Heavy-to-light decay form factors on $N_f = 2 + 1 + 1$ HISQ ensembles

Elvira Gámiz

(Lattice Fermilab and MILC Collaborations)
Introduction

Precise determinations of CKM matrix elements:

\[
V_{CKM} = \begin{pmatrix}
|V_{ud}| & |V_{us}| & |V_{ub}| \\
|V_{cd}| & |V_{cs}| & |V_{cb}| \\
|V_{td}| & |V_{ts}| & |V_{tb}|
\end{pmatrix}
\]

\[
B \to \pi \tau \nu, \quad B_s \to K \ell \nu \\
\Lambda_b \to p \ell \nu \\
D \to \pi \ell \nu, \quad D \to K \ell \nu, \quad B_{(s)} \to D_{(s)} \left(D_{(s)}^* \right) \ell \nu \\
B \to \pi \ell \ell, \quad B \to K \ell \ell
\]

Tensions: Inclusive-Exclusive determinations of \(|V_{ub}|\) and \(|V_{cb}|\).
Introduction

Long-standing tension between exclusive and inclusive determinations of the CKM matrix elements $|V_{cb}|$ and $|V_{ub}|$ at the $\sim 3\sigma$ level.

$|V_{cb}|^{B \rightarrow D^*}$ inclus.-exclus. tension not resolved by BGL vs CLN

(Belle (untagged) 1809.03290 and BaBar 1903.1002 results not included in plots)

From Belle 1809.03290 and FNAL/MILC 2014 $|V_{cb}|^{CLN} = (38.4 \pm 0.9) \cdot 10^{-3}$

$|V_{cb}|^{BGL} = (38.3 \pm 1.0) \cdot 10^{-3}$
Update of plot in 1711.08085. CKM unitarity band from CKMfitter
Introduction: Status exclusive $|V_{ub}|$ extraction

$|V_{ub}|$ from $B \rightarrow \pi l \nu$

Combined BCL fit to experim.
and $N_f = 2 + 1$ lattice data on different q^2 regions

$|V_{ub}|^{FLAG2019} = 3.73(14) \cdot 10^{-3}$

Good consistency between lattice and experimental shapes and commensurate errors

$|V_{ub}|^{inclusive, HFLAV2017} = (4.52 \pm 0.15^{+0.11}_{-0.14}) \cdot 10^{-3} \sim 3\sigma$ disagreement.
Introduction: Status exclusive $|V_{ub}|$ extraction

$|V_{ub}|$ from $B \rightarrow \pi l \nu$

Combined BCL fit to experim. and $N_f = 2 + 1$ lattice data on different q^2 regions

- **RBC/UKQCD**, 1501.05373
- **FNAL/MILC**, 1503.07839
- **HPQCD**, hep-lat/0601021

Good consistency between lattice and experimental shapes and commensurate errors

$$|V_{ub}|^{FLAG2019} = 3.73(14) \cdot 10^{-3}$$

Leptonic determinations

* Less precise (dominated by exp. errors on $B(B \rightarrow \tau \nu)$)

* **BaBar** and **Belle** results don’t agree very well.
Introduction: Status exclusive \(|V_{ub}|\) extraction

\[|V_{ub}|^{FLAG2019} = 3.73(14) \cdot 10^{-3} \]

\[|V_{ub}|^{\text{inclusive, HFLAV2017}} = (4.52 \pm 0.15^{+0.11}_{-0.14}) \cdot 10^{-3} \sim 3\sigma \text{ disagreement.} \]

Leptonic determinations

* Less precise (dominated by exp. errors on \(B(B \to \tau\nu)\))

* \textbf{BaBar} and \textbf{Belle} results don’t agree very well.

Important role for \textbf{Belle II} for both leptonic and semileptonic
Introduction: Status exclusive $|V_{ub}|$ extraction

Alternative way of getting $|V_{ub}|$: $B_s \rightarrow K\ell\nu$.

* Three LQCD calculations of the relevant form factors:

 HPQCD 1406.2279, **RBC/UKQCD** 1501.05373, **FNAL/MILC** 1901.02561

* LQCD error smaller than for $B \rightarrow \pi$ form factors
Introduction: Status exclusive $|V_{ub}|$ extraction

Alternative way of getting $|V_{ub}|$: $B_s \rightarrow K\ell\nu$.

Also,

\[f_0,+(B_s \rightarrow K\ell\nu)/f_0,+(B_s \rightarrow D_s\ell\nu) \]

to get $|V_{ub}/V_{cb}|$

* Three LQCD calculations of the relevant form factors:
 - **HPQCD** 1406.2279, **RBC/UKQCD** 1501.05373, **FNAL/MILC** 1901.02561

* LQCD error smaller than for $B \rightarrow \pi$ form factors

* Experimentally: Under investigacion by **LHCb**, expected to be measured at the $\Upsilon(5S)$ run at **Belle-II**

 (maybe 5-10% precision for the decay rate at Belle-II)
Introduction: Lepton Flavor Universality tests

\[R(D^{(*)}) = \frac{\mathcal{B}(B \rightarrow D^{(*)} \tau \nu_{\tau})}{\mathcal{B}(B \rightarrow D^{(*)} \ell \nu)} \]

Tension between Belle and BaBar

Plot from 1904.08794

Belle 2019: \(R(D) = 0.307 \pm 0.037 \pm 0.016 \) (consistent with SM),
\(R(D^{*}) = 0.283 \pm 0.018 \pm 0.014 \)

World average at \(\sim 3\sigma \) from SM.
Introduction: b rare decays (FCNC)

Flavor-changing neutral currents $b \rightarrow q$ transitions are potentially sensitive to NP effects $B \rightarrow K^* \gamma$, $B \rightarrow K^{(*)} \ell^+ \ell^-$, $B \rightarrow \pi \ell^+ \ell^-$
Introduction: \(b \) rare decays (FCNC)

Flavor-changing neutral currents \(b \to q \) transitions are potentially sensitive to NP effects \(B \to K^* \gamma, B \to K^{(*)} \ell^+ \ell^-, B \to \pi \ell^+ \ell^- \)

Sets of tensions between SM predictions and experimentally measured \(b \to s \ell^+ \ell^- \) observables

Branching fraction measurements: \(B^0 \to K^{*0} \mu^+ \mu^-, B^+ \to K^{(*)+} \mu^+ \mu^-, B_s \to \phi \mu^+ \mu^- \)

Angular analyses: \(B^+ \to K^{(*)+} \mu^+ \mu^-, B_s \to \phi \mu^+ \mu^- \)

Tests of Lepton Flavour Universality (\(\mu/e \)): \(B^0 \to K^{*0} \mu^+ \mu^-, B^+ \to K^{(*)+} \mu^+ \mu^- \)

Very small sensitivity to hadronic form factors \(\sim 10^{-4} \)

\[
R_{K^{(*)}}(q^2_{min}, q^2_{max}) \equiv \frac{\int_{q^2_{min}}^{q^2_{max}} dq^2 d\mathcal{B}(B \to K^{(*)} \mu^+ \mu^-)}{\int_{q^2_{min}}^{q^2_{max}} dq^2 d\mathcal{B}(B \to K^{(*)} e^+ e^-)}
\]
Introduction: Rare decays (FCNC)

Lepton Flavour Universality Tests

Angular Analysis (P_5')

LHCb finds 3.4σ, seems to be confirmed by Belle (ATLAS?) but not CMS

$LHCb$ will reach $\sim 1.5\%$ precision for the branching fractions at both low and high q^2. J. Albrecht et al 1709.10308

1904.02440 Belle preliminary
Introduction: Neutral-current b decays

For $B \to P\ell\ell$, hadronic contributions are parametrized in terms of matrix elements of current (vector, axial and tensor) operators through three form factors

$$f_+, f_0 \text{ (for } m_\ell \neq 0\text{) and } f_T$$

+ non-factorizable contributions

Allow the calculation of branching fractions, angular observables and LFUV quantities

Extract CKM matrix elements $|V_{td,ts}|$ or constrain Wilson coefficients C_9 and C_{10}.
Introduction: Neutral-current b decays

For $B \rightarrow P \ell \ell$, hadronic contributions are parametrized in terms of matrix elements of current (vector, axial and tensor) operators through three form factors

\[f_+ , f_0 \text{ (for } m_\ell \neq 0 \text{ and } f_T \]

\[+ \text{ non-factorizable contributions} \]

Allow the calculation of branching fractions, angular observables and LFUV quantities

Extract CKM matrix elements $|V_{td,ts}|$ or constrain Wilson coefficients C_9 and C_{10}.

* Non-factorizable contributions under control? New physics or charm-loops?

* This talk: Form factors for $h \rightarrow l$ decays.
Current status: Form factors for \(B \to K\ell^+\ell^- \)

\[B \to K\ell^+\ell^- : \text{HPQCD 1306.0434, 1306.2384, FNAL/MILC, 1509.06235} \]

Overlapping ensemble sets (asqtad MILC \(N_f = 2 + 1 \)) but different lattice actions:

HPQCD: NRQCD \(b + \text{HISQ} \ u, d, s \)\n
FNAL/MILC: Fermilab \(b + \text{asqtad} \ u, d, s \)

Consistent results for \(f_0, +, T \), and with LCSR

Khodjamarian et al 1006.4945
Form factors for $B \to K\ell^+\ell^-$

From D. Du et al 1510.02349, FNAL/MILC 1509.06235 (non-factorizable contributions under control?)

$1 - 2\sigma$ experiment-SM tensions.

focus on large bins above and below charmonium resonances
$B \to K\ell^+\ell^-$: Lepton Flavor Universality Tests

\[(1 - R_K)^{\text{HPQCD}} = 0.00074 \pm 0.00035, \quad (1 - R_{K^+})^{\text{FNAL/MILC}} = 0.00050 \pm 0.00043\]

SM predictions for these ratios pretty insensitive to form factors and non-factor contributions.
$B \to K\ell^+\ell^-$: Lepton Flavor Universality Tests

LHCb results

for $q^2 \in [1 \text{ GeV}^2, 6 \text{ GeV}^2]$

- $R_K^{\text{old Run1}} = 0.745^{+0.090}_{-0.074} (\text{stat}) \pm 0.036 (\text{syst})$
- $R_K^{\text{new Run1}} = 0.717^{+0.083}_{-0.071} (\text{stat})^{+0.017}_{-0.016} (\text{syst})$
- $R_K^{2015+2016} = 0.928^{+0.089}_{-0.076} (\text{stat})^{+0.020}_{-0.016} (\text{syst})$
- $R_K^{\text{RunI+2015+2016}} = 0.846^{+0.060+0.014}_{-0.054-0.016}$

$(1 - R_K)^{\text{HPQCD}} = 0.00074 \pm 0.00035$,

$(1 - R_K^+)^{\text{FNAL/MILC}} = 0.00050 \pm 0.00043$

$(1 - R_K^+)^{\text{LHCb 2019}} = 0.154^{+0.060}_{-0.054} (\text{stat})^{+0.014}_{-0.016} (\text{syst})$

compatible/tension with SM at 2.5σ

SM predictions for these ratios pretty insensitive to form factors and non-factor contributions.
\[B \to K\ell^+\ell^- : \text{Lepton Flavor Universality Tests} \]

LHCb results

for \(q^2 \in [1 \text{ GeV}^2, 6 \text{ GeV}^2] \)

\[
R_K^{\text{old Run1}} = 0.745^{+0.090}_{-0.074} (\text{stat}) \pm 0.036 (\text{syst})
\]

\[
R_K^{\text{new Run1}} = 0.717^{+0.083}_{-0.071} (\text{stat})^{+0.017}_{-0.016} (\text{syst})
\]

\[
R_K^{2015+2016} = 0.928^{+0.089}_{-0.076} (\text{stat})^{+0.020}_{-0.016} (\text{syst})
\]

\[
R_K^{\text{RunI+2015+2016}} = 0.846^{+0.060+0.014}_{-0.054-0.016}
\]

\[
(1 - R_K)^{\text{HPQCD}} = 0.00074 \pm 0.00035, \quad (1 - R_K^+)^{\text{FNAL/MILC}} = 0.00050 \pm 0.00043
\]

\[
(1 - R_K^+)_{\text{LHCb 2019}} = 0.154^{+0.060}_{-0.054} (\text{stat})^{+0.014}_{-0.016} (\text{syst})
\]

compatible/tension with SM at 2.5\(\sigma \)

SM predictions for these ratios pretty insensitive to form factors and non-factor contributions.

* LHCb expects a reduction by a factor of 4 by 2025.
Form factors for $B \rightarrow \pi \ell^+ \ell^-$

FNAL/MILC, 1507.01618, D. Du et al. 1510.02349

Take f_+ and f_0 from combined fit of lattice + experimental data for $B \rightarrow \pi \ell \nu$ (assume not significant NP effects at tree level).

The largest error is the one from the form factors.
Form factors for $B \to \pi \ell^+ \ell^-$

FNAL/MILC, 1507.01618, D. Du et al. 1510.02349 Take f_+ and f_0 from combined fit of lattice + experimental data for $B \to \pi \ell \nu$ (assume not significant NP effects at tree level).

The largest error is the one from the form factors.

D. Du et al. 1510.02349 SM prediction for $R_\pi = \frac{\mathcal{B}(B \to \pi \tau \nu_\tau)}{\mathcal{B}(B \to \pi \ell \nu)} = 0.641(17)$.

Expected to be measured at Belle-II, possible to determine at LHCb.
Rare semileptonic B decays to $\nu \bar{\nu}$ states

D. Du et al. 1510.02349 with FNAL/MILC form factors

Predictions for both neutral and charged channels: complementary information (also $|V_{td,ts}|$)

* Theoretically clean (no problem with charm LD contributions)

* Difficult to measure experimentally, Belle-II expected precision $\sim 10\%$ for $B \rightarrow K$

$$\mathcal{B}(B^0 \rightarrow \pi^0 \nu \bar{\nu}) \cdot 10^7 = 0.668(41)(49)(16)$$

$$\mathcal{B}(B^0 \rightarrow K^0 \nu \bar{\nu}) \cdot 10^7 = 40.1(2.2)(4.3)(0.9)$$

$$\mathcal{B}(B^+ \rightarrow \pi^+ \nu \bar{\nu}) \cdot 10^6 = 9.62(1)(92); \; \mathcal{B}(B^+ \rightarrow K^+ \nu \bar{\nu}) \cdot 10^6 = 4.94(52)(6)$$
Rare semileptonic B decays: CKM parameters

| $|V_{td}| \times 10^3$ | $|V_{ts}| \times 10^3$ | $|V_{td}/V_{ts}|$ |
|---------------------|---------------------|---------------------|
| HPQCD 19 ΔM_q |
| RBC/UKQCD 18 ΔM_q |
| FNAL/MILC 16 ΔM_q |
| FNAL/MILC 16 $B \to K(\pi)\mu^+\mu^-$ |
| CKMfitter 18 |
| CKMfitter 18 (tree) |

B-mixing results HPQCD 1907.01025, RBC/UKQCD 1812.08791, FNAL/MILC, 1602.03560

*B $\to K(\pi)\mu^+\mu^-$ results from D. Du et al, 1510.02349

Full/tree CKM unitarity results come from CKMfitter’s fit 2018 using all inputs/only observable mediated at tree level of weak interactions.
Fermilab Lattice/MILC program for $b(c) \rightarrow s(d)$ decays
Form factors for $B_s \to K\ell\nu$

FNAL/MILC 1901.02561 on MILC asqtad $N_f = 2 + 1$ ensembles.
Valence sector: Fermilab $b +$ asqtad l, s

Analysis led by Yuzhi Liu

* Errors:
 $\mathcal{O}(\alpha_s a^2), \mathcal{O}(\alpha_s a, a^2)f((m_b a)^2)$

* Scale set with r_1, with
 $r_1^{a=0} = 0.3117(22) \text{ fm}$

* Partially quenched: $m'_s \neq m_s$

* Lattice data
 $\in [17.4, 23.2] \text{ GeV}^2$
 (Kaon momentum up to $\frac{2\pi}{N_s} (1, 1, 1)$)
Form factors for $B_s \rightarrow K\ell\nu$

FNAL/MILC 1901.02561 on MILC asqtad $N_f = 2 + 1$ ensembles.
Valence sector: Fermilab $b +$ asqtad l, s

Analysis led by Yuzhi Liu

* Errors:
 $O(\alpha_s a^2), O(\alpha_s a, a^2)f((m_b a)^2)$

* Scale set with r_1, with
 $r_{1}^{a=0} = 0.3117(22) \text{ fm}$

* Partially quenched: $m'_s \neq m_s$

* Lattice data
 $\in [17.4, 23.2] \text{ GeV}^2$
 (Kaon momentum up to $\frac{2\pi}{N_s}(1, 1, 1)$)

Chiral-continuum extrapolation with NLO HMrSChPT in SU(2)
hard-kaon limit $+$ NNLO analytic terms.

* Small adjustments to the physical m_b
Form factors for $B_s \rightarrow K\ell\nu$

Use BCL parametrization for z–expansion (with $K = 4$).

* Kinematic constraint $f_+(0) = f_0(0)$ enforced (without constraint, results satisfy $f_+(0) = f_0(0)$ within errors).

Tension with HPQCD (especially at low q^2). Good agreement with RBC/UKQCD.
Form factors for $B_s \rightarrow K\ell\nu$

Predictions for differential decay rates:

Ratios for LFU tests: $\Gamma(B_s \rightarrow K\tau\nu)/\Gamma(B_s \rightarrow K\mu\nu) = 0.836(34)$

Forward-backward asymmetry: (θ_ℓ: angle between charged lepton and B)

$$A_{\ell FB} = \int_0^1 \frac{d^2\Gamma}{dq^2 d\cos\theta_\ell} d\cos\theta_\ell - \int_{-1}^0 \frac{d^2\Gamma}{dq^2 d\cos\theta_\ell} d\cos\theta_\ell$$

$$\propto |p_K^2| \frac{m_\ell^2}{q^2} Re \left[f_+(q^2)f_0^*(q^2) \right]$$

Lepton polarization asymmetry:

$$A_{\ell pol} = \frac{d\Gamma^-/dq^2 - d\Gamma^+}{d\Gamma^-/dq^2 + d\Gamma^+} \propto f(|f_+(q^2)|, |f_0(q^2)|)$$
Form factors for $B_s \to K\ell\nu$

Predictions for differential decay rates:

Ratios for LFU tests: $\Gamma(B_s \to K\tau\nu)/\Gamma(B_s \to K\mu\nu) = 0.836(34)$

Forward-backward asymmetry: $(\theta_\ell$: angle between charged lepton and B)

$$A_{FB}^\ell = \int_0^1 \frac{d^2\Gamma}{dq^2 d\cos\theta_\ell} d\cos\theta_\ell - \int_{-1}^0 \frac{d^2\Gamma}{dq^2 d\cos\theta_\ell} d\cos\theta_\ell$$

$$\propto |p_K^2| \frac{m_\ell^2}{q^2} Re \left[f_+(q^2)f_0^*(q^2) \right]$$

Lepton polarization asymmetry:

$$A_{pol}^\ell = \frac{d\Gamma^-/dq^2 - d\Gamma^+}{d\Gamma^-/dq^2 + d\Gamma^+} \propto f(|f_+(q^2)|, |f_0(q^2)|)$$

Also provides ratios of f_+ and f_0 for $B_s \to K\ell\nu$ and $B_s \to D_s\ell\nu$ as functions of q^2: useful for the determination of $|V_{ub}/V_{cb}|$.
$b(c) \rightarrow s(d)$ decays on MILC $N_f = 2 + 1 + 1$ HISQ ensembles

(in progress)
\[b(c) \rightarrow s(d) \] decays on MILC \(N_f = 2 + 1 + 1 \) HISQ ensembles

* MILC \(N_f = 2 + 1 + 1 \) HISQ ensembles
$b(c) \rightarrow s(d)$ decays on MILC $N_f = 2 + 1 + 1$

HISQ ensembles

* MILC $N_f = 2 + 1 + 1$ HISQ ensembles

* Lüscher-Weisz, one-loop Symanzik and tadpole improved gauge action $\rightarrow \mathcal{O}(\alpha_s^2 a^2)$

* Valence l, s, c quarks are always described with HISQ action $\rightarrow \mathcal{O}(\alpha_s a^2)$

* Scale set with ω_0/a
\[b(c) \to s(d) \] \text{decays on MILC } N_f = 2 + 1 + 1 \text{ HISQ ensembles}

* MILC \(N_f = 2 + 1 + 1 \) HISQ ensembles

* Lüscher-Weisz, one-loop Symanzik and tadpole improved gauge action \(\to \mathcal{O}(\alpha_s^2 a^2) \)

* Valence \(l, s, c \) quarks are always described with HISQ action \(\to \mathcal{O}(\alpha_s a^2) \)

* Scale set with \(\omega_0/a \)

A Clover action with Fermilab interpretation for \(b \to \mathcal{O}(\alpha_s a, a^2) f((m_b a)^2) \)

B HISQ action for heavy quarks, \(m_c \leq m_h \leq m_b \to \mathcal{O}(\alpha_s a^2) f((m_h a)^2) \)
$B_{(s)} \rightarrow \pi(K)\ell\nu$: charged currents

Extraction of $|V_{ub}|$: $B \rightarrow \pi\ell\nu$ and $B_s \rightarrow K\ell\nu$.

\[
\frac{d\Gamma}{dq^2} = (\text{known}) \ |V_{ub}|^2 \ \{ f_+(q^2), f_0(q^2) \}
\]
$B \rightarrow \pi(K)\ell^+\ell^-$: flavour-changing neutral currents

Flavor-changing neutral currents $b \rightarrow q$ transitions are potentially sensitive to NP effects $B \rightarrow K^*\gamma$, $B \rightarrow K^*\ell^+\ell^-$, $B \rightarrow \pi(K)\ell^+\ell^-$, $B_s \rightarrow K\ell^+\ell^-$.

Most important contributions to all this type of decays are expected to come from matrix elements of current (vector, axial and tensor) operators.

Need vector, f_+, scalar, f_0 and tensor, f_T form factors from LQCD

$$\frac{d\Gamma}{dq^2} = (\text{known}) \ |V_{tb}V_{td(s)}^*|^2 \left\{ f_+(q^2), f_0(q^2), f_T(q^2) \right\}$$
Form factors for $B_{(s)} \rightarrow K(\pi)$

Taking Lorentz and discrete symmetries into account:

$$\langle P(k) | V^\mu | B(p) \rangle = f_+(q^2) \left(p^\mu + k^\mu - \frac{M_B^2 - M_P^2}{q^2} q^\mu \right) + f_0(q^2) \frac{M_B^2 - M_P^2}{q^2} q^\mu$$

$$\langle P(k) | S | B(p) \rangle = f_0(q^2) \frac{M_B^2 - M_P^2}{m_b - m_q}$$

$$\langle P(k) | T^{\mu \nu} | B(p) \rangle = f_T(q^2) \frac{2}{M_B + M_P} \left(p^\mu k^\nu - p^\mu k^\nu \right)$$
Form factors for $B_{(s)} \rightarrow K(\pi)$

Taking Lorentz and discrete symmetries into account:

$$\langle P(k) | \mathcal{V}^\mu | B(p) \rangle = f_+(q^2) \left(p^\mu + k^\mu - \frac{M_B^2 - M_P^2}{q^2} q^\mu \right) + f_0(q^2) \frac{M_B^2 - M_P^2}{q^2} q^\mu$$

$$= \sqrt{2M_B} \left[k^\mu f_\perp(E_P) + v^\mu f_\parallel(E_P) \right], \quad v = p/M_B$$

$$\langle P(k) | S | B(p) \rangle = f_0(q^2) \frac{M_B^2 - M_P^2}{m_b - m_q}$$

$$\langle P(k) | \mathcal{T}^{\mu \nu} | B(p) \rangle = f_T(q^2) \frac{2}{M_B + M_P} \left(p^\mu k^\nu - p^\nu k^\mu \right)$$

and then

$$f_\perp(E_P) = \frac{\langle P(k) | \mathcal{V}^i | B(p) \rangle}{\sqrt{2M_B}} \frac{1}{k^i}$$

$$f_\parallel(E_P) = \frac{\langle P(k) | \mathcal{V}^0 | B(p) \rangle}{\sqrt{2M_B}}$$

$$f_T(q^2) = \frac{M_B + M_P}{\sqrt{2M_B}} \frac{\langle P(k) | \mathcal{T}^{0i} | B(p) \rangle}{\sqrt{2M_B}} \frac{1}{k^i}$$
Correlation Functions

Ratios of 3- and 2-point correlation functions

\[C_3^{\mu(\nu)}(t, T; k) \equiv \frac{e^{-E_P(0)t} e^{-M_H(0)(T-t)}}{8} \]

\[\bar{R}^{\mu(\nu)} \equiv \frac{\bar{C}_3^{\mu(\nu)}(t, T; k)}{\sqrt{\bar{C}_{2,P}(t; k)\bar{C}_{2,H}(T - t; k)}} \sqrt{\frac{2E_P(0)}{e^{-E_P(0)} e^{-M_H(0)(T-t)}}} \]

Suppress oscillating and excited states
Correlation Functions

Ratios of 3- and 2-point correlation functions

Suppress oscillating and excited states:

\[
\bar{C}_3^{\mu(\nu)}(t, T; k) \equiv \frac{e^{-E_P^0 t} e^{-M_H^0 (T-t)}}{8} \left[\frac{C_3^{\mu(\nu)}(t, T; k)}{e^{-E_P^0 t} e^{-M_H^0 (T-t)}} + \frac{C_3^{\mu(\nu)}(t + 1, T; k)}{e^{-E_P^0 (t+1)} e^{-M_H^0 (T-t-1)}} \right. \\
+ \left. \frac{C_3^{\mu(\nu)}(t + 2, T; k)}{e^{-E_P^0 (t+2)} e^{-M_H^0 (T-t-2)}} + T \to T + 1 \right]
\]

\[
\bar{R}^{\mu(\nu)} \equiv \frac{\bar{C}_3^{\mu(\nu)}(t, T; k)}{\sqrt{\bar{C}_{2,P}(t; k)\bar{C}_{2,H}(T-t; k)}} \left[\frac{2E_P^0}{e^{-E_P^0} e^{-M_H^0 (T-t)}} \right]
\]

\[
\to F^{\mu(\nu)} [1 - F_P e^{-\Delta M_P t} - F_P e^{-\Delta M_H (T-t)} + \ldots] + \mathcal{O} \left(\Delta M_P^2, \Delta M_P \Delta M_H, \Delta M_H^2 \right)
\]

\[
f_{\perp}(E_P) = Z_{\perp} \frac{F^i(k)}{k^i}
\]

\[
f_{\parallel}(E_P) = Z_{\parallel} F^4(k)
\]

\[
f_T(E_P) = Z_T \frac{M_H + M_P}{\sqrt{2M_H}} \frac{F^{4i}(k)}{k^i}
\]
\[b \to s(d) \text{ decays on MILC } N_f = 2 + 1 + 1 \text{ HISQ ensembles} \]

Analysis led by Zech Gelzer
Simulation data

Parameters for physical-mass ensembles

<table>
<thead>
<tr>
<th>$\approx a$ (fm)</th>
<th>$N_s^3 \times N_t$</th>
<th>$a m'_l$</th>
<th>$a m'_s$</th>
<th>$a m'_c$</th>
<th>k'_b</th>
<th>$N_{\text{conf}} \times N_{\text{sour}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>$32^3 \times 48$</td>
<td>0.002426</td>
<td>0.06730</td>
<td>0.8447</td>
<td>0.07732</td>
<td>3630×8</td>
</tr>
<tr>
<td>0.12</td>
<td>$48^3 \times 64$</td>
<td>0.001907</td>
<td>0.05252</td>
<td>0.6382</td>
<td>0.08574</td>
<td>986×8</td>
</tr>
<tr>
<td>0.088</td>
<td>$64^3 \times 96$</td>
<td>0.0012</td>
<td>0.0363</td>
<td>0.432</td>
<td>0.09569</td>
<td>1535×8</td>
</tr>
<tr>
<td>0.057</td>
<td>$96^3 \times 192$</td>
<td>0.0008</td>
<td>0.022</td>
<td>0.260</td>
<td>0.10604</td>
<td>1027×8</td>
</tr>
</tbody>
</table>
Correlation Functions and Fits

\[
J(t_{\text{source}} + t)
\]

\[
P(t_{\text{source}})
\]

\[
B(s)(t_{\text{source}} + T)
\]

\[
\bar{l}, \bar{s}
\]

\[
l, s
\]

\[
\bar{b}
\]

\[
J = \mathcal{V}^\mu, \mathcal{T}^{0i}
\]

* Two values of \(T \) and 8 time sources.

* Light (HISQ) quarks sources: random wall.

* Heavy (Fermilab) quarks sources: local + 1S-smeared.

* \(P \) momenta generated up to

\[
k = (2, 2, 2) \times 2\pi / (aN_s) \quad (7 \text{ values})
\]

\[
C_2^B(t; 0) = \sum_{x} \left\langle \mathcal{O}_B(t, x) \mathcal{O}_B^\dagger(0, 0) \right\rangle, \quad C_2^P(t; k) = \sum_{x} \left\langle \mathcal{O}_P(t, x) \mathcal{O}_P^\dagger(0, 0) \right\rangle e^{-ik \cdot x},
\]

\[
C_3^{\mu(\nu)}(t, T; k) = \sum_{x, y} e^{ik \cdot y} \left\langle \mathcal{O}_P(0, 0) J^{\mu(\nu)}(t, y) \mathcal{O}_B^\dagger(T, x) \right\rangle
\]
Correlation Functions and Fits

\[J(t_{\text{source}} + t) \]

\[B(s)(t_{\text{source}} + T) \]

\[P(t_{\text{source}}) \]

\[B_{(s)}(t_{\text{source}} + T) \]

* \[J = \mathcal{V}^\mu, \mathcal{T}^{0i} \]
* Two values of \(T \) and 8 time sources.
* Light (HISQ) quarks sources: random wall.
* Heavy (Fermilab) quarks sources: local + 1S-smeared.
* \(P \) momenta generated up to \(k = (2, 2, 2) \times 2\pi/(aN_s) \) (7 values)

\[
C^B_2(t; 0) = \sum_x \left< \mathcal{O}_B(t, x) \mathcal{O}^\dagger_B(0, 0) \right>, \quad C^P_2(t; k) = \sum_x \left< \mathcal{O}_P(t, x) \mathcal{O}^\dagger_P(0, 0) \right> e^{-i k \cdot x},
\]

\[
C^\mu(\nu)(t, T; k) = \sum_{x, y} e^{i k \cdot y} \left< \mathcal{O}_P(0, 0) J^{\mu(\nu)}(t, y) \mathcal{O}^\dagger_B(T, x) \right>
\]

* Mostly nonperturbative matching: \(Z_J = \rho_J \sqrt{Z_{V_{bb}}^4 Z_{V_{qq}}^4} \) with \(\rho_J \) calculated perturbat. at one loop and \(Z_{V_{bb}}^4, Z_{V_{qq}}^4 \) nonperturbatively.

** Introduce a blinding factor through the renormalization factors.
Correlators and Fits: $B \to K$ on phys. $a = 0.057$ fm

Form factors from direct (combined) fits to all correlation functions: Preliminary

(consistent with fits to ratios \bar{R} of 3-point over 2-point functions)
Form factors for $B \to \pi$

$\rho_{J}^{2} \in [18, 27.6] \text{ GeV}^{2}$ Preliminary

Note: Correct renomalization ρ_{J} factors missing. Only $\sqrt{Z_{V_{bb}^{4}} Z_{V_{qq}^{4}}}$ included.
Form factors for $B \rightarrow K$

Note: Correct renomalization ρ_J factors missing. Only $\sqrt{Z_{bb}^4 Z_{qq}^4}$ included.
Form factors for $B_s \rightarrow K$

Note: Correct renormalization ρ_J factors missing. Only $\sqrt{Z_{V_{bb}^4}Z_{V_{qq}^4}}$ included.
Chiral-continuum interp./extrap.: \(B_s \to K \)

We extrapolate the form factors to the continuum and interpolate to the physical quark masses using \(SU(2) \) HM\(r \)S\(\chi \)PT

\[
\begin{align*}
 f_J &= f_J^{(0)} \times \left(1 + \delta f_J^{\log s} + \delta f_J^{NLO} + \delta f_J^{N^2LO} + \ldots \right) \times \left(1 + \delta f_J^b \right) \\
 f_J^{(0)} &= \frac{g_\pi}{f_\pi (E_P + \Delta_P^*)} \\
 \delta f_J^{NLO} &= c_J^l \chi_l + c_J^s \chi_s + c_J^E \chi_E + c_J^{E^2} \chi_E^2 + c_J^{a^2} \chi_a^2
\end{align*}
\]

* \(\Delta_P^* = \left(M_{B^*}^2 - M_{B_s}^2 - M_P^2 \right) / (2M_{B_s}) \), where \(M_{B^*} \) is a 1\(^-\) or 0\(^+\) mass.

* \(f_J^{\log s} \): nonanalytic functions of \(m_l, a \).

* \(f_J^b \): \(b \)-quark discretization effects,

\[
\mathcal{O} \left((a\Lambda)^2, \alpha_s a\Lambda, \alpha_s (a\Lambda)^2 \right) \times \text{mistmach functions } (a m_b, \alpha_s) \times h^i_J.
\]

* Perturbative part of \(Z_J \) implemented with priors: \(\tilde{\rho}_J = 1 + \tilde{\rho}_J^{(1)} \alpha_s + \tilde{\rho}_J^{(2)} \alpha_s^2 \)
Chiral-continuum interp./extrap.: $B_s \rightarrow K$

* f_\perp and f_\parallel fit simultaneously.

* Central fit: $NLO \ SU(2) \ \text{HM}r\text{S}\chi\text{PT} + N^2LO$ analytic terms.
Error budget for $B_s \rightarrow K$

Preliminary and missing perturbative ρ_J factors

![Graphs showing error budget for f_+ and f_0](image)
Error budget for $B_s \rightarrow K$

Preliminary and missing perturbative ρ_J factors

Compared to previous **FNAL/MILC**:

Similar $a \rightarrow$ similar statistics, smaller discretization (HISQ)

Physical m'_i ensembles \rightarrow remove chiral extrapolation error
Outlook

On-going calculation of form factors f_0, f_+, f_T for $B \rightarrow \pi$, $B \rightarrow K$, $B_s \rightarrow K$ with Fermilab b and HISQ l, s, c on HISQ $N_f = 2 + 1 + 1$ MILC ensembles.

* 4 lattice spacings, 7 ensembles (including 4 with phys. masses)

* Mostly non-perturbative renormalization.

* Chiral+continuum fits: NLO HMxSChPT in SU(2) hard-kaon limit + NNLO analytic terms.
Outlook

On-going calculation of form factors f_0, f_+, f_T for $B \to \pi$, $B \to K$, $B_s \to K$ with Fermilab b and HISQ l,s,c on HISQ $N_f = 2 + 1 + 1$ MILC ensembles.

* 4 lattice spacings, 7 ensembles (including 4 with phys. masses)

* Mostly non-perturbative renormalization.

* Chiral+continuum fits: NLO HMrSChPT in SU(2) hard-kaon limit + NNLO analytic terms.

Need to do

* Renormalization coefficients: calculate ρ_J, get $Z_{V_{bb,qq}}^A$ with better stat.

* z expansions and finalize systematic error budgets.

* Phenomenology: $|V_{ub}|$, $|V_{td}|$, $|V_{ts}|$, confront branching fractions and angular observables with experiment, make predictions for the not yet measured quantities.

* Correlated ratios for different processes
$h \rightarrow s(d)$ decays on MILC $N_f = 2 + 1 + 1$ HISQ ensembles

B HISQ heavy

Analysis led by William Jay
All-HISQ decay constants analysis

It is feasible to do B physics with HISQ: Decay constants

Avoid large lattice artifact including data with $a m_h < 0.9$ (black solid line)

Use HQET-inspired model for extrapolating to the B mass.
All-HISQ decay constants analysis

It is feasible to do B physics with HISQ: Decay constants

Avoid large lattice artifact including data with $a m_h < 0.9$ (black solid line)

* Errors: 0.2-0.3% for c decay constants, 0.6-0.7% for b decay constants.

Largest systematic errors: choice of fit model (continuum extrapolation errors), correlator fits (excited-state contamination).

Use HQET-inspired model for extrapolating to the B mass.
All-HISQ decay constants analysis

\(f_{\pi,K}^{PDG} \) also important systematic for charmed decay constants

* Controversy with EW radiative corrections needed to extract \(|V_{ud}| \) from superallowed \(\beta \) decays: Seng, Gorchtein, Patel, Ramsey-Musolf 1807.10197, Czarnecki, Marciano, Sirlin 1907.06737
Simulation data

Data generated for all-HISQ heavy semileptonic project until middle July 2019

\[B \to K, \ B \to \pi, \ B_s \to K \]

(and \(D \to K, \ D \to \pi, \ D_s \to K \))

\[B_{(s)} \to D_{(s)} \]

<table>
<thead>
<tr>
<th>(\approx a (\text{fm}))</th>
<th>(N_S^3 \times N_t)</th>
<th>(a m'_l)</th>
<th>(a m'_s)</th>
<th>(a m'_c)</th>
<th>(a m_h / a m_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>(32^3 \times 48)</td>
<td>0.002426</td>
<td>0.06730</td>
<td>0.8447</td>
<td>0.9, 1, 1.1</td>
</tr>
<tr>
<td>0.12</td>
<td>(24^3 \times 64)</td>
<td>0.0102</td>
<td>0.0509</td>
<td>0.635</td>
<td>0.9, 1, 1.4</td>
</tr>
<tr>
<td>0.12</td>
<td>(32^3 \times 64)</td>
<td>0.00507</td>
<td>0.0507</td>
<td>0.628</td>
<td>0.9, 1, 1.4</td>
</tr>
<tr>
<td>0.12</td>
<td>(48^3 \times 64)</td>
<td>0.001907</td>
<td>0.05252</td>
<td>0.6382</td>
<td>0.9, 1, 1.4</td>
</tr>
<tr>
<td>0.088</td>
<td>(48^3 \times 96)</td>
<td>0.00363</td>
<td>0.0363</td>
<td>0.430</td>
<td>0.9, 1, 1.5, 2, 2.5</td>
</tr>
<tr>
<td>0.088</td>
<td>(64^3 \times 96)</td>
<td>0.0012</td>
<td>0.0363</td>
<td>0.432</td>
<td>0.9, 1, 1.5, 2, 2.5</td>
</tr>
<tr>
<td>0.057</td>
<td>(64^3 \times 144)</td>
<td>0.0024</td>
<td>0.024</td>
<td>0.286</td>
<td>0.9, 1, 2, 3, 4</td>
</tr>
</tbody>
</table>
Simulation data

Data generated for all-HISQ heavy semileptonic project until middle July 2019

\[B \to K, \ B \to \pi, \ B_s \to K \]

(and \(D \to K, \ D \to \pi, \ D_s \to K \))

\[B_s^{(s)} \to D_s^{(s)} \]

Include partially-quenched data: fine-tuning light quark masses, isospin-breaking effects.

<table>
<thead>
<tr>
<th>(\approx a (\text{fm}))</th>
<th>(N_S^3 \times N_t)</th>
<th>(a m'_l)</th>
<th>(a m'_s)</th>
<th>(a m'_c)</th>
<th>(a m_h / a m_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>(32^3 \times 48)</td>
<td>0.002426</td>
<td>0.06730</td>
<td>0.8447</td>
<td>0.9, 1, 1.1</td>
</tr>
<tr>
<td>0.12</td>
<td>(24^3 \times 64)</td>
<td>0.0102</td>
<td>0.0509</td>
<td>0.635</td>
<td>0.9, 1, 1.4</td>
</tr>
<tr>
<td>0.12</td>
<td>(32^3 \times 64)</td>
<td>0.00507</td>
<td>0.0507</td>
<td>0.628</td>
<td>0.9, 1, 1.4</td>
</tr>
<tr>
<td>0.12</td>
<td>(48^3 \times 64)</td>
<td>0.001907</td>
<td>0.05252</td>
<td>0.6382</td>
<td>0.9, 1, 1.4</td>
</tr>
<tr>
<td>0.088</td>
<td>(48^3 \times 96)</td>
<td>0.00363</td>
<td>0.0363</td>
<td>0.430</td>
<td>0.9, 1, 1.5, 2, 2.5</td>
</tr>
<tr>
<td>0.088</td>
<td>(64^3 \times 96)</td>
<td>0.0012</td>
<td>0.0363</td>
<td>0.432</td>
<td>0.9, 1, 1.5, 2, 2.5</td>
</tr>
<tr>
<td>0.057</td>
<td>(64^3 \times 144)</td>
<td>0.0024</td>
<td>0.024</td>
<td>0.286</td>
<td>0.9, 1, 2, 3, 4</td>
</tr>
</tbody>
</table>
Correlation Functions

* Random wall sources.

* 4 values of T generated, 3 more being generated in some ensembles.

* 6-8 time sources.

* **Local** scalar and temporal vector currents, **point-split** spatial vector currents.

 S and \mathcal{V}_i are taste singlets \rightarrow parent $H_{(s)}$ has spin-taste $\gamma_5 \times \gamma_5$ (Goldstone meson).

 \mathcal{V}_0 and $\mathcal{T}_{\mu\nu}$ have taste γ_0 \rightarrow parent $H_{(s)}$ has spin-taste $\gamma_0\gamma_5 \times \gamma_0\gamma_5$ (non-Goldstone meson).
Correlation Functions

\[C_{2}^{H_{(s)}}(t; \mathbf{k}) = \sum_{x} \left\langle \mathcal{O}_{H_{(s)}}(t, x) \mathcal{O}_{H_{(s)}}^{\dagger}(0, 0) \right\rangle e^{-i\mathbf{k} \cdot \mathbf{x}}, \quad C_{2}^{P}(t; \mathbf{k}) = \sum_{x} \left\langle \mathcal{O}_{P}(t, x) \mathcal{O}_{P}^{\dagger}(0, 0) \right\rangle e^{-i\mathbf{k} \cdot \mathbf{x}}, \]

\[C_{3}^{\mu(\nu)}(t, T; \mathbf{k}) = \sum_{x, y} e^{i\mathbf{k} \cdot \mathbf{y}} \left\langle \mathcal{O}_{P}(0, 0) J_{\mu(\nu)}(t, y) \mathcal{O}_{H_{(s)}}^{\dagger}(T, x) \right\rangle \]

\[\tilde{C}_{3}^{\mu}(t, T; \mathbf{k}) = \sum_{x, y} e^{i\mathbf{k} \cdot \mathbf{y}} \left\langle \mathcal{O}_{H'_{(s)}}(0, 0) J_{\mu}(t, y) \mathcal{O}_{H_{(s)}}^{\dagger}(T, x) \right\rangle \]

* \(P \) momenta data generated up to \(\mathbf{k} = (4, 0, 0) \times 2\pi/(aN_{S}) \) (8 values)
Comparison of noise-to-signal at $a \approx 0.12\text{fm}$

Fermilab heavy b vs HISQ h

To suppress oscillating-state contributions for better visualization, an averaging scheme has been applied over neighboring time slices.

* Physical l, s and c masses

* Source-sink separation $T = 15, 16$.

* $m_h = 1.4m_c$

Typical fit range:

$\sim [2 - 13]$
Extracting the form factors

Using the Ward identity $q_\mu \langle P|\mathcal{V}_{\text{lat}}^\mu|H\rangle Z_{\mathcal{V}_{\text{lat}}} = (m_h - m_q)\langle P|S|H\rangle$ and the definition of the form factors

$$f_0(q^2) = \frac{m_h - m_q}{M_H^2 - M_P^2} \langle P|S|H\rangle_{q^2} \quad \text{no renor. needed}$$

$$f_+(q^2) = \frac{1}{2M_H} \left(\frac{(M_H - M_P)(m_h - m_q)\langle P|S|H\rangle - q^2 Z_{V^0}\langle P|V^0|H\rangle}{k^2} \right)$$

$$= \frac{1}{2M_H} \left[Z_{V^0}\langle P|V^0|H\rangle + \frac{M_H - M_P}{k^i} Z_{V^i}\langle P|V^i|H\rangle \right]$$

$$f_T(q^2) = \frac{M_H + M_P}{\sqrt{2M_H}} Z_T \frac{\langle P|T^0_i|H\rangle}{\sqrt{2M_H}}$$
Extracting the form factors

Using the Ward identity $q_\mu \langle P|\mathcal{V}_{\text{lat}}^\mu|H\rangle Z_{V_{\text{lat}}} = (m_h - m_q)\langle P|S|H\rangle$ and the definition of the form factors

\[
f_0(q^2) = \frac{m_h - m_q}{M_H^2 - M_P^2} \langle P|S|H\rangle q^2 \quad \text{no renor. needed}
\]

\[
f_+(q^2) = \frac{1}{2M_H} \frac{(M_H - M_P)(m_h - m_q)\langle P|S|H\rangle - q^2 Z_{V_0} \langle P|\mathcal{V}^0|H\rangle}{k^2}
\]

\[
= \frac{1}{2M_H} \left[Z_{V_0} \langle P|\mathcal{V}^0|H\rangle + \frac{M_H - M_P}{k^i} Z_{V^i} \langle P|\mathcal{V}^i|H\rangle \right]
\]

\[
f_T(q^2) = \frac{M_H + M_P}{\sqrt{2M_H}} Z_T \frac{\langle P|T^0i|H\rangle}{\sqrt{2M_H}}
\]

* For the local temporal current, with both mesons at rest:

\[
Z_{V_0} \langle P|\mathcal{V}_0|H\rangle_{q^2_{\text{max}}} = \frac{m_h - m_q}{M_H - M_P} \langle P|S|H\rangle_{q^2_{\text{max}}}
\]
Extracting the form factors

Using the Ward identity \(q_\mu \langle P|\mathcal{V}_\mu^\mu|H\rangle Z_{V_\mu}^\mu = (m_h - m_q)\langle P|S|H\rangle \) and the definition of the form factors

\[
f_0(q^2) = \frac{m_h - m_q}{M_H^2 - M_P^2} \langle P|S|H\rangle_{q^2} \quad \text{no renor. needed}
\]

\[
f_+(q^2) = \frac{1}{2M_H} \left(\frac{(M_H - M_P)(m_h - m_q)\langle P|S|H\rangle - q^2 Z_{V_0} \langle P|\mathcal{V}^0|H\rangle}{k^2} \right)
\]

\[
= \frac{1}{2M_H} \left[Z_{V_0} \langle P|\mathcal{V}^0|H\rangle + \frac{M_H - M_P}{k^i} Z_{V^i} \langle P|\mathcal{V}^i|H\rangle \right]
\]

\[
f_T(q^2) = \frac{M_H + M_P}{\sqrt{2M_H}} Z_T \frac{\langle P|\mathcal{T}^0_i|H\rangle}{\sqrt{2M_H}}
\]

* For the local temporal current, with both mesons at rest:

\[
Z_{V_0} \langle P|\mathcal{V}_0|H\rangle_{q^2_{\text{max}}} = \frac{m_h - m_q}{M_H - M_P} \langle P|S|H\rangle_{q^2_{\text{max}}}
\]

* Renormalization factors \(Z_{V^i}, Z_T \): Under investigation.

** First step: Mostly non-perturbative renormalization?
Correlation Functions and Fits

Example: $D \rightarrow \pi$ at $a \approx 0.12\text{fm}$ with phys. quark masses

S correlation function for $\mathbf{k} = (1, 0, 0) \ (f_0)$

Preliminary

* Combined correlated fit to 2-point and 3-point functions
 (ratio \bar{R} 3pt- and 2-point functions for visualization)
Correlation Functions and Fits

Example: $D \rightarrow \pi$ at $a \approx 0.12\text{fm}$ with phys. quark masses

S correlation function for $k = (1, 0, 0)$ (f_0)

T^{10} correlation function for $k = (1, 0, 0)$

* Similar results for all currents and most of the momenta.

* Add larger values of T: Better constrain of ground state contributions.

Preliminary

* Combined correlated fit to 2-point and 3-point functions

(ratio \bar{R} 3pt- and 2-point functions for visualization)
Correlation Functions and Fits

Example: 3-point correlation function with S insertion and $k = (1, 0, 0)$

$2 + 1$ states for π channel
and $4 + 2$ for D channel

Check stability
Correlation Functions and Fits

Example: 3-point correlation function with S insertion and $k = (1, 0, 0)$

$2 + 1$ states for π channel

and $4 + 2$ for D channel

Check stability

* **Light bands:** broad priors
 (central value from 2-point fits)

* **Dark bands:** (combined) fit values.
Preliminary: $D \rightarrow \pi$ form factors

Physical masses for light and heavy masses $= 0.9m_c$. Three lattice spacings $a \approx 0.088, 0.12, 0.15$ fm

Note: No renormalization included.
Preliminary: Pion dispersion relation

(for physical quark masses ensembles)
Conclusions and outlook

On-going calculation of form factors f_0, f_+, f_T for $H \rightarrow P$, $H \rightarrow H'$ processes with the HISQ action for all flavors on HISQ $N_f = 2 + 1 + 1$ MILC ensembles.

* So far: 4 lattice spacings, 7 ensembles (including 3 with phys. masses)

* Momenta up to $k = (4, 0, 0) \times 2\pi/(aN_s)$: cover q^2 range for D semileptonic, down to ~ 11 GeV2 B semileptonic.
Conclusions and outlook

On-going calculation of form factors f_0, f_+, f_T for $H \rightarrow P, H \rightarrow H'$ processes with the HISQ action for all flavors on HISQ $N_f = 2 + 1 + 1$ MILC ensembles.

* So far: 4 lattice spacings, 7 ensembles (including 3 with phys. masses)

* Momenta up to $k = (4, 0, 0) \times 2\pi/(aN_s)$: cover q^2 range for D semileptonic, down to ~ 11 GeV2 B semileptonic.

* Noise-to-signal seems to significantly reduce respect to Fermilab b/HISQ light description.

* Good behaviour of dispersion relation
Conclusions and outlook

On-going calculation of form factors f_0, f_+, f_T for $H \to P$, $H \to H'$ processes with the HISQ action for all flavors on HISQ $N_f = 2 + 1 + 1$ MILC ensembles.

* So far: 4 lattice spacings, 7 ensembles (including 3 with phys. masses)

* Momenta up to $k = (4, 0, 0) \times 2\pi/(aN_s)$: cover q^2 range for D semileptonic, down to ~ 11 GeV2 B semileptonic.

* Noise-to-signal seems to significantly reduce respect to Fermilab b/HISQ light description.

* Good behaviour of dispersion relation

Next steps in the current analysis:

* Include larger source-sink separations: better determination of ground state.

* Optimize fitting methodology.

* Autocorrelations (plots in this talk, data binned by 10).
Conclusions and outlook

* Nonequilibrated topological charge effects.

For HISQ \(N_f = 2 + 1 + 1 \) MILC ensembles with smallest lattice spacings \((a \approx 0.042, 0.03 \text{ fm})\), the topological charge \(Q \) is not properly sampled.

Correct the form factors in a similar way as we did for \(K \to \pi \ell \nu \)

\[
f_+^{K\pi}(0)_{\text{corrected}} = f_+^{K\pi}(0)_{\text{sampled}} - \frac{1}{2 \chi_T V} (f_+^{K\pi}(0))'' \left(1 - \frac{\langle Q^2 \rangle_{\text{sample}}}{\chi_T V} \right)
\]

with \((f_+^{K\pi}(0))'' = d^2 f_+/d\theta^2 |_{\theta=0}\) and \(\chi_T = \langle Q \rangle/V\) the topological susceptibility.
Conclusions and outlook

* Nonequilibrated topological charge effects.

For HISQ $N_f = 2 + 1 + 1$ MILC ensembles with smallest lattice spacings $(a \approx 0.042, 0.03 \text{ fm})$, the topological charge Q is not properly sampled.

Correct the form factors in a similar way as we did for $K \to \pi \ell \nu$

$$f_+^{K\pi}(0)_{\text{corrected}} = f_+^{K\pi}(0)_{\text{sampled}} - \frac{1}{2\chi_T V} (f_+^{K\pi}(0))'' \left(1 - \frac{\langle Q^2 \rangle_{\text{sample}}}{\chi_T V} \right)$$

with $(f_+^{K\pi}(0))'' = d^2 f_+/d\theta^2|_{\theta=0}$ and $\chi_T = \langle Q \rangle / V$ the topological susceptibility.

* Following C. Bernard and D. Toussaint 1707.05430, use ChPT to study Q-dependence (θ dependence) of the form factor and obtain $(f_+^{K\pi}(0))''$ at LO:
Conclusions and outlook

* Nonequilibrated topological charge effects.

For HISQ $N_f = 2 + 1 + 1$ MILC ensembles with smallest lattice spacings ($a \approx 0.042, 0.03$ fm), the topological charge Q is not properly sampled.

Correct the form factors in a similar way as we did for $K \to \pi \ell \nu$

$$f_{+}^{K\pi}(0)_{\text{corrected}} = f_{+}^{K\pi}(0)_{\text{sampled}} - \frac{1}{2\chi_T V} (f_{+}^{K\pi}(0))'' \left(1 - \frac{\langle Q^2 \rangle_{\text{sample}}}{\chi_T V}\right)$$

with $(f_{+}^{K\pi}(0))'' = \frac{d^2 f_+}{d\theta^2}|_{\theta=0}$ and $\chi_T = \langle Q \rangle / V$ the topological susceptibility.

* Following C. Bernard and D. Toussaint 1707.05430, use ChPT to study Q-dependence (θ dependence) of the form factor and obtain $(f_{+}^{K\pi}(0))''$ at LO:

* Renormalization for \mathcal{T} current.
Conclusions and outlook

* Nonequilibrated topological charge effects.

For HISQ $N_f = 2 + 1 + 1$ MILC ensembles with smallest lattice spacings ($a \approx 0.042, 0.03$ fm), the topological charge Q is not properly sampled.

Correct the form factors in a similar way as we did for $K \rightarrow \pi \ell \nu$

$$f_{K\pi}^+(0)_{\text{corrected}} = f_{K\pi}^+(0)_{\text{sampled}} - \frac{1}{2\chi TV} (f_{K\pi}^+(0))'' \left(1 - \frac{\langle Q^2 \rangle_{\text{sample}}}{\chi TV}\right)$$

with $(f_{K\pi}^+(0))'' = d^2f_+/d\theta^2|_{\theta=0}$ and $\chi_T = \langle Q \rangle / V$ the topological susceptibility.

* Following C. Bernard and D. Toussaint 1707.05430, use ChPT to study Q-dependence (θ dependence) of the form factor and obtain $(f_{K\pi}^+(0))''$ at LO:

* Renormalization for \mathcal{T} current.

* Scale setting with a different (than f_π) experimental input: M_Ω, m_{D_s} ...?
Conclusions and outlook

* Nonequilibrated topological charge effects.

For HISQ $N_f = 2 + 1 + 1$ MILC ensembles with smallest lattice spacings ($a \approx 0.042, 0.03$ fm), the topological charge Q is not properly sampled.

Correct the form factors in a similar way as we did for $K \rightarrow \pi \ell \nu$

$$f_{+}^{K\pi}(0)_{\text{corrected}} = f_{+}^{K\pi}(0)_{\text{sampled}} - \frac{1}{2\chi TV}(f_{+}^{K\pi}(0))'' \left(1 - \frac{\langle Q^2 \rangle_{\text{sample}}}{\chi TV}\right)$$

with $(f_{+}^{K\pi}(0))'' = d^2f_+/d\theta^2|_{\theta=0}$ and $\chi_T = \langle Q \rangle / V$ the topological susceptibility.

* Following C. Bernard and D. Toussaint 1707.05430, use ChPT to study Q-dependence (θ dependence) of the form factor and obtain $(f_{+}^{K\pi}(0))''$ at LO:

* Renormalization for \mathcal{T} current.

* Scale setting with a different (than f_π) experimental input: M_Ω, m_{D_s} ...?

* **Long term**: EM and isospin breaking effects.