QED corrections to hadronic decays on the lattice
phenomenological relevance of QED radiative corrections

QED radiative corrections on the lattice:
- a consistent definition of QED on a finite volume
- a prescription to define QCD
- extraction of the physical observable from euclidean correlators (backup)
- infrared-safe observables and finite-volume effects

non-perturbative calculation of the leptonic decay rates of pseudoscalar mesons at $O(\alpha)$

non-perturbative calculation of the radiative leptonic decay rates of pseudoscalar mesons (if I have time)

summary & outlooks
are QED radiative corrections phenomenologically relevant?

from the last FLAG review we have

\[ f_{\pi^\pm} = 130.2(0.8) \text{ MeV}, \quad \delta = 0.6\% , \]
\[ f_{K^\pm} = 155.7(0.3) \text{ MeV}, \quad \delta = 0.2\% , \]
\[ f_{+}(0) = 0.9706(27), \quad \delta = 0.3\% \]

in the case of pions and kaons, QED corrections can be calculated in \( \chi \)-pt by estimating the relevant low-energy constants

\[ \delta_{QED} \Gamma[\pi^- \to \ell \bar{\nu}(\gamma)] = 1.8\% , \]
\[ \delta_{QED} \Gamma[K^- \to \ell \bar{\nu}(\gamma)] = 1.1\% , \]
\[ \delta_{QED} \Gamma[K \to \pi \ell \bar{\nu}(\gamma)] = [0.5, 3]\% \]

at this level of precision QED radiative corrections must be included!
are QED radiative corrections phenomenologically relevant?

\[ R(D^{(*)}) = \frac{\mathcal{B}[B \rightarrow D^{(*)}\tau\bar{\nu}_\tau]}{\mathcal{B}[B \rightarrow D^{(*)}\ell\bar{\nu}_\ell]} \]

- presently a \( \sim 3\sigma \) discrepancy between SM-theory and experiment

- the bulk of the hadronic uncertainties cancel in the ratios but QED radiative corrections are sensitive to the lepton mass and new hadronic quantities are needed at \( O(\alpha) \)

- QED effects are taken into account by using PHOTOS but it is not excluded that an improved treatment can have an impact, s.de Boer et al PRL 120 (2018), s.calì et al 1905.02702

- the analysis of s.de Boer et al PRL 120 (2018) used what in the following is called the point-like effective theory
including QED radiative corrections into a non-perturbative lattice calculation is a challenging problem!

- **QED** is a long-range unconfined interaction that needs to be consistently defined on a finite volume (or maybe not...)

- from the numerical point of view, it is difficult to disentangle QED radiative corrections from the leading QCD contributions but, first of all, **what is QCD?**

- as for any other observable on the lattice, QED radiative corrections have to be extracted from euclidean correlators (backup)

- finite-volume effects are potentially very large, e.g. of \(O(L^{-1})\) in the case of the masses of stable hadrons

- in the case of decay rates the problem is much more involved because of the appearance of infrared divergences, \(O(\log(L))\), at intermediate stages of the calculation: **the infrared problem!**
• it is impossible to have a net electric charge in a periodic box

• this is a consequence of gauss’s law

\[ S = \int_{L^3} d^4 x \left\{ \frac{1}{4} F_{\mu \nu} F_{\mu \nu} + \bar{\psi}_f \left( \gamma_\mu D_\mu^f + m_f \right) \psi_f \right\} \]

\[ \partial_k \frac{F_{0k}(x)}{E_k(x)} - \frac{ie q_f \bar{\psi}_f \gamma_0 \psi_f(x)}{e \rho(x)} = 0 \]

\[ Q = \int_{L^3} d^3 x \rho(x) = \frac{1}{e} \int_{L^3} d^3 x \partial_k E_k(x) = 0 \]

• one may think to overcome this problem by gauge fixing but large gauge transformations survive a local gauge fixing procedure \((n \in \mathbb{Z}^4)\)

\[ \psi(x) \mapsto e^{2 \pi i \sum_\mu \frac{x_\mu n_\mu}{L_\mu}} \psi(x), \quad A_\mu(x) \mapsto A_\mu(x) + \frac{2 \pi n_\mu}{L_\mu} \]

\[ \psi(x) \bar{\psi}(0) \mapsto e^{2 \pi i \sum_\mu \frac{x_\mu n_\mu}{L_\mu}} \psi(x) \bar{\psi}(0), \quad \langle \psi(x) \bar{\psi}(0) \rangle = 0, \quad x \neq 0 \]
• in order to study charged particles in a periodic box it has been suggested long ago (duncan et al. 96) to quench (a set of) the zero momentum modes of the gauge field, for example

\[ \langle O \rangle = \int_{\text{pbc in space}} D\psi D\bar{\psi} DA_\mu \prod_\mu \delta \left\{ \int_{TL^3} d^4 x A_\mu(x) \right\} e^{-S} O \]

• by using this procedure one is also quenching large gauge transformations that are no longer a symmetry and charged particles can propagate

• the assumption is that the induced modifications on the infrared dynamics of the theory should disappear once the infinite volume limit is taken

• the point to note is that the resulting finite volume theory, although it may admit an hamiltonian description, is non-local

m.hayakawa, s.uno Prog.Theor.Phys. 120 (2008)
z.davoudi, m.j.savage PRD90 (2014)

\[ \text{QED}_L : \prod_{\mu,t} \delta \left\{ \int_{L^3} d^3 x A_\mu(t, \vec{x}) \right\} \mapsto \int_{\text{pbc in space}} D\alpha_\mu(t) e^{-\int_{L^3} d^4 x \alpha_\mu(t) A_\mu(t, \vec{x})} \]
• consider $C^*$ boundary conditions (first suggested by wise and polley 91)

$$\psi_f(x + Lk) = C^{-1} \bar{\psi}_f^T(x)$$

$$\bar{\psi}_f(x + Lk) = -\psi_f^T(x)C$$

$$A_\mu(x + Lk) = -A_\mu(x) , \quad U_\mu(x + Lk) = U^*_\mu(x) ,$$

• the gauge field is anti-periodic ($|p| \geq \pi/L$): no zero modes by construction!

• this means no large gauge transformations and

$$Q = \int_{L^3} d^3x \rho(x) = \frac{1}{e} \int_{L^3} d^3x \partial_k E_k(x) \neq 0$$

• a fully gauge invariant formulation is possible: technically this is a consequence of the fact that the electrostatic potential is unique with anti-periodic boundary conditions (see backup)

$$\partial_k \partial_k \Phi(x) = \delta^3(x) , \quad \Phi(x + Lk) = -\Phi(x)$$
QED on a finite volume: many different approaches

- **QED\textsubscript{L}:** very attractive for its formal simplicity; generally, at $O(\alpha)$ the systematics associated with non-localities can be understood

- **QED\textsubscript{m}:** formally, the simplest way to solve the problem in a local framework is to give a mass to the photon; the $L \mapsto \infty$ limit must be taken before restoring gauge invariance ($m_\gamma \mapsto 0$)

- **QED\textsubscript{C}:** a local and fully gauge invariant solution, formally a bit cumbersome, flavour symmetries reduced to discrete subgroups (no spurious operator mixings though) and fully recovered in the infinite volume limit

- **QED\textsubscript{\infty}:** at any fixed order in $\alpha$ radiative corrections can be represented as the convolution of hadronic correlators with QED kernels, e.g.

  x.feng et al arXiv:1812.09817, LATTICE19

  $$O(L) = \int_{L^3} d^4 x \, H_{QCD}^L(x) \, D_\gamma^L(x)\quad \mapsto \int d^4 x \, H_{QCD}(x) \, D_\gamma(x)$$

  the subtle issue here is the parametrization of the long-distance tails of the hadronic part;

  in fact the proposal is an extension of the spectacular applications of the convolution approach to the $g_\mu - 2$, ...

  ..., j.green et al, PRL 115 (2015), ...

  a.gerardin ALGT19
QED on a finite volume: many different approaches

- **QED\(_L\)**: very attractive for its formal simplicity; generally, at \(O(\alpha)\) the systematics associated with non-localities can be understood

- **QED\(_m\)**: formally, the simplest way to solve the problem in a local framework is to give a mass to the photon; the \(L \mapsto \infty\) limit must be taken before restoring gauge invariance \((m_\gamma \mapsto 0)\)

  - m.endres et al. PRL 117 (2016)
  - m.della morte ALGT19

- **QED\(_C\)**: a local and fully gauge invariant solution, formally a bit cumbersome, flavour symmetries reduced to discrete subgroups (no spurious operator mixings though) and fully recovered in the infinite volume limit

- **QED\(_\infty\)**: at any fixed order in \(\alpha\) radiative corrections can be represented as the convolution of hadronic correlators with QED kernels, e.g.

  - x.feng et al arXiv:1812.09817, LATTICE19

\[
O(L) = \int_{L^3} d^4 x \, H_{QCD}^L(x) \, D_\gamma^L(x) \\
\mapsto \int d^4 x \, H_{QCD}(x) \, D_\gamma(x)
\]

the subtle issue here is the parametrization of the long-distance tails of the hadronic part; in fact the proposal is an extension of the spectacular applications of the convolution approach to the \(g_\mu - 2\),

- \(\ldots\), j.green et al, PRL 115 (2015), \(\ldots\)
- a.gerardin ALGT19

- which is the best approach?
QED on a finite volume: many different approaches

- **QED\_L**: very attractive for its **formal simplicity**; generally, at $O(\alpha)$ the systematics associated with non-localities can be understood

- **QED\_m**: formally, the simplest way to solve the problem in a local framework is to give a mass to the photon; the $L \mapsto \infty$ limit must be taken before restoring gauge invariance ($m_\gamma \mapsto 0$)

- **QED\_C**: a local and fully gauge invariant solution, formally a bit cumbersome, flavour symmetries reduced to discrete subgroups (no spurious operator mixings though) and fully recovered in the infinite volume limit

$\bullet$ **QED\_\infty**: at any **fixed order in $\alpha$** radiative corrections can be represented as the **convolution of hadronic correlators with QED kernels**, e.g.

$x. feng\ et\ al\ arXiv:1812.09817,\ LATTICE19$

$$O(L) = \int_{L^3} d^4 x \ H_{QCD}^L(x) D_{\gamma}^L(x)$$

$$\mapsto \int d^4 x \ H_{QCD}(x) D_{\gamma}(x)$$

the subtle issue here is the **parametrization of the long-distance tails of the hadronic part**;

in fact the proposal is an extension of the spectacular applications of the convolution approach to the $g_\mu - 2$,

- which is the best approach?

- in my opinion **this is not the relevant point**: what really matters is that **one must be able to estimate reliably the systematic uncertainties** associated with the chosen approach!
QED+QCD isospin breaking effects can be calculated by expanding the lattice path-integral w.r.t. $e^2$ and $m_d - m_u$

$$M_{\pi^+} - M_{\pi^0} = \frac{(e_u - e_d)^2}{2} e^2 \partial_t$$

the numerical issue here are quark-disconnected diagrams

one can also perform simulations of QED+QCD at all orders in $e^2$ and eventually fit leading isospin breaking effects

the numerical issue here is that the very small isospin breaking effects come together with the big isosymmetric QCD contributions
• in order to compare results for QED radiative corrections we must first agree on what we call QCD...

• indeed, when electromagnetic interactions are taken into account the physical theory is QCD+QED

• the QCD action is no longer expected to reproduce physics and, consequently, its renormalization becomes prescription dependent

• a natural matching prescription is to use again physical experimental inputs to set the QCD parameters

• another prescription (j.gasser, a.rusetsky and i.scimemi, EPJ C32 (2003)) consists in imposing the condition that the renormalized couplings of the full theory and QCD are the same, say in the $\bar{\overline{MS}}$ scheme at $\mu = 2$ GeV

• in RM123+SOTON, PRL 120 (2018), arXiv:1904.08731 we have compared the two approaches and found that the difference, nowadays, is smaller than the statistical uncertainties

• this will rapidly become an important issue on which we should find an agreement
I'm now going to describe in some details the non-perturbative lattice calculation of the $O(\alpha)$ QED radiative corrections to the decay rates $P \rightarrow \ell \bar{\nu}(\gamma)$

both the theoretical and numerical results discussed below are the outcome of a big effort of the RM123+SOTON collaboration started in 2015

the problem is much more involved w.r.t. the case of the spectrum because of the appearance of infrared divergences that cancel in physical observables by summing virtual and real photon contributions

f.bloch, a.nordsieck, Phys.Rev. 52 (1937)
t.d.lee, m.nauenberg, Phys.Rev. 133 (1964)
• let’s consider the **infrared-safe observable**: at $O(\alpha)$ this is obtained by considering the real contributions with a single photon in the final state

\[ \Gamma(E) = \Gamma_0 + e^2 \lim_{L \to \infty} \{ \Gamma_V(L) + \Gamma_R(L, E) \} \]

• the finite-volume calculation of the real contribution is an issue: momenta are quantized!
• let's consider the **infrared-safe observable**: at $O(\alpha)$ this is obtained by considering the real contributions with a single photon in the final state

$$\Gamma(E) = \Gamma_0 + e^2 \lim_{L \to \infty} \{ \Gamma_V(L) + \Gamma_R(L, E) \}$$

• the finite-volume calculation of the real contribution is an issue: momenta are quantized!

• for this reason, by relying on the **universality of infrared divergences**, it is convenient to rewrite the previous formula as

$$\Gamma(E) = \Gamma_0 + e^2 \lim_{L \to \infty} \left\{ \begin{array}{c}
\Gamma_V(L) - \Gamma_{pt}^V(L) + \Gamma_{pt}^V(L) + \Gamma_{pt}^R(L, E) - \Gamma_{pt}^R(L, E) + \Gamma_R(L, E)
\end{array} \right\}$$

where $\Gamma_{pt}^{V,R}$ are evaluated in the **point-like effective theory**: these have the *same infrared behaviour* of $\Gamma_V, R$
let's consider the infrared-safe observable: at $O(\alpha)$ this is obtained by considering the real contributions with a single photon in the final state

$$\Gamma(E) = \Gamma_0 + e^2 \lim_{L \to \infty} \{ \Gamma_V(L) + \Gamma_R(L, E) \}$$

the finite-volume calculation of the real contribution is an issue: momenta are quantized!

for this reason, by relying on the universality of infrared divergences, it is convenient to rewrite the previous formula as

$$\Gamma(E) = \Gamma_0 + e^2 \lim_{L \to \infty} \Gamma_{SD}^V(L) + e^2 \lim_{m_\gamma \to 0} \left\{ \Gamma_{pt}^V(m_\gamma) + \Gamma_{pt}^R(m_\gamma, E) \right\} + e^2 \lim_{m_\gamma \to 0} \Gamma_{SD}^R(m_\gamma, E)$$

where $\Gamma_{pt}^{V,R}$ are evaluated in the point-like effective theory: these have the same infrared behaviour of $\Gamma_V, R$

in the limit of very small photon energies $\Gamma_{SD}^R(E)$ is negligible because very soft photons cannot resolve the internal structure of an hadron
• with this method, our result for

\[ \Gamma_P(E) = \Gamma_P^0 \{1 + \delta R_P(E)\}, \]

\[ \delta R_{K\pi} = \delta R_K(E_{K,max}^m) - \delta R_\pi(E_{\pi,max}^m) \]

is the following

\[ \delta R_{K\pi} = -0.0122(10)^t(2)^{tun}(8)^X(5)^L(4)^a(6)^qQED \]

= \textbf{-0.0122(16)}

• this can (remember the caveat concerning the definition of QCD) be compared with the result currently quoted by the PDG and obtained in v.cirigliano and h.neufeld, PLB 700 (2011)

\[ \delta R_{K\pi} = -0.0112(21) \]
more in detail: the point-like effective theory

- infrared divergences can be computed in the so called point-like effective theory

\[ \mathcal{L}_{pt} = \phi_P^\dagger \left\{ -D_\mu^2 + m_P^2 \right\} \phi_P + f_P \left\{ 2iG_F V_{CKM} D_\mu \phi_P^\dagger \bar{\ell} \gamma^\mu \nu + \text{h.c.} \right\} , \quad D_\mu = \partial_\mu - ieA_\mu \]

- properly matched effective field theories have, by definition, the same infrared behaviour of the fundamental theory: at leading order the matching is obtained by using \( \Gamma_0 \)

\[ \Gamma_0^{pt} = \Gamma_0 = \frac{G_F^2 |V_{CKM}|^2 f_P^2}{8\pi} m_P^3 r_\ell^2 \left( 1 - r_\ell^2 \right)^2 , \quad r_\ell = \frac{m_\ell}{m_P} , \quad D_\mu \mapsto \partial_\mu \]
infrared divergences can be computed in the so called point-like effective theory

\[ \mathcal{L}_{pt} = \phi_P^\dagger \left\{ -D_\mu^2 + m_P^2 \right\} \phi_P + f_P \left\{ 2iG_F V_{CKM} D_\mu \phi_P^\dagger \bar{\ell} \gamma^\mu \nu + \text{h.c.} \right\} , \quad D_\mu = \partial_\mu - ieA_\mu \]

properly matched effective field theories have, by definition, the same infrared behaviour of the fundamental theory: at leading order the matching is obtained by using \( \Gamma_0 \)

\[ \Gamma_{pt}^0 = \Gamma_0 = \frac{G_F^2 |V_{CKM}|^2 f_P^2}{8\pi} m_P^3 r_\ell^2 \left( 1 - r_\ell^2 \right)^2 , \quad r_\ell = \frac{m_\ell}{m_P} , \quad D_\mu \mapsto \partial_\mu \]

structure-dependent terms can also be understood in the effective field theory language, e.g.

\[ O_V(x) = F_V \epsilon^{\mu\nu\rho\sigma} D_\mu \phi_P F_{\nu\rho} \bar{\ell} \gamma^\sigma \nu , \quad F_{\nu\rho} = \partial_\nu A_\rho - \partial_\rho A_\nu , \quad \text{subleading in} \quad \frac{E_\gamma}{m_\pi} \]

by exploiting the full set of constraints coming from the WIs and from the e.o.m one can rigorously show that in the expansion around vanishing photon energies both the leading (infrared divergent) and the next-to-leading terms are universal: this implies that \( O(L^{-1}) \) finite volume effects are universal (see next slide and backup)
more in detail: the steps of the calculation

- let’s look a bit more in details to the **master formula**

\[
\Gamma(E) = \Gamma_0 + e^2 \lim_{m_\gamma \to 0} \left\{ \Gamma^{pt}_V(m_\gamma) + \Gamma^{pt}_R(m_\gamma, E) \right\} + e^2 \lim_{m_\gamma \to 0} \Gamma^{SD}_R(m_\gamma, E) + e^2 \lim_{L \to \infty} \Gamma^{SD}_V(L)
\]
more in detail: the steps of the calculation

- let's look a bit more in details to the **master formula**

\[
\Gamma(E) = \Gamma_0 + e^2 \lim_{m_\gamma \to 0} \left\{ \Gamma^{pt}_V(m_\gamma) + \Gamma^{pt}_R(m_\gamma, E) \right\} + e^2 \lim_{m_\gamma \to 0} \Gamma^{SD}_R(m_\gamma, E) + e^2 \lim_{L \to \infty} \Gamma^{SD}_V(L)
\]

- concerning the point-like calculation in infinite volume, we have generalized the results obtained in the early days of quantum field theory by berman 58, kinoshita 59

RM123+SOTON, PRD 91 (2015)
more in detail: the steps of the calculation

- let's look a bit more in details to the **master formula**

\[
\Gamma(E) = \Gamma_0 + e^2 \lim_{m_\gamma \to 0} \left\{ \Gamma^p_V(m_\gamma) + \Gamma^p_R(m_\gamma, E) \right\} + e^2 \lim_{m_\gamma \to 0} \Gamma^{SD}_R(m_\gamma, E) + e^2 \lim_{L \to \infty} \Gamma^{SD}_V(L)
\]

- concerning the point-like calculation in infinite volume, we have generalized the results obtained in the early days of quantum field theory by berman 58, kinoshita 59

  **RM123+SOTON, PRD 91 (2015)**

- concerning the real SD contribution, we have used χpt results, v.cirigliano and i.rosell, PRL 99 (2007), to show (see below for non-perturbative results!)

\[
\Gamma^{SD}_R(E) < 0.002 \frac{\Gamma(E) - \Gamma_0}{e^2}, \quad E = E^{max}, \quad P = \{\pi, K\}, \quad \ell = \mu
\]
let's look a bit more in details to the master formula

\[ \Gamma(E) = \Gamma_0 + e^2 \lim_{m_\gamma \to 0} \{ \Gamma^{pt}_V(m_\gamma) + \Gamma^{pt}_R(m_\gamma, E) \} + e^2 \lim_{m_\gamma \to 0} \Gamma^{SD}_R(m_\gamma, E) + e^2 \lim_{L \to \infty} \Gamma^{SD}_V(L) \]

concerning the point-like calculation in infinite volume, we have generalized the results obtained in the early days of quantum field theory by berman 58, kinoshita 59

concerning the real SD contribution, we have used \( \chi \)-pt results, v.cirigliano and i.rosell, PRL 99 (2007), to show (see below for non-perturbative results!)

\[ \Gamma^{SD}_R(E) < 0.002 \frac{\Gamma(E) - \Gamma_0}{e^2}, \quad E = E^{max}, \quad P = \{ \pi, K \}, \quad \ell = \mu \]

concerning the point-like finite volume contribution we have calculated the universal infrared logs but also the \( O(L^{-1}) \) terms: \( \Gamma^{SD}_V(L) \) has \( O(L^{-2}) \) finite volume effects!

\[ \left( \frac{1}{L^3} \sum_k - \int \frac{d^3k}{(2\pi)^3} \right) \int \frac{dk^0}{2\pi} \frac{1}{k^\beta} \sim O \left( \frac{1}{L^{4-\beta}} \right) \]
we have performed the lattice calculation by using the previously mentioned RM123 method, i.e. by expanding the lattice path-integral with respect to $\alpha$ and the up-down quark mass difference

by using this method we managed to obtain excellent numerical signals for the correlators corresponding to the diagrams shown in the figure and for the associated counter-terms

we have computed non-perturbatively the required renormalization constants in the RI'-MOM scheme and matched them perturbatively with the so-called $W$-scheme (a.sirlin, NPB 196 (1982); e.braaten and c.s.li PRD 42 (1990)) in which $G_F$ is defined
we have performed the lattice calculation by using the previously mentioned **RM123 method**, i.e. by expanding the lattice path-integral with respect to $\alpha$ and the up-down quark mass difference

by using this method we managed to obtain **excellent numerical signals** for the correlators corresponding to the diagrams shown in the figure and for the associated counter-terms

we have computed non-perturbatively the required renormalization constants in the RI$'$-MOM scheme and matched them perturbatively with the so-called $W$-scheme (a.sirlin, NPB 196 (1982); e.braaten and c.s.li PRD 42 (1990)) in which $G_F$ is defined

we have not computed the contributions corresponding to **charged sea-quarks**; this is the so called **electroquenched approximation**: although we have **estimated the associated uncertainty by using $\chi$pt**, there is certainly room for improvement here...
• by defining
\[
\Gamma_P(E) = \Gamma_P^0 \{1 + \delta R_P(E)\},
\]

• our result are
\[
\delta R_K(E_K^{\text{max}}) = 0.0024(10)
\]
\[
\delta R_\pi(E_\pi^{\text{max}}) = 0.0153(19)
\]

• this can (remember the caveat concerning the definition of QCD) be compared with the result currently quoted by the PDG
\[
\delta R_K(E_K^{\text{max}}) = 0.0064(24)
\]
\[
\delta R_\pi(E_\pi^{\text{max}}) = 0.0176(21)
\]
• at $O(\alpha)$ the systematics associated with the quenching of the zero modes can be understood, for example

$$
H^{\mu\alpha}(k) = \int d^4 x e^{i k x} \langle 0| j^\mu(x) j^\alpha_W(0)|P(p)\rangle, \quad L^{\mu\alpha}(k) = \bar{\nu}_\ell \gamma^\alpha \frac{1}{i (\not{p}_\ell + k) + m_\ell} \gamma^\mu u_\ell
$$

$$
= \int \frac{1}{a} \frac{dk^0}{2\pi} \frac{1}{L^3} \sum_{k_0} \frac{1 - \delta_{k_0, 0}}{k^2} H^{\mu\alpha}(k) L^{\mu\alpha}(k),
$$
at $O(\alpha)$ the systematics associated with the quenching of the zero modes can be understood, for example

$$H^{\mu\alpha}(k) = \int d^4 x e^{ikx} T\langle 0| j^\mu_{em}(x) j^\alpha_W(0)| P(p) \rangle , \quad L^{\mu\alpha}(k) = \bar{v}_\ell \gamma^\alpha \frac{1}{i(p_\ell + k) + m_\ell} \gamma^\mu u_\ell$$

the ultraviolet behaviour of this object can be understood by taking

$$j^\mu_{em}(x) j^\alpha_W(0) \sim \frac{O^{\mu\alpha}(0)}{x^3} , \quad H^{\mu\alpha}(k) \sim \frac{1}{k}$$
at $O(\alpha)$ the systematics associated with the quenching of the zero modes can be understood, for example

\[
H^{\mu\alpha}(k) = \int d^4 x \, e^{i k x} \langle 0 | j^\mu_{em}(x) j^\alpha_W(0) | P(p) \rangle, \\
L^{\mu\alpha}(k) = \bar{\nu}_\ell \gamma^\alpha \frac{1}{i(p_\ell + k) + m_\ell} \gamma^\mu \nu_\ell
\]

the ultraviolet behaviour of this object can be understood by taking

\[
j_{em}(x) j^\alpha_W(0) \sim \frac{O^{\mu\alpha}(0)}{x^3}, \quad H^{\mu\alpha}(k) \sim \frac{1}{k}, \quad \sim \int \frac{1}{a} \frac{d k^0}{2\pi} \frac{1}{L^3} \sum_k \frac{1 - \delta_{k,0}}{k^4}
\]

in the local theory the diagram has a logarithmic divergence (absent with a propagating $W$) that renormalizes $G_F$; the effect of the zero-modes subtraction is a term

\[
\frac{1}{L^3} \int \frac{1}{a} \frac{d k^0}{(k^0)^4} \sim \frac{a^3}{L^3}
\]

no new ultraviolet divergences but tricky interplay between cutoff and finite volume effects!
relators described in Ref. [6]. Their numerical determination is illustrated briefly in Refs. [25, 26] and in the supplemental material. The subtraction using Eqs. (11-12), are shown in Fig. 6. The “universal” FVEs are computed for a point-like charged meson. The subtraction leaves a contribution that is independent of the structure they can be viewed, i.e. all the terms up to order $\mathcal{O}(a^2)$.

The factor $2\ln(M_{\pi}/\mu)$ cancels the structure-independent FVEs. The point-like contribution is that the SD FVEs start only at order $\mathcal{O}(a^2)$.

In infinite-volume limits we obtain

$$R_{\text{phys}}(K_\pi) = 0.0122 (10)^{\text{stat}} (2)^{\text{input}} (8)^{\text{chir}} (5)^{\text{FVE}} (4)^{\text{disc}} (6)^{\text{qQED}} = 0.0122 (16),$$

where

$$\frac{\delta R_{\pi}}{R_{\text{phys}}} = \frac{\delta R_{\pi}}{R_{\text{phys}}} = \frac{\delta R_{\pi}}{R_{\text{phys}}} = 0.03, \quad \frac{\delta R_{\pi}}{R_{\text{phys}}} = 0.05.$$
I now move to the discussion of the non-perturbative lattice calculation of the radiative leptonic decay rates for the processes $P \rightarrow \ell \bar{\nu}_\ell \gamma$

as we have seen, in the region of small (soft) photon energies these are needed to properly define the measurable infrared–safe purely leptonic decay rates $P \rightarrow \ell \bar{\nu}_\ell (\gamma)$

in the region of experimentally detectable (hard) photon energies these represent important probes of the internal structure of mesons

in the case of light pseudoscalar mesons one can rely on chiral perturbation theory but the low–energy constants that enter these calculations are model dependent

in the case of heavy–light mesons nothing is known from first-principles about these quantities

the RM123+SOTON collaboration:

g.martinelli, University of Rome La Sapienza
f.mazzetti, University of Rome La Sapienza
m.di carlo, University of Rome La Sapienza
g.m.de divitiis, University of Rome Tor Vergata
a.desiderio, University of Rome Tor Vergata
r.frezzotti, University of Rome Tor Vergata
m.garofalo, INFN of Rome Tor Vergata
d.giusti, University of Roma Tre
v.lubicz, University of Roma Tre
f.sanfilippo, INFN of Roma Tre
s.simula, INFN of Roma Tre
c.t.sachrajda, University of Southampton
• the **non-perturbative information** needed to compute the radiative decay-rates is encoded into the decay constant of the meson and into **two form-factors**

\[
\varepsilon^r_\mu(k) \int d^4 y \ e^{i k \cdot y} \ T \langle 0 | j_{W}^\alpha(0) j_{\text{em}}^\mu(y) | P(p) \rangle = \\
\varepsilon^r_\mu(k) \left\{ -i F_V \ \frac{\varepsilon^{\mu \alpha \gamma \beta} k_{\gamma} p_{\beta}}{m_P} \right. \\
+ \left[ F_A + \frac{m_P f_P}{p \cdot k} \right] (p \cdot k \ g^{\mu \alpha} - p^\mu k^\alpha) \\
+ \left. \frac{m_P f_P}{p \cdot k} \ \frac{p^\mu p^\alpha}{m_P} \right\}
\]

• these can be expressed as functions of \( x_\gamma \) (and of \( m_P \))

\[ F_A, V (x_\gamma) , \quad 0 \leq x_\gamma = \frac{2 p \cdot k}{m_P^2} \leq 1 \]

• the infrared divergent contribution (in red) is universal: it is proportional to the amplitude with no photons \((f_P)\)
non-perturbative lattice calculation of $P \leftrightarrow \ell \bar{\nu} \ell \gamma$

- for both light and heavy mesons (the plot on the left corresponds to the $K$ while the one on the right to the $D_s$) we get the correct infrared divergence

$$R_A = F_A + \frac{2f_P}{m_P x_\gamma}, \quad R_A^{pt} = \frac{2f_P}{m_P x_\gamma},$$
in the case of light mesons (the plots correspond to the $K$) the structure-dependent form factors are very small and in agreement with chiral perturbation theory

\[ F_A^\chi = \frac{8m_P(L_9 + L_{10})}{f_P}, \quad F_V^\chi = \frac{m_P}{4\pi^2 f_P}, \quad L_9 + L_{10} \simeq 0.0017 \quad \text{(arXiv:1405.6488)} \]

remarkably we are able to cover the full kinematical range $0 \leq x_\gamma \leq 1$
• in the case of heavy mesons there is a strong enhancement of the structure-dependent form factors

• this can be understood by using the argument of d.becirevic et al PLB 681 (2009)

• in between the electromagnetic and the weak currents propagate internal states that give contributions to the form-factors that go like

\[
\frac{1}{x_\gamma + \frac{m_n^2 - m_P^2}{m_P^2}}
\]

\[
\frac{m_n^2 - m_P^2}{m_P^2} = \begin{cases} 
O(1), & P = \{\pi, K\} \\
O(m_\pi/m_P), & P = \{D, B\}
\end{cases}
\]
a.portelli LATTICE19, v.gulpers ALGT19

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Radiative leptonic decays on the lattice, showing the dependence of \( R_{\ell\nu\ell} \) on the photon energy for different meson-field insertion times, \( t_H = 0, 25, 50, 75, 100 \).}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Non-factorisable corrections \( F_{V}(K^{-}\to\ell^{-}\nu\gamma) \) and \( F_{A}(D_{s}^{+}\to\ell^{+}\nu\gamma) \) as a function of the photon energy, with results for different quark masses \( m_{q} \).}
\end{figure}

- we are not alone in the world

- the RBC/UKQCD collaboration started a project to compute radiative corrections to \( P \to \ell\bar{\nu}_{\ell}(\gamma) \) and the real-photon decay \( P \to \ell\bar{\nu}_{\ell}\gamma \), physical results will be available soon

- we are finalizing the phenomenological analysis of our data on \( P \to \ell\bar{\nu}_{\ell}\gamma \), a paper on the subject will be available very soon!
• QED radiative corrections are phenomenologically relevant for many observables and have to be taken into account, possibly with the required non-perturbative accuracy.

• In fact, if the precision is already at the percent level is useless to improve the accuracy of lattice calculations without QED.

• Including QED radiative corrections in a lattice simulation is a very hard problem because of:
  • soft divergences and, more generally, large finite volume effects.
  • Non-perturbative corrections have to be extracted from euclidean correlators.
  • It is highly non trivial to probe electrically charged states in a local and gauge invariant finite-volume formulation of the theory.
• the RM123+SOTON collaboration developed a method to calculate QED radiative corrections to $\Gamma[P \to \ell \bar{\nu} (\gamma)]$

• with this method a $\log(L)$ divergence is turned into a $1/L^2$ finite volume effect

• the RM123+SOTON collaboration provided the first non-perturbative results for the QED radiative corrections to $\Gamma[K \to \mu \bar{\nu}_\mu (\gamma)]$ and $\Gamma[\pi \to \mu \bar{\nu}_\mu (\gamma)]$

• and is going to provide soon phenomenologically relevant results for the radiative leptonic decays of $\pi$, $K$ and $D_{(s)}$ mesons

• other collaborations started their work on the subject and this will rapidly become a very active field of research
• the calculation of the **QED corrections to (radiative) leptonic decays** in the case of $B$ mesons doesn’t present any conceptual issue

• cutoff effects are the problem there but **strategies to cope with $b$-physics on the lattice exist and can be applied**

• the problem is more challenging in the case of semileptonic decays because, for generic kinematical configurations, the physical observable cannot be extracted from euclidean correlators by the leading exponential contributions

• nevertheless, the **RM123+SOTON method can be extended to the case of semileptonic decays**, we have already analyzed the problem in great detail

• the infrared divergence is again proportional to the leading order decay rate (obvious) and the $O(L^{-1})$ corrections are again universal although, as expected from Low’s theorem, their evaluation requires the knowledge of the derivatives of the form-factors $f_{\pm}(s_D)$ with respect to $s_D = (p_B - p_D)^2$
• besides being an attractive theoretical possibility, we have recently shown that QED$_C$ can be profitably used in numerical applications

• hadron masses can be computed in a fully gauge invariant and local setup with good numerical accuracy

• the RC* collaboration has developed an open-source code, openQ*D, that allows to perform full-simulations of QED+QCD with a wide variety of temporal and spatial boundary conditions

https://gitlab.com/rcstar/openQxD
backup material
• Power-law finite volume effects arise when internal states can go on-shell, e.g.,

\[ k = \frac{2\pi n + \theta}{L}, \]

\[ \Delta \mathcal{O}(p, L) = \mathcal{O}(p, L) - \mathcal{O}(p, \infty) \]

\[ = \left( \frac{1}{L^3} \sum_k - \int \frac{d^3 k}{(2\pi)^3} \right) \int \frac{dk^0}{2\pi} f \mathcal{O}(p, k) \]
power-law finite volume effects

- power-law finite volume effects arise when internal states can go on-shell, e.g.

\[ k = \frac{2\pi n + \theta}{L} , \quad \alpha > 0 , \]

\[ \Delta \mathcal{O}(p, L) = \mathcal{O}(p, L) - \mathcal{O}(p, \infty) \]

\[
= \left( \frac{1}{L^3} \sum_k - \int \frac{d^3k}{(2\pi)^3} \right) \int \frac{dk^0}{2\pi} f_{\mathcal{O}}(p, k) \\
= \left( \frac{1}{L^3} \sum_k - \int \frac{d^3k}{(2\pi)^3} \right) \left\{ g_{\mathcal{O}}(p) + O(k) \right\} \left( k \cdot p \right)^\alpha
\]
power-law finite volume effects

- power-law finite volume effects arise when internal states can go on-shell, e.g.

\[ k = \frac{2\pi n + \theta}{L}, \quad \alpha > 0, \]

\[ \Delta \mathcal{O}(p, L) = \mathcal{O}(p, L) - \mathcal{O}(p, \infty) \]

\[ = \left( \frac{1}{L^3} \sum_k - \int \frac{d^3 k}{(2\pi)^3} \right) \int \frac{dk^0}{2\pi} f \mathcal{O}(p, k) \]

\[ = \left( \frac{1}{L^3} \sum_k - \int \frac{d^3 k}{(2\pi)^3} \right) \left\{ \frac{g \mathcal{O}(p) + O(k)}{(k \cdot p)^\alpha} \right\} \]

\[ = \frac{g \mathcal{O}(p) \xi(p, \theta)}{L^{3-\alpha}} + O \left( \frac{1}{L^{4-\alpha}} \right), \]
• power-law finite volume effects arise when internal states can go on-shell, e.g.

\[ k = \frac{2\pi n + \theta}{L}, \quad \alpha > 0, \]

\[ \Delta \mathcal{O}(p, L) = \mathcal{O}(p, L) - \mathcal{O}(p, \infty) \]

\[ = \left( \frac{1}{L^3} \sum_k - \int \frac{d^3 k}{(2\pi)^3} \right) \int \frac{dk^0}{2\pi} f \mathcal{O}(p, k) \]

\[ = \left( \frac{1}{L^3} \sum_k - \int \frac{d^3 k}{(2\pi)^3} \right) \left\{ \frac{g \mathcal{O}(p) + O(k)}{(k \cdot p)^\alpha} \right\} \]

\[ = \frac{g \mathcal{O}(p) \xi(p, \theta)}{L^{3-\alpha}} + O \left( \frac{1}{L^{4-\alpha}} \right), \]

\[ \xi(p, \theta) = \left\{ \sum_n - \int \frac{d^3 n}{(2\pi)^3} \right\} \frac{1}{(2\pi n \cdot p + \theta \cdot p)^\alpha} \]
the key point of our method is the universality of infrared divergences

to see how this works, let’s consider the contribution to the decay rate coming from the diagrams shown in the figure

\[ \Gamma_{PV}^{P\ell} = \int \frac{d^4k}{(2\pi)^4} H^{\alpha\mu}(k, p) \frac{1}{k^2} \frac{\mathcal{L}_{\alpha\mu}(k)}{2p_\ell \cdot k + k^2} \]

infrared divergences (and power-law finite volume effects) come from the singularity at \( k^2 = 0 \) of the integrand

the tensor \( \mathcal{L}_{\alpha\mu} \) is a regular function, it contains the numerator of the lepton propagator and the appropriate normalization factors

\[ \mathcal{L}_{\alpha\mu}(k) \equiv \mathcal{L}_{\alpha\mu}(k, p_\nu, p_\ell) = O(1) \]
the hadronic tensor is a QCD quantity

\[ H^{\alpha \mu}(k, p) = i \int d^4 x \ e^{ik \cdot x} \ T \langle 0 | J_W^\alpha(0) \ j^\mu(x) | P \rangle \]

it satisfies the WIs coming from QED gauge invariance, e.g.

\[ k_\mu H^{\alpha \mu}(k, p) = -f_P \ p^\alpha , \]

and, given the kinematics of the process, it is singular only at the single-meson pole
• the hadronic tensor is a QCD quantity

\[ H^{\alpha \mu}(k, p) = i \int d^4 x \ e^{i k \cdot x} \ T\langle 0 | J_\mu^\alpha W(0) j^\mu(x) | P \rangle \]

• it satisfies the WIs coming from QED gauge invariance, e.g.

\[ k_\mu \ H^{\alpha \mu}(k, p) = - f_P \ p^\alpha, \]

• and, given the kinematics of the process, it is singular only at the single-meson pole

• the singularity can be isolated by considering the point-like tensor, built in such a way to satisfy the same WIs of the full theory

\[ H^{\alpha \mu}_{pt}(k, p) = f_P \left\{ \delta^{\alpha \mu} - \frac{(p + k)^\alpha (2p + k)^\mu}{2p \cdot k + k^2} \right\}, \]

\[ H^{\alpha \mu}_{SD}(k, p) = H^{\alpha \mu}(k, p) - H^{\alpha \mu}_{pt}(k, p), \quad k_\mu \ H^{\alpha \mu}_{pt}(k, p) = - f_P \ p^\alpha, \quad k_\mu \ H^{\alpha \mu}_{SD}(k, p) = 0 \]
• the hadronic tensor is a QCD quantity

\[ H^{\alpha\mu}(k, p) = i \int d^4 x e^{ik \cdot x} T\langle 0| J^\alpha_W(0) j^\mu(x) | P\rangle \]

• it satisfies the WIs coming from QED gauge invariance, e.g.

\[ k_\mu H^{\alpha\mu}(k, p) = -f_P p^\alpha, \]

• and, given the kinematics of the process, it is singular only at the single-meson pole

• the singularity can be isolated by considering the point-like tensor, built in such a way to satisfy the same WIs of the full theory

\[ H^{\alpha\mu}_{pt}(k, p) = f_p \left\{ \delta^{\alpha\mu} - \frac{(p + k)^\alpha (2p + k)^\mu}{2p \cdot k + k^2} \right\}, \]

\[ H^{\alpha\mu}_{SD}(k, p) = H^{\alpha\mu}(k, p) - H^{\alpha\mu}_{pt}(k, p), \quad k_\mu H^{\alpha\mu}_{pt}(k, p) = -f_P p^\alpha, \quad k_\mu H^{\alpha\mu}_{SD}(k, p) = 0 \]

• the structure dependent contributions are regular and, since there is no constant two-index tensor orthogonal to \( k \),

\[ H^{\alpha\mu}_{SD}(k, p) = (p \cdot k \delta^{\alpha\mu} - k^\alpha p^\mu) F_A + \epsilon^{\alpha\mu\rho\sigma} p_\rho k_\sigma F_V + \cdots = O(k) \]
• at $O(e^2)$ with massive charged particles, singularities arise only at

$$k^2 = (\pm i|k|)^2 + k^2 = 0$$

• the blobs on the right are QCD vertexes, e.g.

$$\Delta(p + k)\Gamma^\mu(p, k)\Delta(p) =$$

$$iN(p) \int d^4x d^4ye^{-ipy - ikx} T\langle 0|P(y)j^\mu(x)P^\dagger(0)|0\rangle,$$

$$\Delta(p) = N(p) \int d^4ye^{-ipy} T\langle 0|P(y)P^\dagger(0)|0\rangle,$$

$$N^{-1}(p) = |\langle P(p)|P^\dagger(0)|0\rangle|^2,$$

• gauge WIs constrain the first two terms in the expansion, e.g.

$$k_\mu \Gamma^\mu(p, k) = \Delta^{-1}(p + k) - \Delta^{-1}(p),$$

$$\Gamma^\mu(p, k) = 2p^\mu + k^\mu + O(k^2).$$
at $O(e^2)$ with massive charged particles, singularities arise only at

$$k^2 = (\pm i|k|)^2 + k^2 = 0$$

- the blobs on the right are QCD vertexes, e.g.

$$\Delta(p + k)\Gamma^\mu(p, k)\Delta(p) =$$

$$iN(p) \int d^4x d^4y e^{-ipy - ikx} T\langle 0| P(y)j^\mu(x)P^\dagger(0)|0 \rangle ,$$

$$\Delta(p) = N(p) \int d^4y e^{-ipy} T\langle 0| P(y)P^\dagger(0)|0 \rangle ,$$

$$N^{-1}(p) = |\langle P(p)|P^\dagger(0)|0 \rangle|^2 ,$$

- gauge WIs constrain the first two terms in the expansion, e.g.

$$k_\mu \Gamma^\mu(p, k) = \Delta^{-1}(p + k) - \Delta^{-1}(p) ,$$

$$\Gamma^\mu(p, k) = 2p^\mu + k^\mu + O(k^2)$$

the first two terms in $1/L$ are universal!!

$$\left\{ \Gamma_V - \Gamma_V^{pt} \right\} (L) = \Gamma_V^{SD}(\infty) + O\left(\frac{1}{L^2}\right)$$
• once QCD has been defined, **QED radiative corrections** can be calculated directly or by expanding the lattice path-integral with respect to $\alpha \sim (m_d - m_u)/\Lambda_{QCD}$

$$O(g_s) = \frac{\langle e^{-S_{full}} O \rangle}{\langle e^{-S_{full}} \rangle} = \frac{\langle e^{-S_{QCD}} (e^{-\Delta S} O) \rangle}{\langle e^{-S_{QCD}} (e^{-\Delta S}) \rangle} = O(g_s^0) + \Delta O$$

• the building-blocks for the graphical notation, used as a device to do calculations, are the corrections to the quark propagator

$$\Delta \rightarrow \pm =$$

$$(e_f e_f)^2 \quad \quad (e_f e_f)^2 \quad \quad - [m_f - m_f^0] \quad \quad \pm [m_f^{cr} - m_0^{cr}] \quad \quad \pm$$

$$- e^2 e_f \sum_{f_1} e_{f_1} \quad \quad - e^2 \sum_{f_1} e_{f_1}^2 \quad \quad - e^2 \sum_{f_1} e_{f_1}^2 \quad \quad + e^2 \sum_{f_1 f_2} e_{f_1} e_{f_2} \quad \quad + \sum_{f_1} \pm [m_f^{cr} - m_0^{cr}] \quad \quad + \sum_{f_1} [m_{f_1} - m_{f_1}^0] \quad \quad + [g_s^2 - (g_s^0)^2] \quad \quad G \quad \quad G^m$$
• once QCD has been defined, **QED radiative corrections** can be calculated directly or by expanding the lattice path-integral with respect to $\alpha \sim (m_d - m_u)/\Lambda_{QCD}$

$$O(g_s) = \frac{\langle e^{-S_{full}} O \rangle}{\langle e^{-S_{full}} \rangle} = \frac{\langle e^{-S_{QCD}} (e^{-\Delta S} O) \rangle}{\langle e^{-S_{QCD}} (e^{-\Delta S}) \rangle} = O(g_s^0) + \Delta O$$

• vacuum polarization effects are the numerical issue with our method

\[ \Delta \rightarrow \pm \]

\[ (e_f e)^2 \rightarrow (e_f e)^2 - [m_f - m_f^0] \rightarrow \pm [m_f^{cr} - m_f^{cr}] \]

\[ -e^2 e_f \sum_{f_1} e_{f_1} \rightarrow -e^2 \sum_{f_1} e_{f_1}^2 \rightarrow -e^2 \sum_{f_1} e_{f_1}^2 \rightarrow +e^2 \sum_{f_1 f_2} e_{f_1} e_{f_2} \]

\[ + \sum_{f_1} \pm [m_{f_1}^{cr} - m_0^{cr}] \rightarrow + \sum_{f_1} [m_{f_1} - m_{f_1}^0] \rightarrow + [g_s^2 - (g_s^0)^2] \rightarrow G_{ew} G_{ew} \]
• it is always a good idea to address the issue of analytical continuation by starting from correlators, it is usually more cumbersome to locate singularities in the amplitudes

• the reason is that correlators (Schwinger’s functions) can always be Wick rotated without any problem

• euclidean reduction formulae work straightforwardly only for the lightest states, i.e. the leading exponentials appearing in the correlators, because the corresponding integrals are convergent

• problems arise when one is interested in processes corresponding to non-leading exponentials (notice that at finite L the spectrum of $H$ is discrete)

• the first step in a lattice calculation of a new observable is to understand if the leading exponentials correspond to the external states for the process of interest

• the lightest state appearing in a correlator is readily found by using the quantum numbers of the theory (in p.t. by using the quantum numbers of the full theory)

in minkowsky time:

$$C(t) = T\langle 0| \cdots \tilde{O}(t) O(0)|0\rangle$$

$$= \langle 0| \cdots e^{-it(H-i\epsilon)} O|0\rangle + \text{o.t.o.}$$

$$A(E) = 2E(p^0 - E) \int_0^\infty dt \; e^{ip^0 t} C(t) + \text{o.t.o.}$$

in euclidean time:

$$C_E(\tau) = \langle 0| \cdots e^{-\tau H} O|0\rangle + \text{o.t.o.}$$

$$A(E) = -2iE(p^0 - E) \int_0^\infty d\tau \; e^{ip^0 \tau} C_E(\tau) + \text{o.t.o.}$$
from the spectral decomposition of correlators at $O(\alpha)$ one gets expressions that are rather involved but their structure is easy to understand and somehow illuminating

\[ C(t) = e^{-tE(p)} \int \frac{d^4q}{(2\pi)^4} A^{\text{virt}}(q) \]

\[ + \int \frac{d^3q}{(2\pi)^3} A^{\text{real}}(q) e^{-t[E(p-q)+E_\gamma(q)]} \]

\[ + \cdots \]

when the spatial momentum $q$ of the photon goes to zero we have

\[ |q| \mapsto 0 \]

\[ E(p - q) + E_\gamma(q) \mapsto E(p) \]

\[ A^{\text{virt}}(q) \mapsto c^{\text{virt}} - c_{IR} \log \frac{|q|}{m} \]

\[ A^{\text{real}}(q) \mapsto c^{\text{real}} + c_{IR} \log \frac{|q|}{m} \]

for each charged particle emitting a photon one has the exponential corresponding to the charged particle itself as an external state (the virtual photon contribution) but also the exponential corresponding to the external states with the photon on-shell (the real photon contribution) since

\[ |q| + \sqrt{M^2 + |p-q|^2} \geq \sqrt{M^2 + |p|^2} \]

with an infrared regulator the blue exponentials are sub-leading and, if one is interested in the virtual contribution, there is no problem of analytical continuation.
in the case of the $O(e^2)$ QED radiative corrections to the **leptonic decays of pseudoscalar mesons**

since as we have seen

\[
|q| + \sqrt{M^2 + |p - q|^2} \geq \sqrt{M^2 + |p|^2}
\]

here there is a problem of analytical continuation! but this diagram can be factorized and the leptonic part can be computed analytically

at fixed total momentum and with an infrared regulator the pseudoscalar meson is the lightest state in QED+QCD with the given quantum numbers

therefore, **no problems of analytical continuation** arise in the self-energy diagrams and in the diagram in which the real photon is emitted from the meson!

notice that this is true **for a pion but also in the case of flavoured pseudoscalar mesons such as $K, B, D$!**
- **problems of analytical continuation do arise** in the case of **semileptonic decays** because of **electromagnetic final state interactions**

- the internal meson-lepton pair, and eventually multi-hadrons-lepton internal states, can be lighter than the external meson-lepton state

- this is a big issue, particularly in the case of $B$ decays because of the presence of many kinematically-allowed multi-hadron states
• **problems of analytical continuation do arise** in the case of semileptonic decays because of electromagnetic final state interactions

• the internal meson-lepton pair, and eventually multi-hadrons-lepton internal states, can be lighter than the external meson-lepton state

• this is a big issue, particularly in the case of $B$ decays because of the presence of many kinematically-allowed multi-hadron states

• the problem does not arise at the point (on the boundary of the allowed phase-space)

\[ s_\nu = (p_B - p_\nu)^2 = (p_D + p_\ell)^2 = (m_D + m_\ell)^2 \]

• **in this particular kinematical configuration**, by calling $s_D = (p_B - p_D)^2$, the calculation of the QED radiative corrections to the double-differential decay rate $d\Gamma/ds_D ds_\nu$ might be feasible!
• the starting point is the hadronic tensor \( p^2 = m^2_P \)

\[
H^{\mu \alpha}(k, p) = \int d^4 y \ e^{i k \cdot y} T\langle 0 | j_\alpha^\mu(0) j_\epsilon^\mu(y) | P(p) \rangle
\]

• this can be conveniently decomposed in terms of form-factors as follows

\[
H^{\mu \alpha}(k, p) = H^{\mu \alpha}_{SD}(k, p) + H^{\mu \alpha}_{pt}(k, p)
\]

\[
H^{\mu \alpha}_{SD}(k, p) = H_1 \left[ k^2 g^{\mu \alpha} - k^\mu k_\alpha \right] + H_2 \left[ (p \cdot k - k^2)k^\mu - k^2 (p - k)^\mu \right] (p - k)^\alpha
\]

\[
- i \frac{F_V}{m_P} \varepsilon^{\mu \alpha \gamma \beta} k_\gamma p_\beta + \frac{F_A}{m_P} \left[ (p \cdot k - k^2)g^{\mu \alpha} - (p - k)^\mu k_\alpha \right]
\]

\[
H^{\mu \alpha}_{pt}(k, p) = f_P \left[ g^{\mu \alpha} + \frac{(2p - k)^\mu (p - k)^\alpha}{2p \cdot k - k^2} \right]
\]

• the choice of the basis is of course not unique and, moreover, the separation of the point-like contribution can also depend upon the conventions: our definition of \( H^{\mu \alpha}_{pt}(k, p) \) is consistent with the point-like effective lagrangian and it is what we used to compute \( \Gamma^{pt}_{Rt}(E) \); notice that

\[
k_\mu H^{\mu \alpha}(k, p) = f_P p^\alpha , \quad k_\mu H^{\mu \alpha}_{pt}(k, p) = f_P p^\alpha , \quad k_\mu H^{\mu \alpha}_{SD}(k, p) = 0
\]

i.e. \( H^{\mu \alpha}_{pt}(k, p) \) satisfies the same ward identity of the full-theory tensor
• in the case of real photons, $k^2 = 0$, the previous expressions simplify as follows

$$H^{\mu\alpha}(k, p) = H^{\mu\alpha}_{SD}(k, p) + H^{\mu\alpha}_{pt}(k, p)$$

$$H^{\mu\alpha}_{SD}(k, p) = k^\mu \left\{ -H_1 k^\alpha + H_2 p \cdot k(p - k)^\alpha \right\}$$

$$- i \frac{F_V}{m_P} \varepsilon^{\mu\alpha\gamma\beta} k_\gamma p_\beta + \frac{F_A}{m_P} [p \cdot k g^{\mu\alpha} - (p - k)^\mu k^\alpha]$$

$$H^{\mu\alpha}_{pt}(k, p) = f_P \left[ g^{\mu\alpha} + \frac{(2p - k)^\mu (p - k)^\alpha}{2p \cdot k} \right]$$

• the form factors $H_1, 2$ do not enter into the physical decay rate for $P \rightarrow \ell \bar{\nu} \gamma$ and can be conveniently separated by considering the projector onto the transverse (and therefore physical) degrees of freedom of the photon that is attached to the vector current

$$n = (1, 0), \quad P^{\mu\nu}(k, n) = -g^{\mu\nu} + n^\mu n^\nu + \frac{[k^\mu - n \cdot k n^\mu] [k^\nu - n \cdot k n^\nu]}{k^2 - (n \cdot k)^2}$$
• the projector $P^{\mu\nu}(k, n)$ is such that

\[
P^{\mu\nu}(k, n)k_\nu = P^{\mu\nu}(k, n)n_\nu = 0 , \quad P^{\mu\beta}(k, n)P^\beta_k(k, n) = P^{\mu\nu}(k, n) ,
\]

\[
P^{\mu\nu}(k, n) = P^{\nu\mu}(k, n) , \quad P^{\mu\nu}(k, n) = P^{\nu\mu}(k, n) , \quad P^{00}(k, n) = P^{0i}(k, n) = 0 ,
\]

\[
P^{ij}(k, n) = \delta^{ij} - \frac{k^i k^j}{k^2}
\]

• in fact $P^{\mu\nu}(k, n)$ is nothing but the numerator of the photon propagator in the Coulomb’s gauge that forbids the propagation of unphysical degrees of freedom; we have

\[
P^{\nu\mu}(k, n) H^{\mu\alpha}_{SD}(k, p) = P^{\nu\mu}(k, n) \left\{ -i \frac{F_V}{m_P} \varepsilon^{\mu\alpha\gamma\beta} k_\gamma p_\beta + \frac{F_A}{m_P} \left[ p \cdot k g^{\mu\alpha} - (p - k)^\mu k^\alpha \right] \right\}
\]

• by introducing the polarization vectors as follows (that depend upon $n$ and $k$)

\[
\epsilon_0 = n = (1, 0) , \quad \epsilon_{1, 2} = (0, \epsilon_{1, 2}) , \quad \epsilon_3 = (0, k/|k|) ,
\]

\[
\epsilon_r \cdot \epsilon_s = g_{rs} , \quad g^{rs} \epsilon_r^\mu \epsilon_s^\nu = g^{\mu\nu}
\]
• the projector $P_{\mu\nu}(k, n)$ can be rewritten in terms of the transverse polarization vectors $\epsilon_{1,2}$ as follows

$$\sum_{r=1,2} \epsilon_{r\mu} \epsilon_{r\nu} = P_{\mu\nu}(k, n), \quad \epsilon_{r,\mu} P_{\mu\nu}(k, n) = -\epsilon_{r\nu}, \quad r = 1, 2$$

• explicit expressions for the transverse polarization vectors are given below

$$\epsilon_{1\mu}(k) = \left(0, \frac{-k_1 k_3}{|k|\sqrt{k_1^2 + k_2^2}}, \frac{-k_2 k_3}{|k|\sqrt{k_1^2 + k_2^2}}, \frac{\sqrt{k_1^2 + k_2^2}}{|k|}\right),$$

$$\epsilon_{2\mu}(k) = \left(0, \frac{k_2}{\sqrt{k_1^2 + k_2^2}}, -\frac{k_1}{\sqrt{k_1^2 + k_2^2}}, 0\right)$$
• in light of the previous discussion, one can either use the (formally) covariant expressions given above for $P^\mu\nu(k,n)$ or the explicit expressions for the transverse polarizations $\epsilon_{1,2}$ in order to isolate the physical contributions appearing into $H^{\mu\alpha}(k,p)$

• in particular, since the axial and vector part of the weak current can be computed separately, we have

$$\epsilon_{r,\mu} H^\mu_{A\alpha}(k,p) = \frac{p \cdot k \epsilon_\alpha^r - \epsilon_\gamma \cdot p k^\alpha}{m_P} \left\{ F_A + \frac{m_P f_P}{p \cdot k} \right\} + p^\alpha \epsilon_\gamma \cdot p \frac{f_P}{p \cdot k},$$

$$\epsilon_{r,\mu} H^\mu_{V\alpha}(k,p) = i \frac{F_V}{m_P} \epsilon^{\alpha\mu\gamma\beta} \epsilon_{r,\mu} k_{\gamma} p_{\beta},$$

$r = 1, 2$
• **the infrared problem** has been analyzed by many authors over the years

• electrically-charged asymptotic states are *not* eigenstates of the photon-number operator

• the perturbative expansion of decay-rates and cross-sections with respect to $\alpha$ is cumbersome because of the infinitely many degenerate states

• the **block & nordsieck approach** consists in lifting the degeneracies by introducing an infrared regulator, say $m_\gamma$, and in computing infrared-safe observables

• at any fixed order in $\alpha$, infrared-safe observables are obtained by adding the appropriate number of photons in the final states and by integrating over their energy in a finite range, say $[0, E]$

• in this framework, **infrared divergences** appear at intermediate stages of the calculations and *cancel in the sum of* the so-called **virtual and real contributions**

\[
\int 2 \text{ b.p.s} \quad \times \\
\int 3 \text{ b.p.s} \quad \times \\
(p + k)^2 + m_P^2 = 2p \cdot k + k^2 \sim 2p \cdot k,
\]

\[
\int \frac{d^4 k}{(2\pi)^4} \frac{1}{(k^2 + m_\gamma^2)(2p \cdot k)(2p\ell \cdot k)} \sim c_{IR} \log \left( \frac{m_P}{m_\gamma} \right),
\]

\[
c_{IR} \left\{ \log \left( \frac{m_P}{m_\gamma} \right) + \log \left( \frac{m_\gamma}{E} \right) \right\} = c_{IR} \log \left( \frac{m_P}{E} \right)
\]
concerning the perturbative point-like calculation in infinite volume, we have generalized the results obtained in the early
days of quantum field theory by berman 58, kinoshita 59

\[ \Gamma_{pt}(E) = e^2 \lim_{m_\gamma \to \infty} \left\{ \Gamma_{V}^{pt}(m_\gamma) + \Gamma_{R}^{pt}(m_\gamma, E) \right\} \]

\[ = \Gamma_0 \frac{\alpha_e m}{4\pi} \left\{ 3 \log \left( \frac{m_P^2}{m_W^2} \right) + \log(r_\ell^2) - 4 \log(r_E^2) + \frac{2 - 10 r_\ell^2}{1 - r_\ell^2} \log(r_\ell^2) \right. \]

\[ - 2 \frac{1 + r_\ell^2}{1 - r_\ell^2} \log(r_E^2) \log(r_\ell^2) - 4 \frac{1 + r_\ell^2}{1 - r_\ell^2} \text{Li}_2(1 - r_\ell^2) - 3 \]

\[ + \frac{3 + r_E^2 - 6 r_\ell^2 + 4 r_E (-1 + r_\ell^2)}{(1 - r_\ell^2)^2} \log(1 - r_E) + \frac{r_E (4 - r_E - 4 r_\ell^2)}{(1 - r_\ell^2)^2} \log(r_\ell^2) \]

\[ - \frac{r_E (-22 + 3 r_E + 28 r_\ell^2)}{2(1 - r_\ell^2)^2} - 4 \frac{1 + r_\ell^2}{1 - r_\ell^2} \text{Li}_2(r_E) \right\} , \]

where

\[ r_E = \frac{2E}{m_P} , \quad r_\ell = \frac{m_\ell}{m_P} . \]
notice that $\Gamma_V(L)$ and $\Gamma_V^{pt}(L)$ are ultraviolet divergent in the Fermi theory

the divergence can be reabsorbed into a renormalization of $G_F$, both in the full theory and in the point-like effective theory

we have analyzed the renormalization of the four-fermion weak operator on the lattice in details and calculated non-perturbatively the renormalization constants in the RI-MOM scheme

we have then matched the non-perturbative results to the so-called W-regularization at $O(\alpha)$ (a.sirlin, NPB 196 (1982); e.braaten and c.s.li PRD 42 (1990))

\[
\frac{1}{k^2} \mapsto \frac{1}{k^2} - \frac{1}{k^2 + m_W^2}, \quad H_W = \frac{G_F V_{CKM}}{\sqrt{2}} \left\{ 1 + \frac{\alpha}{\pi} \log \frac{m_Z}{m_W} \right\} O_1^{W-reg},
\]

\[
O_1^{W-reg} = \sum_{i=1}^{5} Z_i O_i^{latt}(a)
\]

indeed, this is the scheme conventionally used to extract $G_F$ from the muon decay

\[
\frac{1}{\tau_\mu} = \frac{G_F^2 m_\mu^5}{192 \pi^3} \left[ 1 - \frac{8 m_e}{m_\mu^2} \right] \left[ 1 + \frac{\alpha}{2 \pi} \left( \frac{25}{4} - \pi^2 \right) \right]
\]
concerning the real structure dependent contributions, the relevant hadronic quantity is

\[
\rightarrow \quad H^\alpha(k, p) = \varepsilon_\mu(k) \int d^4x \, e^{i k \cdot x} \langle 0 | j^\mu_\epsilon(x) j^\alpha_\nu(0) | P \rangle , \quad k^2 = 0
\]

that can be expressed in terms of (two if \( \varepsilon \cdot k = 0 \)) hadronic form–factors (see below).

by using the \( \chi \)pt results (v.cirigliano and i.rosell, PRL 99 (2007)) for these quantities, we have estimated the structure dependent real contribution to be, nowadays, phenomenologically irrelevant for \( P = \{\pi, K\} \) and \( \ell = \mu \)

\[
\Gamma^{SD}_R(E) = \lim_{m_\gamma \to 0} \left\{ \Gamma_R(m_\gamma, E) - \Gamma^{pt}_R(m_\gamma, E) \right\} < 0.002 \frac{\Gamma(E) - \Gamma_0}{e^2}
\]
concerning the real structure dependent contributions, the relevant hadronic quantity is

\[
H^\alpha(k, p) = \varepsilon_\mu(k) \int d^4x \exp(ikx) T\langle 0| j^\mu_{em}(x) j^\alpha_W(0)|P\rangle, \quad k^2 = 0
\]

that can be expressed in terms of (two if \(\varepsilon \cdot k = 0\)) hadronic form–factors (see below)

in the last part of the talk I will show the preliminary results of a fully non-perturbative calculation of the structure dependent real contribution: these confirm the phenomenological analysis for \(P = \{\pi, K\}\) and open the possibility of calculating \(D_{(s)} \rightarrow \ell \bar{\nu} \gamma\) and \(B \rightarrow \ell \bar{\nu} \gamma\)
• we performed an analytical calculation of $\Gamma_{pt}^V(L)$

$$\frac{\Gamma_{pt}^V(L) - \Gamma_{pt}^{\ell\ell}(L)}{\Gamma_0} = c_{IR} \log(L^2 m_P^2) + c_0 + \frac{c_1}{m_P L} + O\left(\frac{1}{L^2}\right)$$

where

$$c_{IR} = \frac{1}{8\pi^2} \left\{ \frac{(1 + r_\ell^2) \log(r_\ell^2)}{(1 - r_\ell^2)} + 1 \right\},$$

$$c_0 = \frac{1}{16\pi^2} \left\{ 2 \log\left(\frac{m_P^2}{m_W^2}\right) + \frac{(2 - 6r_\ell^2) \log(r_\ell^2) + (1 + r_\ell^2) \log^2(r_\ell^2)}{1 - r_\ell^2} - \frac{5}{2} \right\} + \frac{\zeta_C(0) - 2\zeta_C(\beta_\ell)}{2},$$

$$c_1 = -\frac{2(1 + r_\ell^2)}{1 - r_\ell^2} \zeta_B(0) + \frac{8r_\ell^2}{1 - r_\ell^4} \zeta_B(\beta_\ell)$$

and we have shown that $c_{IR}$, $c_0$ and $c_1$ are universal, i.e. they are the same in the point-like and in the full theories! this means that in $\Gamma_V^{SD}(L) = \Gamma_V(L) - \Gamma_{pt}^V(L)$ we subtract exactly, together with the infrared divergence, the leading $O(1/L)$ terms and we have $O(1/L^2)$ finite size effects

• notice: the lepton wave-function contribution, $\Gamma_{\ell\ell}^V(L)$, does not contribute to $\Gamma_{V}^{SD}(L)$
• electrically charged states can be probed by considering (Dirac’s factor)

$$\Psi_f(t, x) = \frac{e^{-iq_f \int d^3 y \Phi(y-x) \partial_k A_k(t, y)}}{\Theta(t, x)} \psi_f(t, x), \quad \partial_k \partial_k \Phi(x) = \delta^3(x)$$

• these interpolating operators are invariant under $U(1)$ local gauge transformations

$$\psi_f(x) \mapsto e^{iq_f \alpha(x)} \psi_f(x), \quad A_\mu(x) \mapsto A_\mu(x) + \partial_\mu \alpha(x),$$

$$\Theta(t, x) \mapsto e^{-iq_f \int d^3 y \Phi(y-x) \partial_k \partial_k \alpha(t, y)} \Theta(t, x) = e^{-iq_f \alpha(t, x)} \Theta(t, x)$$

• the gauge factor is not unique, for example one can consider

$$\Psi_f(t, x) = e^{-iq_f \int_{-\infty}^{x_1} dy A_1(t, y, x_2, x_3)} \psi_f(t, x),$$

• for any consistent gauge-fixing condition one can build the Dirac factor that provides the unique gauge-invariant extension of matter fields in that gauge

• notice though: interpolating operators can be non–local in space but must be localized in time!
• in the compact formulation the path-integral is well defined without gauge fixing

• by choosing an unconventional normalization for the $U(1)$ gauge field (action),

$$S = \frac{1}{g^2} \sum_{x, \mu \nu} \text{tr} \{1 - V_{\mu \nu}(x)\} + \frac{36}{2e^2} \sum_{x, \mu \nu} \{1 - U_{\mu \nu}(x)\} + \sum_{f, x} \bar{\psi}_f(x) D[U^{6q_f} V] \psi_f(x)$$

$$\nabla_\mu [U^{6q_f} V] \psi_f(x) = U^{6q_f}_\mu(x) V_\mu(x) \psi_f(x + \mu) - \psi_f(x), \quad U_\mu(x) = 1 + \frac{i}{6} A_\mu(x) + \cdots$$

• Dirac's interpolating operators can then be implemented as analytical functions of the link variables, e.g.

$$\Psi_f(x) = \prod_{s = -x_k}^{-1} U^{3q_f}_k(x + s k) \psi_f(x) \prod_{s = 0}^{L - x_k - 1} U^{3q_f}_k(x + s k)$$

• the mass of, say, the charged kaon can be extracted from the fully gauge invariant correlator

$$\sum_{\mathbf{a}} \langle \bar{S} \gamma_5 U(t, \mathbf{a}) \bar{U} \gamma_5 S(0) \rangle = \frac{Z}{2M_{K^+}(L)} e^{-M_{K^+}(L)t} + O\left[e^{-\Delta(L)t}\right]$$
the numerical results presented in this talk have been obtained by using the gauge configurations generated and made publicly available by the ETM collaboration.

- after the inclusion of QED radiative corrections with the RM123 method, these have \( n_f = 1 + 1 + 1 + 1 \) dynamical flavours

- 3 different lattice spacings with \( a \geq 0.0619(18) \) fm

- several sea quark masses and volumes with \( m_\pi \geq 223(6) \) MeV and \( m_\pi L \leq 5.8 \)

<table>
<thead>
<tr>
<th>ensemble</th>
<th>( \beta )</th>
<th>( V/a^4 )</th>
<th>( N_{\text{cfg}} )</th>
<th>( a_{\text{sea}} = a_{\text{ud}} )</th>
<th>( a_{\mu_{\pi}} )</th>
<th>( a_{\mu_{\delta}} )</th>
<th>( a_{\mu_{s}} )</th>
<th>( M_\pi (\text{MeV}) )</th>
<th>( M_K (\text{MeV}) )</th>
<th>( M_\pi L )</th>
</tr>
</thead>
<tbody>
<tr>
<td>A40.40</td>
<td>1.90</td>
<td>( 40^3 \times 80 )</td>
<td>100</td>
<td>0.0040</td>
<td>0.15</td>
<td>0.19</td>
<td>0.02363</td>
<td>317 (12)</td>
<td>576 (22)</td>
<td>5.7</td>
</tr>
<tr>
<td>A30.32</td>
<td>32^3</td>
<td>( 32 \times 64 )</td>
<td>150</td>
<td>0.0030</td>
<td></td>
<td></td>
<td></td>
<td>275 (10)</td>
<td>568 (22)</td>
<td>3.9</td>
</tr>
<tr>
<td>A40.32</td>
<td>100</td>
<td>( 10^3 \times 48 )</td>
<td>150</td>
<td>0.0040</td>
<td></td>
<td></td>
<td></td>
<td>316 (12)</td>
<td>578 (22)</td>
<td>4.5</td>
</tr>
<tr>
<td>A50.32</td>
<td>150</td>
<td>( 24^3 \times 80 )</td>
<td>150</td>
<td>0.0050</td>
<td></td>
<td></td>
<td></td>
<td>350 (13)</td>
<td>586 (22)</td>
<td>5.0</td>
</tr>
<tr>
<td>A40.24</td>
<td>24^3</td>
<td>( 24^3 \times 48 )</td>
<td>150</td>
<td>0.0040</td>
<td></td>
<td></td>
<td></td>
<td>322 (13)</td>
<td>582 (23)</td>
<td>3.5</td>
</tr>
<tr>
<td>A60.24</td>
<td>150</td>
<td>( 20^3 \times 48 )</td>
<td>150</td>
<td>0.0060</td>
<td></td>
<td></td>
<td></td>
<td>386 (15)</td>
<td>599 (23)</td>
<td>4.2</td>
</tr>
<tr>
<td>A80.24</td>
<td>150</td>
<td>( 20^3 \times 48 )</td>
<td>150</td>
<td>0.0080</td>
<td></td>
<td></td>
<td></td>
<td>442 (17)</td>
<td>618 (14)</td>
<td>4.8</td>
</tr>
<tr>
<td>A100.24</td>
<td>150</td>
<td>( 32^3 \times 64 )</td>
<td>150</td>
<td>0.0100</td>
<td></td>
<td></td>
<td></td>
<td>495 (19)</td>
<td>639 (24)</td>
<td>5.3</td>
</tr>
<tr>
<td>A40.20</td>
<td>20^3</td>
<td>( 10^3 \times 48 )</td>
<td>150</td>
<td>0.0040</td>
<td></td>
<td></td>
<td></td>
<td>330 (13)</td>
<td>586 (23)</td>
<td>3.0</td>
</tr>
<tr>
<td>B25.32</td>
<td>1.95</td>
<td>( 32^3 \times 64 )</td>
<td>150</td>
<td>0.0025</td>
<td>0.135</td>
<td>0.170</td>
<td>0.02094</td>
<td>259 (9)</td>
<td>546 (19)</td>
<td>3.4</td>
</tr>
<tr>
<td>B35.32</td>
<td>150</td>
<td>( 10^3 \times 48 )</td>
<td>150</td>
<td>0.0035</td>
<td></td>
<td></td>
<td></td>
<td>302 (10)</td>
<td>555 (19)</td>
<td>4.0</td>
</tr>
<tr>
<td>B55.32</td>
<td>150</td>
<td>( 24^3 \times 64 )</td>
<td>150</td>
<td>0.0055</td>
<td></td>
<td></td>
<td></td>
<td>375 (13)</td>
<td>578 (20)</td>
<td>5.0</td>
</tr>
<tr>
<td>B75.32</td>
<td>80</td>
<td>( 32^3 \times 64 )</td>
<td>150</td>
<td>0.0075</td>
<td></td>
<td></td>
<td></td>
<td>436 (15)</td>
<td>599 (21)</td>
<td>5.8</td>
</tr>
<tr>
<td>B85.24</td>
<td>24^3</td>
<td>( 24^3 \times 48 )</td>
<td>150</td>
<td>0.0085</td>
<td></td>
<td></td>
<td></td>
<td>468 (16)</td>
<td>613 (21)</td>
<td>4.6</td>
</tr>
<tr>
<td>D15.48</td>
<td>2.10</td>
<td>( 48^3 \times 96 )</td>
<td>100</td>
<td>0.0015</td>
<td>0.1200</td>
<td>0.1385</td>
<td>0.01612</td>
<td>223 (6)</td>
<td>529 (14)</td>
<td>3.4</td>
</tr>
<tr>
<td>D20.48</td>
<td>100</td>
<td>( 10^3 \times 48 )</td>
<td>100</td>
<td>0.0020</td>
<td></td>
<td></td>
<td></td>
<td>256 (7)</td>
<td>535 (14)</td>
<td>3.9</td>
</tr>
<tr>
<td>D30.48</td>
<td>100</td>
<td>( 20^3 \times 48 )</td>
<td>100</td>
<td>0.0030</td>
<td></td>
<td></td>
<td></td>
<td>312 (8)</td>
<td>550 (14)</td>
<td>4.7</td>
</tr>
</tbody>
</table>