 7 ensembles (including 3 with phys. masses)
- * Momenta up to $\mathbf{k} = (4, 0, 0) \times 2\pi/(aN_s)$: cover q^2 range for D semileptonic, down to $\sim 11 \text{ GeV}^2 B$ semileptonic.

On-going calculation of form factors f_0, f_+, f_T for $H \rightarrow P$, $H \rightarrow H'$ processes with the HISQ action for all flavors on HISQ $N_f = 2 + 1 + 1$ MILC ensembles.

- * So far: 4 lattice spacings, 7 ensembles (including 3 with phys. masses)
- * Momenta up to $\mathbf{k} = (4, 0, 0) \times 2\pi/(aN_s)$: cover q^2 range for D semileptonic, down to $\sim 11 \text{ GeV}^2 B$ semileptonic.
- * Noise-to-signal seems to significantly reduce respect to Fermilab *b*/HISQ light description.
- * Good behaviour of dispersion relation

On-going calculation of form factors f_0, f_+, f_T for $H \rightarrow P$, $H \rightarrow H'$ processes with the HISQ action for all flavors on HISQ $N_f = 2 + 1 + 1$ MILC ensembles.

- * So far: 4 lattice spacings, 7 ensembles (including 3 with phys. masses)
- * Momenta up to $\mathbf{k} = (4, 0, 0) \times 2\pi/(aN_s)$: cover q^2 range for D semileptonic, down to $\sim 11 \text{ GeV}^2 B$ semileptonic.
- * Noise-to-signal seems to significantly reduce respect to Fermilab b/HISQ light description.
- * Good behaviour of dispersion relation

Next steps in the current analysis:

- * Include larger source-sink separations: better determination of ground state.
- * Optimize fitting methodology.
- * Autocorrelations (plots in this talk, data binned by 10).

* Nonequilibrated topological charge effects.

For HISQ $N_f = 2 + 1 + 1$ MILC ensembles with smallest lattice spacings $(a \approx 0.042, 0.03 \text{ fm})$, the topological charge Q is not properly sampled.

Correct the form factors in a similar way as we did for $K
ightarrow \pi \ell
u$

$$f_{+}^{K\pi}(0)_{\text{corrected}} = f_{+}^{K\pi}(0)_{\text{sampled}} - \frac{1}{2\chi_{T}V} (f_{+}^{K\pi}(0))^{\prime\prime} \left(1 - \frac{\langle Q^{2} \rangle_{\text{sample}}}{\chi_{T}V}\right)^{\prime\prime}$$

* Nonequilibrated topological charge effects.

For HISQ $N_f = 2 + 1 + 1$ MILC ensembles with smallest lattice spacings $(a \approx 0.042, 0.03 \text{ fm})$, the topological charge Q is not properly sampled.

Correct the form factors in a similar way as we did for $K \to \pi \ell \nu$

$$f_{+}^{K\pi}(0)_{\text{corrected}} = f_{+}^{K\pi}(0)_{\text{sampled}} - \frac{1}{2\chi_{T}V} (f_{+}^{K\pi}(0))^{\prime\prime} \left(1 - \frac{\langle Q^{2} \rangle_{\text{sample}}}{\chi_{T}V}\right)^{\prime\prime}$$

with $(f_+^{K\pi}(0))'' = d^2 f_+ / d\theta^2 |_{\theta=0}$ and $\chi_T = \langle Q \rangle / V$ the topological susceptibility.

* Following C. Bernard and D. Toussaint 1707.05430, use ChPT to study Q-dependence (θ dependence) of the form factor and obtain $(f_{+}^{K\pi}(0))''$ at LO:

* Nonequilibrated topological charge effects.

For HISQ $N_f = 2 + 1 + 1$ MILC ensembles with smallest lattice spacings $(a \approx 0.042, 0.03 \text{ fm})$, the topological charge Q is not properly sampled.

Correct the form factors in a similar way as we did for $K \to \pi \ell \nu$

$$f_{+}^{K\pi}(0)_{\text{corrected}} = f_{+}^{K\pi}(0)_{\text{sampled}} - \frac{1}{2\chi_{T}V} (f_{+}^{K\pi}(0))'' \left(1 - \frac{\langle Q^{2} \rangle_{\text{sample}}}{\chi_{T}V}\right)$$

- * Following C. Bernard and D. Toussaint 1707.05430, use ChPT to study Q-dependence (θ dependence) of the form factor and obtain $(f_{+}^{K\pi}(0))''$ at LO:
- * Renormalization for \mathcal{T} current.

* Nonequilibrated topological charge effects.

For HISQ $N_f = 2 + 1 + 1$ MILC ensembles with smallest lattice spacings $(a \approx 0.042, 0.03 \text{ fm})$, the topological charge Q is not properly sampled.

Correct the form factors in a similar way as we did for $K \to \pi \ell \nu$

$$f_{+}^{K\pi}(0)_{\text{corrected}} = f_{+}^{K\pi}(0)_{\text{sampled}} - \frac{1}{2\chi_{T}V} (f_{+}^{K\pi}(0))'' \left(1 - \frac{\langle Q^{2} \rangle_{\text{sample}}}{\chi_{T}V}\right)$$

- * Following C. Bernard and D. Toussaint 1707.05430, use ChPT to study Q-dependence (θ dependence) of the form factor and obtain $(f_{+}^{K\pi}(0))''$ at LO:
- * Renormalization for \mathcal{T} current.
- * Scale setting with a different (than f_{π}) experimental input: M_{Ω} , m_{D_s} ...?

* Nonequilibrated topological charge effects.

For HISQ $N_f = 2 + 1 + 1$ MILC ensembles with smallest lattice spacings $(a \approx 0.042, 0.03 \text{ fm})$, the topological charge Q is not properly sampled.

Correct the form factors in a similar way as we did for $K \to \pi \ell \nu$

$$f_{+}^{K\pi}(0)_{\text{corrected}} = f_{+}^{K\pi}(0)_{\text{sampled}} - \frac{1}{2\chi_{T}V} (f_{+}^{K\pi}(0))'' \left(1 - \frac{\langle Q^{2} \rangle_{\text{sample}}}{\chi_{T}V}\right)$$

- * Following C. Bernard and D. Toussaint 1707.05430, use ChPT to study Q-dependence (θ dependence) of the form factor and obtain $(f_{+}^{K\pi}(0))''$ at LO:
- * Renormalization for \mathcal{T} current.
- * Scale setting with a different (than f_{π}) experimental input: M_{Ω} , m_{D_s} ...?
- * Long term: EM and isospin breaking effects.