Heavy-to-light decay form factors on $N_f = 2 + 1 + 1$ HISQ ensembles

Elvira Gámiz

(Lattice Fermilab and MILC Collaborations)

UNIVERSIDAD DE GRANADA

Centro Andaluz de Física de

Parículas Elementales

· Advances in lattice gauge theory, CERN, 31 July 2018 ·

Introduction

Precise determinations of CKM matrix elements:

$$
V_{CKM} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ & |V_{ub}| & |V_{ub}| \\ & |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ D \to \pi \ell \nu & D \to K \ell \nu & B_{(s)} \to D_{(s)} (D^*_{(s)}) \ell \nu \\ |V_{td}| & |V_{ts}| & |V_{tb}| \\ B \to \pi \ell \ell & B \to K \ell \ell \end{pmatrix}
$$

Tensions: Inclusive-Exclusive determinations of $|V_{ub}|$ and $|V_{cb}|$.

Introduction

Long-standing tension between exclusive and inclusive determinations of the CKM matrix elements $|V_{cb}|$ and $|V_{ub}|$ at the $\sim 3\sigma$ level.

 $|V_{cb}|$ $B \rightarrow D^*$ inclus.-exclus. tension not resolved by BGL vs CLN (Belle (untagged) 1809.03290 and BaBar 1903.1002 results not included in plots) From Belle 1809.03290 and FNAL/MILC 2014 $|V_{cb}|^{\rm CLN} = (38.4 \pm 0.9) \cdot 10^{-3}$ $|V_{cb}|^{\text{BGL}} = (38.3 \pm 1.0) \cdot 10^{-3}$

Update of plot in 1711.08085. CKM unitarity band from CKMfitter

 $|V_{ub}|^{FLAG2019} = 3.73(14) \cdot 10^{-3}$

Good consistency between lattice and experimental shapes and commensurate errors

$$
|V_{ub}|^{\text{inclusive, HFLAV2017}} = (4.52 \pm 0.15^{+0.11}_{-0.14}) \cdot 10^{-3} \sim 3\sigma \text{ disagreement.}
$$

 $|V_{ub}|^{FLAG2019} = 3.73(14) \cdot 10^{-3}$

Good consistency between lattice and experimental shapes and commensurate errors

$$
|V_{ub}|^{\text{inclusive, HFLAV2017}} = (4.52 \pm 0.15^{+0.11}_{-0.14}) \cdot 10^{-3} \sim 3\sigma \text{ disagreement.}
$$

Leptonic determinations

- * Less precise (dominated by exp. errors on $\mathcal{B}(B \to \tau \nu)$)
- BaBar and Belle results don't agree very well.

 $|V_{ub}|^{FLAG2019} = 3.73(14) \cdot 10^{-3}$

 $|V_{ub}|^{\text{inclusive,HFLAV2017}} = (4.52 \pm 0.15^{+0.11}_{-0.14}) \cdot 10^{-3}$ $\sim 3\sigma$ disagreement.

Leptonic determinations

* Less precise (dominated by exp. errors on $\mathcal{B}(B \to \tau \nu)$)

* BaBar and Belle results don't agree very well.

Important role for Belle II for both leptonic and semileptonic

Alternative way of getting $|V_{ub}|: B_s \to K \ell \nu$.

- * Three LQCD calculations of the relevant form factors: HPQCD 1406.2279, RBC/UKQCD 1501.05373, FNAL/MILC 1901.02561
- * LQCD error smaller than for $B \to \pi$ form factors

Alternative way of getting $|V_{ub}|: B_s \to K \ell \nu$.

- * Three LQCD calculations of the relevant form factors: HPQCD 1406.2279, RBC/UKQCD 1501.05373, FNAL/MILC 1901.02561
- * LQCD error smaller than for $B \to \pi$ form factors
- * Experimentally: Under investigacion by LHCb, expected to be measured at the $\Upsilon(5S)$ run at Belle-II

(maybe 5-10% precision for the decay rate at Belle-II)

Introduction: Lepton Flavor Universality tests

Tension between Belle and BaBar

Plot from 1904.08794

Belle 2019: $R(D) = 0.307 \pm 0.037 \pm 0.016$ (consistent with SM), $R(D^*) = 0.283 \pm 0.018 \pm 0.014$

World average at $\sim 3\sigma$ from SM.

Introduction: b rare decays (FCNC)

Flavor-changing neutral currents $b \rightarrow q$ transitions are potentially sensitive to NP effects $B \to K^* \gamma$, $B \to K^{(*)} \ell^+ \ell^-$, $B \to \pi \ell^+ \ell^-$

Introduction: b rare decays (FCNC)

Flavor-changing neutral currents $b \rightarrow q$ transitions are potentially sensitive to NP effects $B \to K^* \gamma$, $B \to K^{(*)} \ell^+ \ell^-$, $B \to \pi \ell^+ \ell^-$

Sets of tensions between SM predicions and experimentally measured $b\to s\ell^+\ell^-$ observables

Branching fraction measurements: $B^0 \to K^{*0} \mu^+ \mu^-$, $B^+ \to K^{(*)+} \mu^+ \mu^-$, $B_s \to \phi \mu^+ \mu^-$

Angular analyses: $B^+ \to K^{(*)+} \mu^+ \mu^-$, $B_s \to \phi \mu^+ \mu^-$

Tests of Lepton Flavour Universality (μ/e) : $B^0 \to K^{*0} \mu^+ \mu^-$, $B^+ \to K^{(*)+} \mu^+ \mu^-$

Very small sensitivity to hadronic form factors $\sim 10^{-4}$

$$
R_{K^{(*)}}(q_{min}^2,q_{max}^2) \equiv \frac{\int_{q_{min}^{2}}^{q_{max}^2} dq^2 d\mathcal{B}(B \to K^{(*)} \mu^+ \mu^-)}{\int_{q_{min}^{2}}^{q_{max}^2} dq^2 d\mathcal{B}(B \to K^{(*)} e^+ e^-)}
$$

Introduction: Rare decays (FCNC)

Lepton Flavour Universality Tests

Angular Analysis (P'_5) • LHCb data ^D ATLAS data **Belle** data ○ CMS data 0.5 **SM** from DHMV **SM** from ASZB -0.5 10 15 5 0 LHCb finds 3.4σ , seems to be confirmed by

1904.02440 Belle preliminary

Belle (ATLAS?) but not CMS

LHCb will reach ~ 1.5% precision for the branching fractions at both low and high $q^2_\mathrm{{\color{red}-}}$ J. Albrecht et al 1709.10308

Introduction: Neutral-current b decays

For $B \to P \ell \ell$, hadronic contributions are parametrized in terms of matrix elements of current (vector, axial and tensor) operators through three form factors

$$
f_+
$$
, f_0 (for $m_\ell \neq 0$) and f_T

+ non-factorizable contributions

Allow the calculation of branching fractions, angular observables and LFUV quantities

Extract CKM matrix elements $|V_{td,ts}|$ or constrain Wilson coefficients C_9 and C_{10} .

Introduction: Neutral-current b decays

For $B \to P \ell \ell$, hadronic contributions are parametrized in terms of matrix elements of current (vector, axial and tensor) operators through three form factors

$$
f_+
$$
, f_0 (for $m_\ell \neq 0$) and f_T

+ non-factorizable contributions

Allow the calculation of branching fractions, angular observables and LFUV quantities

Extract CKM matrix elements $|V_{td,ts}|$ or constrain Wilson coefficients C_9 and C_{10} .

- * Non-factorizable contributions under control? New physics or charm-loops?
- * This talk: Form factors for $h \to l$ decays.

Current status: Form factors for $B \to K \ell^+ \ell^-$

 $B \to K \ell^+ \ell^-$: HPQCD 1306.0434, 1306.2384, FNAL/MILC, 1509.06235

Overlapping ensemble sets (asqtad MILC $N_f = 2 + 1$) but different lattice actions:

```
HPQCD: NRQCD b + HISQ u, d, s
```
FNAL/MILC: Fermilab $b +$ asqtad u, d, s

Consistent results for $f_{0,+,T}$, and with LCSR Khodjamarian et al 1006.4945

Form factors for $B \to K \ell^+ \ell^-$

From D. Du et al 1510.02349, FNAL/MILC 1509.06235 (non-factorizable contributions under control?)

 $1 - 2\sigma$ experiment-SM tensions.

focus on large bins above and below

charmoninum resonances

$B \to K \ell^+ \ell^-$: Lepton Flavor Universality Tests

 $(1 - R_K)^{\text{HPQCD}} = 0.00074 \pm 0.00035$, $(1 - R_{K^+})^{\text{FNAL/MILC}} = 0.00050 \pm 0.00043$

SM predictions for these ratios pretty insensitive to form factors and non-factor. contributions.

$B \to K \ell^+ \ell^-$: Lepton Flavor Universality Tests

 $(1 - R_K)^{\text{HPQCD}} = 0.00074 \pm 0.00035$, $(1 - R_{K^+})^{\text{FNAL/MILC}} = 0.00050 \pm 0.00043$ $(1 - R_{K^+})^{\text{LHCb 2019}} = 0.154^{+0.060}_{-0.054}(stat)^{+0.014}_{-0.016}(syst)$

compatible/tension with SM at 2.5σ

SM predictions for these ratios pretty insensitive to form factors and non-factor. contributions.

$B \to K \ell^+ \ell^-$: Lepton Flavor Universality Tests

 $(1 - R_K)^{\text{HPQCD}} = 0.00074 \pm 0.00035$, $(1 - R_{K^+})^{\text{FNAL/MILC}} = 0.00050 \pm 0.00043$ $(1 - R_{K^+})^{\text{LHCb 2019}} = 0.154^{+0.060}_{-0.054}(stat)^{+0.014}_{-0.016}(syst)$

compatible/tension with SM at 2.5σ

SM predictions for these ratios pretty insensitive to form factors and non-factor. contributions.

* LHCb expects a reduction by a factor of 4 by 2025.

Form factors for $B \to \pi \ell^+ \ell^-$

FNAL/MILC, 1507.01618, D. Du et al. 1510.02349 Take f_+ and f_0 from combined fit of lattice + experimental data for $B \to \pi \ell \nu$ (assume not significant NP effects at tree level).

The largest error is the one from the form factors.

Form factors for $B \to \pi \ell^+ \ell^-$

FNAL/MILC, 1507.01618, D. Du et al. 1510.02349 Take f_+ and f_0 from combined fit of lattice + experimental data for $B \to \pi \ell \nu$ (assume not significant NP effects at tree level).

The largest error is the one from the form factors.

D. Du et al. 1510.02349 SM prediction for $R_{\pi} = \frac{\mathcal{B}(B \to \pi \tau \nu_{\tau})}{\mathcal{B}(B \to \pi \ell \nu)}$ $\frac{\mathcal{B}(B \to \pi \tau \nu_{\tau})}{\mathcal{B}(B \to \pi \ell \nu)} = 0.641(17).$

Expected to be measured at Belle-II, possible to determine at LHCb

Rare semileptonic B decays to $\nu\bar{\nu}$ states

D. Du et al. 1510.02349 with FNAL/MILC form factors

Predictions for both neutral and charged channels: complementary information (also $|V_{td,ts}|$)

* Theoretically clean (no problem with charm LD contributions)

* Difficult to measure experimentally, Belle-II expected precision $\sim 10\%$ for $B \to K$

$$
\mathcal{B}(B^0 \to \pi^0 \nu \bar{\nu}) \cdot 10^7 = 0.668(41)(49)(16)
$$

$$
\mathcal{B}(B^0 \to K^0 \nu \bar{\nu}) \cdot 10^7 = 40.1(2.2)(4.3)(0.9)
$$

$$
\mathcal{B}(B^+ \to \pi^+ \nu \bar{\nu}) \cdot 10^6 = 9.62(1)(92); \ \mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) \cdot 10^6 = 4.94(52)(6)
$$

Rare semileptonic B decays: CKM parameters

* B-mixing results HPQCD 1907.01025, RBC/UKQCD 1812.08791, FNAL/MILC, 1602.03560

- $A^* \, B \to K(\pi) \mu^+ \mu^-$ results from D. Du et al, 1510.02349
- * Full/tree CKM unitarity results come from CKMfitter's fit 2018 using all inputs/only observable mediated at tree level of weak interactions.

Fermilab Lattice/MILC program for $b(c) \rightarrow s(d)$ decays

FNAL/MILC 1901.02561 ON MILC asqtad $N_f = 2 + 1$ ensembles. Valence sector: Fermilab $b +$ asqtad l, s

Analysis led by Yuzhi Liu

- * Errors: ${\cal O}(\alpha_s a^2), {\cal O}(\alpha_s a, a^2) f((m_b a)^2)$
- * Scale set with r_1 , with $r_1^{a=0}$ $_1^{a=0} = 0.3117(22)$ fm
- * Partially quenched: m' $s' \neq m_s$
- * Lattice data \in [17.4, 23.2] GeV² (Kaon momentum up to $\frac{2\pi}{\sigma}$ \boldsymbol{N}_s $(1, 1, 1)$

and the state of the

FNAL/MILC 1901.02561 ON MILC asqtad $N_f = 2 + 1$ ensembles. Valence sector: Fermilab $b +$ asqtad l, s

Analysis led by Yuzhi Liu

- * Errors: ${\cal O}(\alpha_s a^2), {\cal O}(\alpha_s a, a^2) f((m_b a)^2)$
- * Scale set with r_1 , with $r_1^{a=0}$ $_1^{a=0} = 0.3117(22)$ fm
- * Partially quenched: m' $s' \neq m_s$
- * Lattice data \in [17.4, 23.2] GeV² (Kaon momentum up to $\frac{2\pi}{\sigma}$ \boldsymbol{N}_s $(1, 1, 1)$
- # Chiral-continuum extrapolation with NLO HMrSChPT in SU(2) hard-kaon limit $+$ NNLO analytic terms.
	- $*$ Small adjustments to the physical m_b

Use BCL parametrization for z −expansion (with $K = 4$).

* Kinematic constraint $f_+(0) = f_0(0)$ enforced (without constraint, results satisfy $f_+(0) = f_0(0)$ within errors)

Tension with HPQCD (especially at low q^2). Good agreement with RBC/UKQCD.

 $#$ Predictions for differential decay rates: Ratios for LFU tests: $\Gamma(B_s \to K \tau \nu)/\Gamma(B_s \to K \mu \nu) = 0.836(34)$ Forward-backward asymmetry: (θ_l) : angle between charged lepton and B)

$$
A_{FB}^{\ell} = \int_0^1 \frac{d^2 \Gamma}{dq^2 d \cos \theta_{\ell}} d \cos \theta_{\ell} - \int_{-1}^0 \frac{d^2 \Gamma}{dq^2 d \cos \theta_{\ell}} d \cos \theta_{\ell}
$$

$$
\propto \quad |p_K^2| \frac{m_{\ell}^2}{q^2} Re \left[f_+(q^2) f_0^*(q^2) \right]
$$

Lepton polarization asymmetry:

$$
A_{\rm pol}^{\ell} = \frac{d\Gamma^{-}/dq^{2} - d\Gamma^{+}}{d\Gamma^{-}/dq^{2} + d\Gamma^{+}} \propto f(|f_{+}(q^{2})|, |f_{0}(q^{2})|)
$$

 $#$ Predictions for differential decay rates: Ratios for LFU tests: $\Gamma(B_s \to K \tau \nu)/\Gamma(B_s \to K \mu \nu) = 0.836(34)$ Forward-backward asymmetry: (θ_l) : angle between charged lepton and B)

$$
A_{FB}^{\ell} = \int_0^1 \frac{d^2 \Gamma}{dq^2 d \cos \theta_{\ell}} d \cos \theta_{\ell} - \int_{-1}^0 \frac{d^2 \Gamma}{dq^2 d \cos \theta_{\ell}} d \cos \theta_{\ell}
$$

$$
\propto \quad |p_K^2| \frac{m_{\ell}^2}{q^2} Re \left[f_+(q^2) f_0^*(q^2) \right]
$$

Lepton polarization asymmetry:

$$
A_{\rm pol}^{\ell} = \frac{d\Gamma^{-}/dq^{2} - d\Gamma^{+}}{d\Gamma^{-}/dq^{2} + d\Gamma^{+}} \propto f(|f_{+}(q^{2})|, |f_{0}(q^{2})|)
$$

 $#$ Also provides ratios of f_+ and f_0 for $B_s \to K\ell\nu$ and $B_s \to D_s\ell\nu$ as functions of q^2 : useful for the determination of $\vert V_{ub}/V_{cb} \vert.$

(in progress)

* MILC $N_f = 2 + 1 + 1$ HISQ ensembles

- * MILC $N_f = 2 + 1 + 1$ HISQ ensembles
- * Lüscher-Weisz, one-loop Symanzik and tadpole improved gauge action $\rightarrow \mathcal{O}(\alpha_s^2)$ $\frac{2}{s}a^2$
- * Valence l, s, c quarks are always described with HISQ action $\rightarrow \mathcal{O}(\alpha_s a^2)$
- $*$ Scale set with ω_0/a

- * MILC $N_f = 2 + 1 + 1$ HISQ ensembles
- * Lüscher-Weisz, one-loop Symanzik and tadpole improved gauge action $\rightarrow \mathcal{O}(\alpha_s^2)$ $\frac{2}{s}a^2$
- * Valence l, s, c quarks are always described with HISQ action $\rightarrow \mathcal{O}(\alpha_s a^2)$
- $*$ Scale set with ω_0/a

A Clover action with Fermilab interpretation for $b \to \mathcal{O}(\alpha_s a, a^2) f((m_b a)^2)$ **B** HISQ action for heavy quarks, $m_c \le m_h \le m_b \to \mathcal{O}(\alpha_s a^2) f((m_h a)^2)$

$B_{(s)} \to \pi(K)\ell\nu$: charged currents

Extraction of $|V_{ub}|: B \to \pi \ell \nu$ and $B_s \to K \ell \nu$.

$B \to \pi(K)\ell^+\ell^-$: flavour-changing neutral currents

Flavor-changing neutral currents $b \rightarrow q$ transitions are potentially sensitive to NP effects $B \to K^* \gamma$, $B \to K^* \ell^+ \ell^-$,

 $B \to \pi(K)\ell^+\ell^-, B_s \to K\ell^+\ell^-$

Most important contributions to all this type of decays are expected to come from matrix elements of current (vector, axial and tensor) operators

Need vector, f_+ , scalar, f_0 and tensor, f_T form factors from LQCD

$$
\frac{d\Gamma}{dq^2} = (\text{known}) |V_{tb}V_{td(s)}^*|^2 \left\{ f_+(q^2), f_0(q^2), f_T(q^2) \right\}
$$
Form factors for $B_{(s)} \to K(\pi)$

Taking Lorentz and discrete symmetries into account:

$$
\langle P(k)|\mathcal{V}^{\mu}|B(p)\rangle = f_{+}(q^{2})\left(p^{\mu}+k^{\mu}-\frac{M_{B}^{2}-M_{P}^{2}}{q^{2}}q^{\mu}\right)+f_{0}(q^{2})\frac{M_{B}^{2}-M_{P}^{2}}{q^{2}}q^{\mu}
$$

 \mathcal{L}

$$
\langle P(k)|S|B(p)\rangle = f_0(q^2)\frac{M_B^2 - M_P^2}{m_b - m_q}
$$

$$
\langle P(k)|T^{\mu\nu}|B(p)\rangle = f_T(q^2)\frac{2}{M_B + M_P} (p^{\mu}k^{\nu} - p^{\mu}k^{\nu})
$$

Form factors for $B_{(s)} \to K(\pi)$

Taking Lorentz and discrete symmetries into account:

$$
\langle P(k)|\mathcal{V}^{\mu}|B(p)\rangle = f_{+}(q^{2})\left(p^{\mu} + k^{\mu} - \frac{M_{B}^{2} - M_{P}^{2}}{q^{2}}q^{\mu}\right) + f_{0}(q^{2})\frac{M_{B}^{2} - M_{P}^{2}}{q^{2}}q^{\mu}
$$

$$
= \sqrt{2M_{B}}\left[k_{\perp}^{\mu}f_{\perp}(E_{P}) + v^{\mu}f_{\parallel}(E_{P})\right], \quad v = p/M_{B}
$$

$$
\langle P(k)|S|B(p)\rangle = f_{0}(q^{2})\frac{M_{B}^{2} - M_{P}^{2}}{m_{b} - m_{q}}
$$

$$
\langle P(k)|\mathcal{T}^{\mu\nu}|B(p)\rangle = f_{T}(q^{2})\frac{2}{M_{B} + M_{P}}(p^{\mu}k^{\nu} - p^{\mu}k^{\nu})
$$

and then

$$
f_{\perp}(E_P) = \frac{\langle P(k)|V^i|B(p)\rangle}{\sqrt{2M_B}} \frac{1}{k^i}
$$

$$
f_{\parallel}(E_P) = \frac{\langle P(k)|V^0|B(p)\rangle}{\sqrt{2M_B}}
$$

$$
f_T(q^2) = \frac{M_B + M_P \langle P(k)|T^{0i}|B(p)\rangle}{\sqrt{2M_B}} \frac{1}{k^i}
$$

Correlation Functions

Ratios of 3- and 2-point correlation functions

$$
\bar{R}^{\mu(\nu)}\equiv\frac{\bar{C}_{3}^{\mu(\nu)}(t,\,T;\,\bm{k})}{\sqrt{\bar{C}_{2,P}(t;\,\bm{k})\bar{C}_{2,H}(T\,-\,t;\,\bm{k})}}\,\sqrt{\frac{2E_{P}^{(0)}}{e^{-E_{P}^{(0)}}e^{-M_{H}^{(0)}(T-t)}}}
$$

Correlation Functions

Ratios of 3- and 2-point correlation functions

Suppress oscillating and excited states:

$$
\bar{C}_{3}^{\mu(\nu)}(t, T; \mathbf{k}) \equiv \frac{e^{-E_{P}^{(0)}t} e^{-M_{H}^{(0)}(T-t)}}{8} \left[\frac{C_{3}^{\mu(\nu)}(t, T; \mathbf{k})}{e^{-E_{P}^{(0)}t} e^{-M_{H}^{(0)}(T-t)}} + \frac{C_{3}^{\mu(\nu)}(t+1, T; \mathbf{k})}{e^{-E_{P}^{(0)}(t+1)} e^{-M_{H}^{(0)}(T-t-1)}} + \frac{C_{3}^{\mu(\nu)}(t+1, T; \mathbf{k})}{e^{-E_{P}^{(0)}(t+2)} e^{-M_{H}^{(0)}(T-t-2)}} + T \rightarrow T + 1 \right]
$$

$$
\bar{R}^{\mu(\nu)}\,\equiv\,\frac{\bar{C}^{\,\mu(\nu)}_3(t,\,T;\,\bm{k})}{\sqrt{\bar{C}_{2,\,P}\left(t;\,\bm{k}\right)\bar{C}_{2,\,H}\left(T\,-\,t;\,\bm{k}\right)}}\,\sqrt{\frac{2\,E^{(0)}_P}{e^{-E^{(0)}_P}\,e^{-M^{(0)}_H\left(T\,-\,t\right)}}}
$$

$$
\rightarrow F^{\mu(\nu)} \left[1 - F_P e^{-\Delta M_P t} - F_P e^{-\Delta M_H (T-t)} + \ldots \right] + \mathcal{O}\left(\Delta M_P^2, \Delta M_P \Delta M_H, \Delta M_H^2\right)
$$

$$
f_{\perp}(E_P) = Z_{\perp} \frac{F^i(\mathbf{k})}{k^i}
$$

$$
f_{\parallel}(E_P) = Z_{\parallel} F^4(\mathbf{k})
$$

$$
f_T(E_P) = Z_T \frac{M_H + M_P}{\sqrt{2M_H}} \frac{F^{4i}(\mathbf{k})}{k^i}
$$

$b \rightarrow s(d)$ decays on MILC $N_f = 2 + 1 + 1$ HISQ ensembles

A Fermilab b

Analysis led by Zech Gelzer

Simulation data

Parameters for physical-mass ensembles

Correlation Functions and Fits

 $^{\textstyle *}$ $J=\mathcal{V}^{\mu},$ \mathcal{T}^{0i}

 $*$ Two values of T and 8 time sources.

* Light (HISQ) quarks sources: random wall.

 $*$ Heavy (Fermilab) quarks sources: local $+$ 1S-smeared.

* P momenta generated up to

 ${\bm k} = (2,2,2) \times 2\pi/(a N_s)$ (7 values)

$$
C_2^B(t; \mathbf{0}) = \sum_{\mathbf{x}} \left\langle \mathcal{O}_B(t, \mathbf{x}) \mathcal{O}_B^{\dagger}(0, \mathbf{0}) \right\rangle, \quad C_2^P(t; \mathbf{k}) = \sum_{\mathbf{x}} \left\langle \mathcal{O}_P(t, \mathbf{x}) \mathcal{O}_P^{\dagger}(0, \mathbf{0}) \right\rangle e^{-i\mathbf{k} \cdot \mathbf{x}},
$$

$$
C_3^{\mu(\nu)}(t, T; \mathbf{k}) = \sum_{\mathbf{x}, \mathbf{y}} e^{i\mathbf{k} \cdot \mathbf{y}} \left\langle \mathcal{O}_P(0, \mathbf{0}) J^{\mu(\nu)}(t, \mathbf{y}) \mathcal{O}_B^{\dagger}(T, \mathbf{x}) \right\rangle
$$

Correlation Functions and Fits

 $^{\textstyle *}$ $J=\mathcal{V}^{\mu},$ \mathcal{T}^{0i}

 $*$ Two values of T and 8 time sources.

* Light (HISQ) quarks sources: random wall.

 $*$ Heavy (Fermilab) quarks sources: local $+$ 1S-smeared.

* P momenta generated up to

 ${\bm k} = (2,2,2) \times 2\pi/(a N_s)$ (7 values)

$$
C_2^B(t; \mathbf{0}) = \sum_{\mathbf{x}} \left\langle \mathcal{O}_B(t, \mathbf{x}) \mathcal{O}_B^{\dagger}(0, \mathbf{0}) \right\rangle, \quad C_2^P(t; \mathbf{k}) = \sum_{\mathbf{x}} \left\langle \mathcal{O}_P(t, \mathbf{x}) \mathcal{O}_P^{\dagger}(0, \mathbf{0}) \right\rangle e^{-i\mathbf{k} \cdot \mathbf{x}},
$$

$$
C_3^{\mu(\nu)}(t, T; \mathbf{k}) = \sum_{\mathbf{x}, \mathbf{y}} e^{i\mathbf{k} \cdot \mathbf{y}} \left\langle \mathcal{O}_P(0, \mathbf{0}) J^{\mu(\nu)}(t, \mathbf{y}) \mathcal{O}_B^{\dagger}(T, \mathbf{x}) \right\rangle
$$

* Mostly nonperturbative matching: $Z_J = \rho_J \sqrt{Z_{V_{bb}^4} Z_{V_{qq}^4}}$ with ρ_J calculated perturbat. at one loop and $Z_{V_{bb}^4}$, $Z_{V_{qq}^4}$ nonperturbatively.

** Introduce a blinding factor through the renormalization factors.

Correlators and Fits: $B \to K$ on phys. $a = 0.057$ fm

Form factors from direct (combined) fits to all correlation functions: Preliminary

(consistent with fits to ratios \bar{R} of 3-point over 2-point functions)

Form factors for $B \to \pi$ Preliminary

Note: Correct renomalization ρ_J factors missing. Only $\sqrt{Z_{V_{bb}^4}Z_{V_{qq}^4}}$ included.

Form factors for $B \to K$ Preliminary

Note: Correct renomalization ρ_J factors missing. Only $\sqrt{Z_{V_{bb}^4}Z_{V_{qq}^4}}$ included.

Form factors for $B_s \to K$ Preliminary

Note: Correct renomalization ρ_J factors missing. Only $\sqrt{Z_{V_{bb}^4}Z_{V_{qq}^4}}$ included.

Chiral-continuum interp./extrap.: $B_s \to K$

We extrapolate the form factors to the continuum and interpolate to the physical quark masses using $SU(2)$ HMrS χ PT

$$
f_J = f_J^{(0)} \times \left(1 + \delta f_J^{logs} + \delta f_J^{NLO} + \delta f_J^{N^2LO} + \dots\right) \times \left(1 + \delta f_J^b\right)
$$

\n
$$
f_J^{(0)} = \frac{g_\pi}{f_\pi (E_P + \Delta_P^*)}
$$

\n
$$
\delta f_J^{NLO} = c_J^l \chi_l + c_J^s \chi_s + c_J^E \chi_E + c_J^{E^2} \chi_E^2 + c_J^{a^2} \chi_{a^2}
$$

*
$$
\Delta_P^* = \left(M_{B^*}^2 - M_{B_s}^2 - M_P^2\right)/(2M_{B_s})
$$
, where M_{B^*} is a 1⁻ or 0⁺ mass.
\n* f_J^{logs} : nonanalytic functions of m_l , a .

 $*$ $f^b_{\overline{I}}$ J_i^b : b-quark discretization effects,

$$
\mathcal{O}\left((a\Lambda)^2,\alpha_s a\Lambda,\alpha_s (a\Lambda)^2\right)\times \text{ mismatch functions } (am_b,\alpha_s)\times h_J^i.
$$

* Perturbative part of Z_J implemented with priors: $\tilde{\rho}_J = 1 + \tilde{\rho}_J^{(1)}$ $_J^{(1)} \alpha_s + \tilde{\rho}_J^{(2)}$ $\frac{(2)}{J}\alpha_s^2$ s

Chiral-continuum interp./extrap.: $B_s \to K$

Preliminary

Preliminary

- $*$ f_{\perp} and f_{\parallel} fit simultaneously.
- * Central fit: NLO $SU(2)$ HMrS χ PT + N^2LO analytic terms.

Error budget for $B_s \to K$

Preliminary and missing perturbative ρ_J factors

Error budget for $B_s \to K$

Preliminary and missing perturbative ρ_J factors

Compared to previous FNAL/MILC:

Similar $a \rightarrow$ similar statistics, smaller discretization (HISQ)

Physical m'_l $\frac{\prime}{l}$ ensembles \rightarrow remove chiral extrapolation error

Outlook

On-going calculation of form factors f_0, f_+, f_T for $B \to \pi$, $B \to K$, $B_s \to K$ with Fermilab b and HISQ l, s, c on HISQ $N_f = 2 + 1 + 1$ MILC ensembles.

- * 4 lattice spacings, 7 ensembles (including 4 with phys. masses)
- * Mostly non-perturbative renormalization.
- * Chiral+continuum fits: NLO $HMTSChPT$ in SU(2) hard-kaon limit + NNLO analytic terms.

Outlook

On-going calculation of form factors f_0, f_+, f_T for $B \to \pi$, $B \to K$, $B_s \to K$ with Fermilab b and HISQ l, s, c on HISQ $N_f = 2 + 1 + 1$ MILC ensembles.

- * 4 lattice spacings, 7 ensembles (including 4 with phys. masses)
- * Mostly non-perturbative renormalization.
- * Chiral+continuum fits: NLO HMrSChPT in SU(2) hard-kaon limit + NNLO analytic terms.

Need to do

- * Renormalization coefficients: calculate ρ_J , get $Z_{V_{bb, qq}^4}$ with better stat.
- $*$ z expansions and finalize systematic error budgets.
- * Phenomenology: $|V_{ub}|, |V_{td}|, |V_{ts}|$, confront branching fractions and angular observables with experiment, make predictions for the not yet measured quantities.
- * Correlated ratios for different processes

$h \rightarrow s(d)$ decays on MILC $N_f = 2 + 1 + 1$ HISQ ensembles

B HISQ heavy

Analysis led by William Jay

All-HISQ decay constants analysis

It is feasible to do B physics with HISQ: Decay constants

Avoid large lattice artifact including data with $am_h < 0.9$ (black solid line)

Use HQET-inspired model for extrapolating to the B mass.

All-HISQ decay constants analysis

It is feasible to do B physics with HISQ: Decay constants

Avoid large lattice artifact including data with $am_h < 0.9$ (black solid line)

Use HQET-inspired model for extrapolating to the B mass.

 $*$ Errors: 0.2-0.3% for c decay constants, 0.6-0.7% for b decay constants.

Largest systematic errors: choice of fit model (continuum extrapolation errors), correlator fits (excited-state contamination).

All-HISQ decay constants analysis

 $(f_{\pi,PDG}$ also important systematic for charmed decay constants)

* Controversy with EW radiative corrections needed to exract $|V_{ud}|$ from superallowed β decays: Seng, Gorchtein, Patel, Ramsey-Musolf 1807.10197, Czarnecki, Marciano, Sirlin 1907.06737

Simulation data

Data generated for all-HISQ heavy semileptonic project until middle July 2019

$$
B \to K, B \to \pi, B_s \to K
$$

(and $D \to K, D \to \pi, D_s \to K$)

$$
B_{(s)} \to D_{(s)}
$$

Simulation data

Data generated for all-HISQ heavy semileptonic project until middle July 2019

$$
B \to K, B \to \pi, B_s \to K
$$

(and $D \to K, D \to \pi, D_s \to K$)

$$
B_{(s)} \to D_{(s)}
$$

Include partially-quenched data: fine-tuning light quark masses, isospin-breaking effects.

Correlation Functions

- * Random wall sources.
- $*$ 4 values of T generated, 3 more being generated in some ensembles.
- * 6-8 time sources.
- * Local scalar and temporal vector currents, point-split spatial vector currents.

 ** ${\cal S}$ and ${\cal V}_i$ are taste singlets \to parent ${H}_{(s)}$ has spin-taste γ_5 \times γ_5 (Goldstone meson).

 ${}^{**}\;{\cal V}_0$ and $\mathcal{T}_{\mu\nu}$ have taste $\gamma_0\to$ parent $H_{(s)}$ has spin-taste $\gamma_0\gamma_5\times\gamma_0\gamma_5$ (non-Goldstone meson).

Correlation Functions

* P momenta data generated up to $\mathbf{k} = (4, 0, 0) \times 2\pi/(aN_s)$ (8 values)

$$
C_2^{H_{(s)}}(t; \mathbf{k}) = \sum_{\boldsymbol{x}} \left\langle \mathcal{O}_{H_{(s)}}(t, \boldsymbol{x}) \mathcal{O}_{H_{(s)}}^{\dagger}(0, \boldsymbol{0}) \right\rangle e^{-i\boldsymbol{k} \cdot \boldsymbol{x}}, \quad C_2^P(t; \mathbf{k}) = \sum_{\boldsymbol{x}} \left\langle \mathcal{O}_P(t, \boldsymbol{x}) \mathcal{O}_P^{\dagger}(0, \boldsymbol{0}) \right\rangle e^{-i\boldsymbol{k} \cdot \boldsymbol{x}},
$$

$$
C_3^{\mu(\nu)}(t, T; \mathbf{k}) = \sum_{\boldsymbol{x}, \boldsymbol{y}} e^{i\boldsymbol{k} \cdot \boldsymbol{y}} \left\langle \mathcal{O}_P(0, \boldsymbol{0}) J^{\mu(\nu)}(t, \boldsymbol{y}) \mathcal{O}_{H_{(s)}}^{\dagger}(T, \boldsymbol{x}) \right\rangle
$$

$$
\tilde{C}_3^{\mu}(t, T; \mathbf{k}) = \sum_{\boldsymbol{x}, \boldsymbol{y}} e^{i\boldsymbol{k} \cdot \boldsymbol{y}} \left\langle \mathcal{O}_{H'_{(s)}}(0, \boldsymbol{0}) J^{\mu}(t, \boldsymbol{y}) \mathcal{O}_{H_{(s)}}^{\dagger}(T, \boldsymbol{x}) \right\rangle
$$

Comparison of noise-to-signal at $a \approx 0.12 \text{fm}$

Fermilab heavy b vs HISQ h

- $*$ Physical l, s and c masses
- * Source-sink separation $T = 15, 16.$

$$
^* \ m_h = 1.4 m_c
$$

Typical fit range:

$$
\sim [2-13]
$$

To suppress oscillating-state contributions for better visualization, an averaging scheme has been applied over neighboring time slices.

Extracting the form factors

Using the Ward identity $q_{\mu}\langle P| \mathcal{V}^{\mu}_{{\rm lat}}|H \rangle Z_{V^{\mu}_{{\rm lat}}}$ $\lambda_{\rm lat} = (m_h-m_q) \langle P|\mathcal{S}|H\rangle$ and the definition of the form factors

$$
f_0(q^2) = \frac{m_h - m_q}{M_H^2 - M_P^2} \langle P|S|H\rangle_{q^2} \text{ no renor. needed}
$$

\n
$$
f_+(q^2) = \frac{1}{2M_H} \frac{(M_H - M_P)(m_h - m_q)\langle P|S|H\rangle - q^2 Z_{V^0} \langle P|V^0|H\rangle}{k^2}
$$

\n
$$
= \frac{1}{2M_H} \left[Z_{V^0} \langle P|V^0|H\rangle + \frac{M_H - M_P}{k^i} Z_{V^i} \langle P|V^i|H\rangle \right]
$$

\n
$$
f_T(q^2) = \frac{M_H + M_P}{\sqrt{2M_H}} Z_T \frac{\langle P|T^{0i}|H\rangle}{\sqrt{2M_H}}
$$

Extracting the form factors

Using the Ward identity $q_{\mu}\langle P| \mathcal{V}^{\mu}_{{\rm lat}}|H \rangle Z_{V^{\mu}_{{\rm lat}}}$ $\lambda_{\rm lat} = (m_h-m_q) \langle P|\mathcal{S}|H\rangle$ and the definition of the form factors

$$
f_0(q^2) = \frac{m_h - m_q}{M_H^2 - M_P^2} \langle P|S|H\rangle_{q^2} \text{ no renor. needed}
$$

\n
$$
f_+(q^2) = \frac{1}{2M_H} \frac{(M_H - M_P)(m_h - m_q)\langle P|S|H\rangle - q^2 Z_{V^0} \langle P|V^0|H\rangle}{k^2}
$$

\n
$$
= \frac{1}{2M_H} \left[Z_{V^0} \langle P|V^0|H\rangle + \frac{M_H - M_P}{k^i} Z_{V^i} \langle P|V^i|H\rangle \right]
$$

\n
$$
f_T(q^2) = \frac{M_H + M_P}{\sqrt{2M_H}} Z_T \frac{\langle P|T^{0i}|H\rangle}{\sqrt{2M_H}}
$$

* For the local temporal current, with both mesons at rest:

$$
Z_{V^0}\langle P|{\cal V}_0|H\rangle_{q^2_{\rm max}}=\frac{m_h-m_q}{M_H-M_P}\langle P|{\cal S}|H\rangle_{q^2_{\rm max}}
$$

Extracting the form factors

Using the Ward identity $q_{\mu}\langle P| \mathcal{V}^{\mu}_{{\rm lat}}|H \rangle Z_{V^{\mu}_{{\rm lat}}}$ $\lambda_{\rm lat} = (m_h-m_q) \langle P|\mathcal{S}|H\rangle$ and the definition of the form factors

$$
f_0(q^2) = \frac{m_h - m_q}{M_H^2 - M_P^2} \langle P|S|H\rangle_{q^2} \text{ no renor. needed}
$$

\n
$$
f_+(q^2) = \frac{1}{2M_H} \frac{(M_H - M_P)(m_h - m_q)\langle P|S|H\rangle - q^2 Z_{V^0} \langle P|V^0|H\rangle}{k^2}
$$

\n
$$
= \frac{1}{2M_H} \left[Z_{V^0} \langle P|V^0|H\rangle + \frac{M_H - M_P}{k^i} Z_{V^i} \langle P|V^i|H\rangle \right]
$$

\n
$$
f_T(q^2) = \frac{M_H + M_P}{\sqrt{2M_H}} Z_T \frac{\langle P|T^{0i}|H\rangle}{\sqrt{2M_H}}
$$

* For the local temporal current, with both mesons at rest:

$$
Z_{V^0}\langle P|{\cal V}_0|H\rangle_{q^2_{\rm max}}=\frac{m_h-m_q}{M_H-M_P}\langle P|{\cal S}|H\rangle_{q^2_{\rm max}}
$$

* Renormalization factors Z_{V^i}, Z_T : Under investigation. ** First step: Mostly non-perturbative renormalization?

Correlation Functions and Fits Example: $D \to \pi$ at $a \approx 0.12$ fm with phys. quark masses

S correlation function for $\mathbf{k}=(1,0,0)$ (f_0)

Preliminary

- * Combined correlated fit to
- 2-point and 3-point
- functions
	- (ratio \overline{R} 3pt- and 2-point functions for visualization)

Correlation Functions and Fits Example: $D \to \pi$ at $a \approx 0.12$ fm with phys. quark masses

- * Similar results for all currents and most of the momenta.
- $*$ Add larger values of T: Better constrain of ground state contributions

Correlation Functions and Fits

Example: 3-point correlation function with S insertion and $\mathbf{k} = (1,0,0)$

 $2 + 1$ states for π channel

and $4 + 2$ for D channel

Check stability

Correlation Functions and Fits

Example: 3-point correlation function with S insertion and $\mathbf{k} = (1,0,0)$

Preliminary: $D \to \pi$ form factors

Physical masses for light and heavy masses $= 0.9 m_c$. Three lattice spacings $a \approx 0.088, 0.12, 0.15$ fm

Note: No renormalization included.

Preliminary: Pion dispersion relation

(for physical quark masses ensembles)

On-going calculation of form factors f_0, f_+, f_T for $H \to P$, $H \to H'$ processes with the HISQ action for all flavors on HISQ $N_f = 2 + 1 + 1$ MILC ensembles.

- * So far: 4 lattice spacings, 7 ensembles (including 3 with phys. masses)
- * Momenta up to $\bm{k}=(4,0,0)\times 2\pi/(aN_s)$: cover q^2 range for D semileptonic, down to $\sim 11\,\,{\rm GeV}^2$ B semileptonic.

On-going calculation of form factors f_0, f_+, f_T for $H \to P$, $H \to H'$ processes with the HISQ action for all flavors on HISQ $N_f = 2 + 1 + 1$ MILC ensembles.

- * So far: 4 lattice spacings, 7 ensembles (including 3 with phys. masses)
- * Momenta up to $\bm{k}=(4,0,0)\times 2\pi/(aN_s)$: cover q^2 range for D semileptonic, down to $\sim 11\,\,{\rm GeV}^2$ B semileptonic.
- $*$ Noise-to-signal seems to significantly reduce respect to Fermilab b /HISQ light description.
- * Good behaviour of dispersion relation

On-going calculation of form factors f_0, f_+, f_T for $H \to P$, $H \to H'$ processes with the HISQ action for all flavors on HISQ $N_f = 2 + 1 + 1$ MILC ensembles.

- * So far: 4 lattice spacings, 7 ensembles (including 3 with phys. masses)
- * Momenta up to $\bm{k}=(4,0,0)\times 2\pi/(aN_s)$: cover q^2 range for D semileptonic, down to $\sim 11\,\,{\rm GeV}^2$ B semileptonic.
- $*$ Noise-to-signal seems to significantly reduce respect to Fermilab b /HISQ light description.
- * Good behaviour of dispersion relation

Next steps in the current analysis:

- * Include larger source-sink separations: better determination of ground state.
- * Optimize fitting methodology.
- * Autocorrelations (plots in this talk, data binned by 10).

* Nonequilibrated topological charge effects.

For HISQ $N_f = 2 + 1 + 1$ MILC ensembles with smallest lattice spacings $(a \approx 0.042, 0.03$ fm), the topological charge Q is not properly sampled.

Correct the form factors in a similar way as we did for $K \to \pi \ell \nu$

$$
f_+^{K\pi}(0)_{\text{corrected}} = f_+^{K\pi}(0)_{\text{sampled}} - \frac{1}{2\chi_T V} (f_+^{K\pi}(0))'' \left(1 - \frac{\langle Q^2 \rangle_{\text{sample}}}{\chi_T V}\right)
$$

* Nonequilibrated topological charge effects.

For HISQ $N_f = 2 + 1 + 1$ MILC ensembles with smallest lattice spacings $(a \approx 0.042, 0.03$ fm), the topological charge Q is not properly sampled.

Correct the form factors in a similar way as we did for $K \to \pi \ell \nu$

$$
f_+^{K\pi}(0)_{\text{corrected}} = f_+^{K\pi}(0)_{\text{sampled}} - \frac{1}{2\chi_T V} (f_+^{K\pi}(0))'' \left(1 - \frac{\langle Q^2 \rangle_{\text{sample}}}{\chi_T V}\right)
$$

with $(f^{K\pi}_+(0))''=d^2f_+/d\theta^2|_{\theta=0}$ and $\chi_T=\langle Q\rangle/V$ the topological susceptibility.

* Following C. Bernard and D. Toussaint 1707.05430, use ChPT to study Q-dependence (θ dependence) of the form factor and obtain $(f_+^{K\pi}(0))''$ at LO:

* Nonequilibrated topological charge effects.

For HISQ $N_f = 2 + 1 + 1$ MILC ensembles with smallest lattice spacings $(a \approx 0.042, 0.03$ fm), the topological charge Q is not properly sampled.

Correct the form factors in a similar way as we did for $K \to \pi \ell \nu$

$$
f_+^{K\pi}(0)_{\text{corrected}} = f_+^{K\pi}(0)_{\text{sampled}} - \frac{1}{2\chi_T V} (f_+^{K\pi}(0))'' \left(1 - \frac{\langle Q^2 \rangle_{\text{sample}}}{\chi_T V}\right)
$$

- * Following C. Bernard and D. Toussaint 1707.05430, use ChPT to study Q-dependence (θ dependence) of the form factor and obtain $(f_+^{K\pi}(0))''$ at LO:
- $*$ Renormalization for T current.

* Nonequilibrated topological charge effects.

For HISQ $N_f = 2 + 1 + 1$ MILC ensembles with smallest lattice spacings $(a \approx 0.042, 0.03$ fm), the topological charge Q is not properly sampled.

Correct the form factors in a similar way as we did for $K \to \pi \ell \nu$

$$
f_+^{K\pi}(0)_{\text{corrected}} = f_+^{K\pi}(0)_{\text{sampled}} - \frac{1}{2\chi_T V} (f_+^{K\pi}(0))'' \left(1 - \frac{\langle Q^2 \rangle_{\text{sample}}}{\chi_T V}\right)
$$

- * Following C. Bernard and D. Toussaint 1707.05430, use ChPT to study Q-dependence (θ dependence) of the form factor and obtain $(f_+^{K\pi}(0))''$ at LO:
- $*$ Renormalization for T current.
- * Scale setting with a different (than $f_\pi)$ experimental input: M_Ω , m_{D_s} ...?

* Nonequilibrated topological charge effects.

For HISQ $N_f = 2 + 1 + 1$ MILC ensembles with smallest lattice spacings $(a \approx 0.042, 0.03$ fm), the topological charge Q is not properly sampled.

Correct the form factors in a similar way as we did for $K \to \pi \ell \nu$

$$
f_+^{K\pi}(0)_{\text{corrected}} = f_+^{K\pi}(0)_{\text{sampled}} - \frac{1}{2\chi_T V} (f_+^{K\pi}(0))'' \left(1 - \frac{\langle Q^2 \rangle_{\text{sample}}}{\chi_T V}\right)
$$

- * Following C. Bernard and D. Toussaint 1707.05430, use ChPT to study Q-dependence (θ dependence) of the form factor and obtain $(f_+^{K\pi}(0))''$ at LO:
- $*$ Renormalization for T current.
- * Scale setting with a different (than $f_\pi)$ experimental input: M_Ω , m_{D_s} ...?
- * Long term: EM and isospin breaking effects.