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Outline

• Tree semileptonic decay — parametrisation

• Rare semileptonic decay — howto

• Radiative decay — new

• Leptonic decay — disconnected



Form factors

• initial and final states �   with momenta  �

• current can be elm, weak, non-local, …

• can be single or multiple hadrons, e.g. �  

• states can be stable or unstable in QCD, e.g. �

• form factors parametrise hadronic matrix elements 

Pi, f pi, f

⟨Pi, f | = ⟨0 | , ⟨π | , ⟨ππ | , . . .
⟨Pi, f | = ⟨ρ | , ⟨K* | , . . .

hPf (pf )|O|Pi(pi)i|QCD+QED
<latexit sha1_base64="V6qwvBeZeDpEB23XBveExuseijI="></latexit>



Form factors
• For CKM: 

• For finding the unknown: 
Flavour anomalies, light-by-light  
scattering, non-SM matrix elements, …

• For understanding structure: 
Parton-picture, momentum distribution, sea/valence effects, …

Form factors are of crucial interest:

VCKM =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A

illustrations from 
Laurent’s Les Houches  
Lecture arXiv:1104.5484

lepton

semilept

mi

�exp.
???
= VCKM(WEAK)(EM)(STRONG)



A form factor calculation
Generate ensembles (or use existing ones):

• good coverage of parameters: �  
we require continuum- and infinite-volume extrapolations 

note that �  with implications for accessible kinematics 

• well tuned:�  physical  
(not yet) possible in practice, requiring extrapolations or help  
from effective theory 

• maybe include QED/strong IB 
 
 
 

L, a

⃗p =
2π
L

⃗n

ml, mc , mb, …



Assumptions
In QCD-only simulations we assume factorisation of SM: 

Strong contribution given in terms of hadronic form factors (lattice)

In particular EM:
Note that O(𝛼EM) ≈ 1% — so OK as long as we keep it in mind

Weak & EM & strong treated separately — although in real world  
all three SM sectors talk to each other

�exp.
???
= VCKM(WEAK)(EM)(STRONG)



Challenges

finite lattice spacing 
• hard to discretise b-quarks 

(slowly getting there but need  
to play and control tricks like  
effective theory, improve- 
ment, extrapolation in mh,…,  
which are not needed for  
light quarks)

finite lattice volume
• physical pion mass 

‘expensive’ to reconcile with 
above bounds — we often 
dial heavier (cheaper) m𝜋 and  
then extrapolate  
(model or EFT)

a-1   <<   physics of interest   <<   L-1

finite cutoff finite box size

A multi-scale problem



Challenges
a-1   <<   physics of interest   <<   L-1

finite cutoff finite box size

lattice does best with mesons at rest  
(statistical error and cutoff effects smaller)

E.g. for heavy-light SL this is at tension with the 
suppression of the decay rate at large �q2

kinematics — e.g. semileptonic decay

q2 = (Ei − Ef )2 − ( ⃗p i − ⃗p f )2

Kinematical reach limited in lattice QCD → 
extract value of VCKM from  
simultaneous analysis of exp. and lattice data

RBC/UKQCD PRD 91, 074510 (2015)2018



Challenges
a-1   <<   physics of interest   <<   L-1

finite cutoff finite box size

RBC/UKQCD PRD 91, 074510 (2015)2018

kinematics — e.g. semileptonic decay

q2 = (Ei − Ef )2 − ( ⃗p i − ⃗p f )2

e.g. �  decay �B → πlν q2
max = (mB − mπ)2 ≈ 26.4GeV2

E.g. on �  lattice lowest Fourier modes lead to  L = 4fm

| ⃗n |2

Eπ /GeV
q2/GeV2

0 1 2 3 4
0.139 0.338 0.457 0.551 0.631
26.4 24.3 23.1 22.1 21.2

There is limited reach for small lattice momentum!  
(Chris Bouchard et al. are pushing to large momenta Bouchard@Lattice2019)

https://indico.cern.ch/event/764552/contributions/3421238/attachments/1863339/3063092/Bouchard_Lattice2019.pdf


�Bs → K

PRELIMINARY

Extrapolation of 
lattice data

�  extrapolationsa, L, ml, mh



Extrapolation of 
lattice data

�  extrapolationsa, L, ml, mh

B → π extrapolate into into kinematic 
region inaccessible by lattice data
(model/EFT/� -parametrisation)

Ideally want model-independent  
parametrisation of form factor  
with QFT constraints

z



•  � — unitarity,  indirect CP-violation in K mixing —  
                CKM ME constitutes dominant error, not  matrix element! 
~3 �  tension between inclusive and exclusive

|Vcb |

σ

“�  puzzle”Vcb

�  
an instructive example

B → D(*)lν



�  
an instructive example

B → D(*)lν

Belle 1904.08794

R(D⇤) =
B(B ! D⇤⌧⌫⌧ )

B(B ! D⇤l⌫l)
<latexit sha1_base64="e66vNqdbEbs67QRtyRpOGI2w0n4="></latexit>

Loads of speculation…..

• Tree-level decay
• Test of lepton-flavour universality
• Ratios are great
• Lepton-flavour ratios — 

           2-3 �  tension exp. vs. SMσ

https://arxiv.org/pdf/1904.08794.pdf


Experimental prospects for 
�B → D*lν

Belle II Physics Book arXiv:1808.10567

Belle BelleII (5ab-1) BelleII (50ab-1)

Year 2021 2025

Vcb excl. 3.3% 1.8% 1.4%

Vcb incl. 1.8% 1.2%

R(D) 16.5% 6% 3%

R(D*) 7.5% 3% 2%

LHCb �  predictions aims at 2.5% for �  with Upgrade II (2030ish)B → D(*) R(D*)

http://arxiv.org/abs/arXiv:1808.10567


�  
an instructive example

B → D(*)lν

Recent analysis of BaBar/Belle + theory for � :Vcb

Result seems unsettled -  
differences due to experimental  
analysis and form-factor  
parametrisation



Form factor parametrisation

The corresponding vacuum polarisation tensor is

� �Πμν
J (q) = i∫ d4x eiqx⟨0 |TJμ(x)Jν(0)† |0⟩ =

1
q2 (qμqν − q2gμν) ΠT

J (q2) +
qμqν

q2
ΠL

J(q2)

And related subtracted dispersion relations

   �                   �χL
J (q2) ≡

∂ΠL
J

∂q2
=

1
π

∞

∫
0

dt
ImΠL

J(t)
(t − q2)2

χT
J (q2) ≡

1
2

∂2ΠL
J

∂(q2)2
=

1
π

∞

∫
0

dt
ImΠT

J (t)
(t − q2)3

Consider transition �  as mediated by current �Q → q Jμ = Q̄Γq

�  can be evaluated in PT for suitable �χ q2



Form factor parametrisation
ImΠT,L

J (q2) =
1
2 ∑

X

(2π)4δ(q − pX) |⟨0 |J |X⟩ |2

e.g. � ➝X = BD*

This allows us to constrain form factor:

1
π χT

∞

∫
t+

dt
W(t) |F(t) |2

(t − q2)3
≤ 1

t± = (M ± m)2

χT
J (q2) ≡

1
2

∂2ΠL
J

∂(q2)2
=

1
π

∞

∫
0

dt
ImΠT

J (t)
(t − q2)3

h0|J |BD⇤i ! hD⇤|J |Bi
<latexit sha1_base64="9ny4G481xim3gsN/A6V5W9FsgWc=">AAACIHicdVDLTgIxFO34RHyhLt00EhNXZAANuCPowrjCRB4Jg6RTCjR0OpP2jgkBPsWNv+LGhcboTr/GDgPxET1Jk5Nzzs3tPW4guAbbfrcWFpeWV1YTa8n1jc2t7dTObk37oaKsSn3hq4ZLNBNcsipwEKwRKEY8V7C6OziL/PotU5r78hqGAWt5pCd5l1MCRmqnCo4gsicYtseX4/L5jUM0OCqWHPDnbmxEkZnZTqXtTL5o509zOCLFXP7ki2Qz9hRpNEOlnXpzOj4NPSaBCqJ1M2sH0BoRBZwKNkk6oWYBoQPSY01DJfGYbo2mB07woVE6uOsr8yTgqfp9YkQ8rYeea5Iegb7+7UXiX14zhG6xNeIyCIFJGi/qhgKDj6O2cIcrRkEMDSFUcfNXTPtEEQqm06QpYX4p/p/UcplsPpO7Ok6XyrM6EmgfHaAjlEUFVEIXqIKqiKI79ICe0LN1bz1aL9ZrHF2wZjN76Aesj0900KPT</latexit>

cross. symm. � → FB→D*

Spectral functions



Form factor parametrisation
1

π χT

∞

∫
t+

dt
W(t) |F(q2) |2

(t − q2)3
≤ 1

t± = (M ± m)2



Form factor parametrisation
1

π χT

∞

∫
t+

dt
W(t) |F(q2) |2

(t − q2)3
≤ 1

t± = (M ± m)2

t+ q2t−



Form factor parametrisation
1

π χT

∞

∫
t+

dt
W(t) |F(q2) |2

(t − q2)3
≤ 1

t± = (M ± m)2

t+ q2t−

z(q2, t0) =

p
t+ � q2 �

p
t+ � t0p

t+ � q2 +
p
t+ � t0

<latexit sha1_base64="C/Rbw4KivHdbA2BII4d/86TcV2A="></latexit>

−1

Conformal mapping

�Re(z)

�Im(z)

+1

Physical semileptonic region, 
can be chosen symmetric around 0



Form factor parametrisation
1

π χT

∞

∫
t+

dt
W(t) |F(q2) |2

(t − q2)3
≤ 1

t± = (M ± m)2

t+ q2t−

z(q2, t0) =

p
t+ � q2 �

p
t+ � t0p

t+ � q2 +
p
t+ � t0

<latexit sha1_base64="C/Rbw4KivHdbA2BII4d/86TcV2A="></latexit>

−1

Conformal mapping

�Re(z)

�Im(z)

+1

Physical semileptonic region, 
can be chosen symmetric around 0

1
2πi ∫

C

dz
z

|ϕ(z)P(z)F(z) |2 ≤ 1

Poles “absorbed”  
into �P(z)



Form factor parametrisation
�  real in physical SL �  region: 
�

Suited for polynomial expansion in �

z B → D*lν
q2 ∈ {0,10.7}GeV2 → z ∈ {−0.028,0.028}

z



Form factor parametrisation

F(t) =
1

|P(t)ϕ(t; t0) |

∞

∑
n=0

anz(t; t0)n
∞

∑
n=0

a2
n ≤ 1

Boyd, Grinstein, Lebed (BGL) PRL 74 23 1995

unitarity constraint

�  real in physical SL �  region: 
�

Suited for polynomial expansion in �

z B → D*lν
q2 ∈ {0,10.7}GeV2 → z ∈ {−0.028,0.028}

z



Form factor parametrisation

• BGL “original” 

• CLN with HQET constraints (� ) 
�  Sum rules

• BCL like BGL with fixes for finite truncation

B(*) → D(*)

O(αS,1/m)

Boyd, Grinstein, Lebed (BGL) PRL 74 23 1995

Caprini, Lellouch, Neubert (CLN) NPB 530 1998

Bourrely, Caprini, Lellouch, (BCL) PRD 82 099902 2010

F(t) =
1

|P(t)ϕ(t; t0) |

∞

∑
n=0

anz(t; t0)n
∞

∑
n=0

a2
n ≤ 1

Boyd, Grinstein, Lebed (BGL) PRL 74 23 1995

unitarity constraint

�  real in physical SL �  region: 
�

Suited for polynomial expansion in �

z B → D*lν
q2 ∈ {0,10.7}GeV2 → z ∈ {−0.028,0.028}

z



Two questions
Are there still unresolved issues with BGL/CLN/BCL? 
(Lattice simulations for �  should come out shortly and help  
shed light on the slightly messy recent past of exclusive�  results) 
 
So far only zero-recoil published FNAL/MILC PRD 89 2014, HPQCD 97 2018 
 
Results at non-zero recoil will shed light on the parametrisation puzzle  
JLQCD Kaneko@Lattice 2019, FNAL/MILC Vaquero@Lattice2019, LANL-SWME arXiv:1711.01786, 1812.07675

B → D*lν
|Vcb |

Kaneko@Lattice2019 for JLQCD

1.

Vaquero@Lattice2019 for FNAL/MILC

https://indico.cern.ch/event/764552/contributions/3421210/attachments/1863160/3062762/Lat19-Talk.pdf


Two questions
Two extrapolation philosophies are being followed:

A. First extrapolate lattice data to �  and � , to physical � , etc….  
and only then do � -fit (BGL, CLN, BCL, …)( 

B. Combine � -fit and above extrapolations in  “modified � -expansion” (HPQCD): 
 
 
 
Is it clear that it still works given conformal map, Blaschke-factor and 
outer function depend on QCD spectrum?

a = 0 L = ∞ mπ
z

z z

f(t) =
1

|P(t)ϕ(t; t0) |

∞

∑
n=0

an(a, ml, …) z(t; t0)n

2.



Quick summary of other 
CKM channels



lattice only

lattice 

Bs → K B → K

B → π B → D

Other FF calculations



Lattice results for � , �|Vub | |Vcb |



New directions

Rare Kaon decays



Rare kaon decays

K+ !+W

u, c, t

s

u u

d

K+ π+

WW

u, c, ts

u

d

u

K+ !+W

u, c, t

s

u u

d

l+

l−

loop suppressed in the SM (FCNC via
W-W or γ/Z-exchange diagrams)

hard to observe in nature deep probe 
into flavour mixing and SM/BSM

J-PARC’s KOTO and CERN’s NA62 are
measuring these decays

results expected on the time scale of 5 years

ν
ν̄

ν̄
ν

!25



Experiments

• KOTO (J-PARC)
• direct CP violation
• GIM → top dominated and  

charm suppressed, pure SD
• phase 2 aims at  

10% measurement of BR

KL ! ⇡0⌫⌫̄

!26



Experiments

• KOTO (J-PARC)
• direct CP violation
• GIM → top dominated and  

charm suppressed, pure SD
• phase 2 aims at  

10% measurement of BR

KL ! ⇡0⌫⌫̄

• NA62 (CERN)
• CP conserving 
• small LD contribution, candidate for lattice

z

K+ ! ⇡+⌫⌫̄

!26



Experiments

• KOTO (J-PARC)
• direct CP violation
• GIM → top dominated and  

charm suppressed, pure SD
• phase 2 aims at  

10% measurement of BR

KL ! ⇡0⌫⌫̄

• NA62 (CERN)
• CP conserving 
• small LD contribution, candidate for lattice

z

K+ ! ⇡+⌫⌫̄

• 1-photon exchange LD dom.
• SM prediction mainly ChPT
• lattice can predict ME and LECs
• well suited for experiment

K+ ! ⇡+l+l� Ks ! ⇡0l+l�

!26



Experiments

• KOTO (J-PARC)
• direct CP violation
• GIM → top dominated and  

charm suppressed, pure SD
• phase 2 aims at  

10% measurement of BR

KL ! ⇡0⌫⌫̄

• NA62 (CERN)
• CP conserving 
• small LD contribution, candidate for lattice

z

K+ ! ⇡+⌫⌫̄

candidates for lattice computation

K+ ! ⇡+⌫⌫̄

K+ ! ⇡+l+l� Ks ! ⇡0l+l�
• 1-photon exchange LD dom.
• SM prediction mainly ChPT
• lattice can predict ME and LECs
• well suited for experiment

K+ ! ⇡+l+l� Ks ! ⇡0l+l�

!26



2nd order weak processes

2nd order weak decay
→ 2 insertions of HW/Jμ

with dominant 1-photon contribution:K+ ! ⇡+l+l�consider

!27



2nd order weak processes

2nd order weak decay
→ 2 insertions of HW/Jμ

Aµ = (q2)

Z
d
4
xh⇡(p)|T [Jµ(0)HW (x)] |K(k)i

with dominant 1-photon contribution:K+ ! ⇡+l+l�consider

!27



2nd order weak processes

2nd order weak decay
→ 2 insertions of HW/Jμ

Aµ = (q2)

Z
d
4
xh⇡(p)|T [Jµ(0)HW (x)] |K(k)i

with dominant 1-photon contribution:K+ ! ⇡+l+l�consider

!27

This is not about precision — it’s about being able to do it!



                     form factor
Decay amplitude in terms of elm. transition form factor:

D’Ambrosio et al., JHEP 9808, 004 (1998)

Ac
µ(q

2) = �i
GF

4⇡

2 ⇥
q2(k + p)µ � (M2

K �M2
⇡)qµ

⇤
Vc(q

2/M2
K)

Vc(q
2/M2

K) = ac + bcq
2/M2

K + V ⇡⇡
c (q2/M2

K)

K+ ! ⇡+l+l�

c=+,S

!28



                     form factor
Decay amplitude in terms of elm. transition form factor:

D’Ambrosio et al., JHEP 9808, 004 (1998)

✤ the |aS| and |a+| can be extracted from branching ratios

✤ aS parameterises also the CP-violating contribution to the KL BR

✤ sign of aS unknown - could be predicted by lattice — plays crucial  
role in BR prediction for KL→π0e+e-/μ+μ-  

Ac
µ(q

2) = �i
GF

4⇡

2 ⇥
q2(k + p)µ � (M2

K �M2
⇡)qµ

⇤
Vc(q

2/M2
K)

Vc(q
2/M2

K) = ac + bcq
2/M2

K + V ⇡⇡
c (q2/M2

K)

K+ ! ⇡+l+l�

c=+,S

!28



Difficulties

!29



Difficulties

1. Spectral representation:  Euclidean space intermediate states  
    lead to artefacts that need to be controlled  

2. Renormalisation: EW operator contact terms lead to UV div. 

3. Finite volume effects: The finite-volume corrections from  
     intermediate on-shell states can be large

Isidori et al. PLBB 633 (2006) 75-83, Christ et al. PRD91 (2015), 114510 
RBC/UKQCD PRD92 (2015) 094512, PRD94 (2016) 114516, PRD93 (2016) 114517, PRL118 (2017) 252001, arXiv:1806.11520

!29



EXPLORATORY STUDY - 
Lattice setup

RBC/UKQCD exploratory study

➤ domain wall fermions (243, a~0.12fm)
➤ mπ~430MeV, mK~625MeV  

EK(k)<2Mπ → only one-𝜋 intermediate state
➤ unphysically light charm quark mass  

mc~533MeV
➤ no disconnected diagrams
➤ kaon at rest

!30



Spectral representation - 
Minkowski

Ac
µ(q

2) =

Z
d
4
xh⇡c(p)|T [Jµ(0)HW (x)] |Kc(k)i

!31



Ac
µ(q

2) =i

Z 1

0
dE

⇢(E)

2E

h⇡c(p)|Jµ(0)|E,kihE,k|HW (0)|Kc(k)i
EK(k)� E + i✏

�i

Z 1

0
dE

⇢S(E)

2E

h⇡c(p)|HW (0)|E,pihE,p|Jµ(0)|Kc(k)i
E � E⇡(p) + i✏

Spectral representation - 
Minkowski

Ac
µ(q

2) =

Z
d
4
xh⇡c(p)|T [Jµ(0)HW (x)] |Kc(k)i

!31



Ac
µ(q

2) =i

Z 1

0
dE

⇢(E)

2E

h⇡c(p)|Jµ(0)|E,kihE,k|HW (0)|Kc(k)i
EK(k)� E + i✏

�i

Z 1

0
dE

⇢S(E)

2E

h⇡c(p)|HW (0)|E,pihE,p|Jµ(0)|Kc(k)i
E � E⇡(p) + i✏

Spectral representation - 
Minkowski

strange intermediate states

non-strange intermediate states

Ac
µ(q

2) =

Z
d
4
xh⇡c(p)|T [Jµ(0)HW (x)] |Kc(k)i

!31



Ac
µ(q

2) =i

Z 1

0
dE

⇢(E)

2E

h⇡c(p)|Jµ(0)|E,kihE,k|HW (0)|Kc(k)i
EK(k)� E + i✏

�i

Z 1

0
dE

⇢S(E)

2E

h⇡c(p)|HW (0)|E,pihE,p|Jµ(0)|Kc(k)i
E � E⇡(p) + i✏

Spectral representation - 
Minkowski

complications arise when considering the amplitude  
in Euclidean space …

strange intermediate states

non-strange intermediate states

Ac
µ(q

2) =

Z
d
4
xh⇡c(p)|T [Jµ(0)HW (x)] |Kc(k)i

!31



Spectral representation - 
Euclidean

Ac
µ(q

2) =

Z
d
4
xh⇡c(p)|T [Jµ(0)HW (x)] |Kc(k)i

integrate EW operators over Ta-Tb

!32



Spectral representation - 
Euclidean

A
c
µ(Ta, Tb, q

2) =

1Z

0

dE
⇢(E)

2E

h⇡c(p)|Jµ(0)|E,kihE,k|HW (0)|Kc(k)i
EK(k)� E

⇣
1� e

(EK(k)�E)Ta

⌘

+

1Z

0

dE
⇢S(E)

2E

h⇡c(p)|HW (0)|E,pihE,p|Jµ(0)|Kc(k)i
E � E⇡(p)

⇣
1� e

�(E�E⇡(k))Tb

⌘

!33



Spectral representation - 
Euclidean

exponential in first terms on r.h.s. 
➤ 1st line: 

➤ E>EK: exponential term vanishes as Ta→∞
➤ E<EK: exponential term grows as Ta→∞, must be removed  

(possible intermediate states π, ππ, πππ)
➤ 2nd line: no problem, all intermediate states E larger Eπ

A
c
µ(Ta, Tb, q

2) =

1Z

0

dE
⇢(E)

2E

h⇡c(p)|Jµ(0)|E,kihE,k|HW (0)|Kc(k)i
EK(k)� E

⇣
1� e

(EK(k)�E)Ta

⌘

+

1Z

0

dE
⇢S(E)

2E

h⇡c(p)|HW (0)|E,pihE,p|Jµ(0)|Kc(k)i
E � E⇡(p)

⇣
1� e

�(E�E⇡(k))Tb

⌘

!33



Spectral representation - 
Euclidean

subtraction of exponentially increasing states:
➤ π: either get amplitudes from 2pt and 3pt functions and subtract  

    or replace  
 
 
    where cS such that                                                     kills the  
    unwanted divergent contribution and does not contribute  
    to the amplitude itself

HW (x) ! H
0
W (x) = HW (x) + cS(k)s̄(x)d(x)

h⇡c(k)|H 0
W (0,k)|Kc(k)i = 0

A
c
µ(Ta, Tb, q

2) =

1Z

0

dE
⇢(E)

2E

h⇡c(p)|Jµ(0)|E,kihE,k|HW (0)|Kc(k)i
EK(k)� E

⇣
1� e

(EK(k)�E)Ta

⌘

+

1Z

0

dE
⇢S(E)

2E

h⇡c(p)|HW (0)|E,pihE,p|Jµ(0)|Kc(k)i
E � E⇡(p)

⇣
1� e

�(E�E⇡(k))Tb

⌘

!34



Spectral representation - 
Euclidean

subtraction of exponentially increasing states:
➤ ππ: disallowed by O(4) invariance but can be present as  

    discretisation effect — needs to be monitored  

hπjðpÞjs̄ðxÞdðxÞjE;pi ¼ i
E − EπðpÞ
m s − m d

hπjðpÞjVs̄d
0 ðxÞjE;pi

ð28Þ

hE;kjs̄ðxÞdðxÞjKjðkÞi¼ i
EKðkÞ−E
m s−m d

hE;kjVs̄d
0 ðxÞjKjðkÞi:

ð29Þ

Using (22) and (23) we find that the total contribution of
csðkÞs̄d to the amplitude Aj

μðq2Þ is proportional to:
Z

d3xe−iq·xhπjðpÞj½JμðtJ;xÞ;Qs̄d%jKjðkÞi ¼ 0 ð30Þ

because of the vanishing commutator between the flavor-
diagonal current Jμ and the flavor nondiagonal vector
charge Qs̄d ¼

R
d3yVs̄d

0 ðtH ; yÞ. Thus the physical ampli-
tude is invariant under the transformation in Eq. (25). This
property is independent of the value of csðkÞ [and thus
from the tuning condition (26)].

3. Removal of the two-pion divergence

In principle, a two pion intermediate state can contribute
to a rare kaon decay through the process illustrated in
Fig. 4. The matrix elements of vector and axial currents
between a single-pion and a two-pion state have the
following form factor decomposition:

hπðp1ÞjVμjπðp2Þπðp3Þi ¼ εμνρσpν
1p

ρ
2p

σ
3Fðs; t; uÞ ð31Þ

where s¼ ðp1þp2Þ2, t ¼ ðp1− p3Þ2 and u¼ ðp2−p3Þ2.
We now show that the vector current does not contribute.

Indeed, in Fig. 4 the ππ → πγ' vertex gives the following
factor:

εμνρσpνkρ
Z

d4l
ð2πÞ4

lσFðs; t; uÞ
ðl2þM2

πÞ½ðk − lÞ2þM2
π%
: ð32Þ

Because ofOð4Þ invariance the integral in (32) can only be
a linear combination of pσ and kσ which gives a vanishing
contribution once contracted with the Levi-Civita symbol.

In the lattice theory, the cubic symmetry is sufficient for
the integral (or the corresponding sum in a finite volume) to
be a vector, but with corrections which vanish as the lattice
spacing a → 0. At finite lattice spacing however, there is a
nonzero two-pion contribution from lattice artifacts.
For example, since the four-component quantity
fðk1Þ3; ðk2Þ3; ðk3Þ3; ðk4Þ3g transforms as the same four-
dimensional irreducible representation of the cubic group
as k, one can imagine terms of the form a2εμνρσpνkρðkσÞ3 to
be present. These terms will be amplified by the growing
exponential factor in (22) and will need to be considered in
the analysis. By studying the behavior with a2 and Ta we
anticipate being able to confirm our expectation that these
effects are very small. For example, in our study of ΔMK ,
the KL-KS mass difference [21,22], with an inverse lattice
spacing of 1.73 GeVand a pion mass of 330 MeV, we find
that the on-shell two-pion contributions are just a few
percent and the artifacts are of Oð3%Þ of these. Assuming
similar factors here, the exponential factor e½EKðkÞ−E%Ta in
(22) would be insufficient for practical values of Ta to make
the two-pion contribution significant until the calculations
reach subpercent precision.

4. Removal of the three-pion divergence

Contributions containing three-pion intermediate states
are generated by diagrams such as those in Fig. 5. By
comparing the measured widths of KS → ππ decays to
those ofKS;þ → πππ decays we estimate the relative phase-
space suppression to be a factor of Oð1=500Þ or smaller.
Moreover, as explained above, we already expect the on-
shell two-pion contribution to be very small (of order a few
percent) and so we anticipate that the on-shell three-pion
contribution is negligibly small.
For the diagram in Fig. 5(a) the contribution to the

growing exponential in (22) can be avoided completely by
restricting the calculations to q2≤ 4M2

π , thus cutting out a
small region of phase-space. This still allows us to
determine the amplitudes in most of the q2 range and to
compare lattice results with ChPT-based phenomenological
models and data where this is available. Although it is the
diagram in Fig. 5(a) which is dominant in phenomeno-
logical analyses based on ChPT [17], the imaginary part,
corresponding to the three-pion intermediate state, is
neglected. The exponentially growing terms from diagrams

FIG. 4. Two-pion intermediate state contribution to the rare
kaon decay amplitude. The dotted and dashed lines represent,
respectively, the kaon and pion propagators.

FIG. 5. Examples of contributions from a three-pion inter-
mediate state to rare kaon decays.
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➤ πππ: comparison of experimental width (PDG) suggests  
    - πππ to be highly suppressed wt. respect to ππ 
    - techniques similar as for ππ possible but its own  
       research topic (K→πππ)
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Results: exponential subtraction

17

0 2 4 6 8 10 12 14
Ta

�0.010

�0.005

0.000

0.005

0.010

0.015

0.020

0.025

I(4
)

0

2pt/3pt subtraction
unsubtracted

[RBC-UKQCD, PRD 94(1), 114516, 2016]

A
c
µ(Ta, Tb, q

2) =

1Z

0

dE
⇢(E)

2E

h⇡c(p)|Jµ(0)|E,kihE,k|HW (0)|Kc(k)i
EK(k)� E

⇣
1� e

(EK(k)�E)Ta

⌘

+

1Z

0

dE
⇢S(E)

2E

h⇡c(p)|HW (0)|E,pihE,p|Jµ(0)|Kc(k)i
E � E⇡(p)

⇣
1� e

�(E�E⇡(k))Tb

⌘

!36



Renormalisation

➤ Q1 and Q2 in HW renormalise multiplicatively (chiral fermions)
➤ Jμ conserved 
➤ divergences:

➤ quadratic divergence can appear as x→0  
but gauge invariance reduces it to a logarithmic one

➤ remaining logarithmic divergence cancelled via GIM  
(→ need charm quark in lattice simulation)

where the operators are generalizations of those in Eq. (8)

Qqq0
1 ¼ ðs̄iγLμdiÞðq̄jγLμq0jÞ and

Qqq0
2 ¼ ðs̄iγLμdjÞðq̄jγLμq0iÞ: ð35Þ

Since the components with q ≠ q0 do not contribute to the
matrix elements for K → πlþl− decays, one is able to
rewrite HW in Eq. (34) in the form given in Eq. (7).

B. Additional divergences as HWðxÞ
approaches Jð0 Þ

In diagrams of the “loop” class in topologies S and E (cf.,
Fig. 9 and 10), there are insertions of the form illustrated in
Fig. 6. This has been studied in some detail in [1] and we
briefly summarize the conclusions. The vector current Jν to
which the photon couples is the conserved one whereas the
vector current JLμ from the weak Hamiltonian is a local one;
the label L represents Local. By power counting the loop
integral appears to be quadratically divergent. This is
reminiscent of the evaluation of the one-loop contribution
to the vacuum polarization in QED and QCD and just as in
those cases, electromagnetic gauge invariance implies that
there is a transversality factor of qμqν − q2gμν and the order
of divergence is reduced by two to a logarithmic one. [In
momentum space with a lattice action the Ward identity
qνJν ¼ 0 becomes q̂νJν ¼ 0, with q̂ν ≡ ð2=aÞ sinðaqν=2Þ].
This structure was verified and the divergence explicitly
calculated in [1] in one-loop lattice perturbation theory for
Wilson, clover and twisted-mass fermions. The logarithmic
divergence is mass independent, and so cancels exactly in
the GIM subtraction between the diagrams with u and
c-quark loops.
The above argument can be extended straightforwardly

to higher-order diagrams in which the gluons are contained
within the u or c quark loop in Fig. 6. The emission of one
or more gluons from the u or c propagators in the loop to be
absorbed by a quark or gluon propagator which is external
to the loop reduces the order of divergence, again leading to
a convergent loop integration as JνðxÞ approaches HW . The
remaining divergences are those which are associated with
the renormalization of HW .

We have seen that as a result of gauge invariance and the
GIM mechanism in the four-flavor theory there are no
additional UV divergences in

R
d4xhπjT½Jð0ÞHWðxÞ&jKi

coming from the short distance region x≃ 0. In the three-
flavor theory, gauge invariance still protects the correlation
function from quadratic divergences, but then there remains
a logarithmic term which can be removed using non-
perturbative renormalization techniques [25].

VI. CONCLUSIONS

Precision flavor physics will continue to be a central tool
in searches for new physics and in guiding and constraining
the construction of theories beyond the standard model.
Lattice QCD simulations play an important role in quanti-
fying the nonperturbative hadronic effects in weak proc-
esses. We must therefore continue to both improve the
precision of the determination of standard quantities (such
as leptonic decay constants, semileptonic form factors,
neutral meson mixing amplitudes etc.) and to extend the
range of physical quantities which become amenable to
lattice simulations. In this paper we propose a procedure for
the evaluation of the long-distance effects in the rare kaon
decay amplitudes K → πlþl−. These effects represent a
significant (and unknown) fraction of the amplitudes. In a
companion paper [2] we discuss the prospects for the
evaluation of long distance contributions to the rare decays
K → πνν̄ which will soon be measured by the NA-62
experiment at CERN and the KOTO experiment at J-PARC.
These decays are dominated by short-distance contribu-
tions, but given that they will soon be measured, it is
interesting also to determine the long-distance effects
which are expected to be of the order of a few percent
for Kþ decays.
In the previous sections we have explained how the

technical issues needed to perform the lattice simulations
can be resolved. Unphysical terms which grow exponen-
tially with the range of the time integration, generally
present when evaluating long-distance effects containing
intermediate states with energies which are less than those
of the external states, were shown in Sec. III C to be absent
or small. They could potentially arise from the presence of
intermediate states consisting of one, two or three pions and
we considered each of these cases in turn. Similarly, the
corresponding finite-volume corrections are small provided
that the invariant mass of the lepton-pair is smaller than
2Mπ . Ultraviolet effects were discussed in Sec. V. We
envisage using the lattice conserved electromagnetic vector
current Jμ so no renormalization of this operator is
required. In addition to the now standard renormalization
of the weak Hamiltonian HW , we need to consider the
possible additional ultraviolet divergences which may arise
when Jμ and HW approach each other. Electromagnetic
gauge invariance implies that no quadratic divergence is
present [1] and in the four-flavor theory the remaining
logarithmic divergence is canceled by the GIMmechanism.

FIG. 6. A potentially quadratically divergent insertion into the
S and E classes of diagram. Jν represents the conserved
electromagnetic current and JLμ;ij is the local vector current
ūjγμui or c̄jγμci from Q1;2.
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094512-9Γð3Þ
H ðtH ;pÞ ¼

ZπZ
†
KMH ðpÞ

4EπðpÞEKðpÞ
e−EπðpÞtπe−½EKðpÞ−EπðpÞ%tH ;

ð15Þ

with MH ðpÞ ¼ hπðpÞjHWð0ÞjKðpÞi. We also define the
3-point function of the electromagnetic current:

Γð3ÞPj

Jμ ðt; tJ;p;kÞ

¼
Z

d3xe−iq·xhϕPjðt;pÞJμðtJ;xÞϕ†
Pjð0;kÞi; ð16Þ

where P denotes the pseudoscalar meson (P ¼ π or K) and
j its charge. This correlation function has the following
asymptotic behavior for t ≫ tJ ≫ 0:

Γð3ÞPj

Jμ ðt; tJ;p;kÞ ¼
jZPj2MPj

Jμ ðp;kÞ
4EPjðpÞEPjðkÞ

e−ðt−tJÞEPj ðkÞe−tJEPj ðpÞ;

ð17Þ

where MPj

Jμ ðp;kÞ ¼ hPjðEPjðpÞ;pÞjJμð0ÞjPjðEPjðkÞ;kÞi
[note that MP0

J0 ðp;pÞ ¼ 0].

3. 4-point functions

In order to compute the amplitude (6), we define the
following unintegrated 4-point correlation function:

Γð4Þj
μ ðtH ; tJ;k;pÞ ¼

Z
d3x

Z
d3ye−iq·xhϕπjðtπ;pÞT½JμðtJ;xÞHWðtH ; yÞ%ϕ†

Kjð0;kÞi; ð18Þ

where 0 < tJ; tH < tπ . As explained in the next section, the rare kaon decay amplitudes are obtained by integrating
Γð4Þj
μ ðtH ; tJ;k;pÞ over tH and tJ (or by exploiting time translation symmetry and integrating over their difference).
We now perform the quark Wick contractions in (18) to generate the diagrams which need to be evaluated. Assuming

isospin symmetry in the quark masses, m u ¼ m d, 20 types of diagrams have to be computed for the charged correlator
and 2 additional ones are needed for the neutral correlator. We organize these diagrams in 5 classes, which are presented in
Fig. 7–11. It is convenient to define the factor

ZKπðtπ;k;pÞ ¼
ZπZ

†
K

4EπðpÞEKðkÞ
e−EπðpÞtπ ; ð19Þ

which represents the propagation of the external pseudoscalar mesons in Γð4Þj
μ ðtH ; tJ;k;pÞ. This factor does not contribute

to the rare kaon decay amplitude and we choose to define the normalized unintegrated correlator ~Γð4Þj
μ ≡ Γð4Þj

μ =ZKπ.
The decay amplitudes are obtained by integrating ~Γð4Þj

μ over tH and tJ as explained in the following subsection. We note
however, that if the times are sufficiently separated for ~Γð4Þj

μ to be dominated by single particle intermediate states, then
one has:

~Γð4Þj
μ ðtH ; tJ;k;pÞ ¼

8
>><

>>:

MH ðkÞMπj
Jμ
ðp;kÞ

2EπðkÞ
e−EKðkÞtH e−EπðkÞðtJ−tH ÞeEπðpÞtJ if 0 ≪ tH ≪ tJ

MH ðpÞMKj
Jμ
ðp;kÞ

2EKðpÞ
e−EKðkÞtJ e−EKðpÞðtH−tJÞeEπðpÞtH if tJ ≪ tH ≪ tπ:

ð20Þ

FIG. 3. Diagrams contributing to the 3-point function
Γð3Þ
H ðtH ;pÞ defined in Eq. (14). The two black circles represent

the currents in the four-quark operators Qq
1;2 defined in (8).

l denotes a light (u or d) quark propagator. The different
topologies contain the operators Qq

1 or Q
q
2 depending on whether

the initial state is a charged or neutral kaon. For example, when
the initial state is Kþ, theW and S topologies contain an insertion
of Qq

2 while the C and E topologies contain an insertion of Qq
1 .
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Renormalisation

➤ Q1 and Q2 in HW renormalise multiplicatively (chiral fermions)
➤ Jμ conserved 
➤ divergences:

➤ quadratic divergence can appear as x→0  
but gauge invariance reduces it to a logarithmic one

➤ remaining logarithmic divergence cancelled via GIM  
(→ need charm quark in lattice simulation)

where the operators are generalizations of those in Eq. (8)

Qqq0
1 ¼ ðs̄iγLμdiÞðq̄jγLμq0jÞ and
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Since the components with q ≠ q0 do not contribute to the
matrix elements for K → πlþl− decays, one is able to
rewrite HW in Eq. (34) in the form given in Eq. (7).
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In diagrams of the “loop” class in topologies S and E (cf.,
Fig. 9 and 10), there are insertions of the form illustrated in
Fig. 6. This has been studied in some detail in [1] and we
briefly summarize the conclusions. The vector current Jν to
which the photon couples is the conserved one whereas the
vector current JLμ from the weak Hamiltonian is a local one;
the label L represents Local. By power counting the loop
integral appears to be quadratically divergent. This is
reminiscent of the evaluation of the one-loop contribution
to the vacuum polarization in QED and QCD and just as in
those cases, electromagnetic gauge invariance implies that
there is a transversality factor of qμqν − q2gμν and the order
of divergence is reduced by two to a logarithmic one. [In
momentum space with a lattice action the Ward identity
qνJν ¼ 0 becomes q̂νJν ¼ 0, with q̂ν ≡ ð2=aÞ sinðaqν=2Þ].
This structure was verified and the divergence explicitly
calculated in [1] in one-loop lattice perturbation theory for
Wilson, clover and twisted-mass fermions. The logarithmic
divergence is mass independent, and so cancels exactly in
the GIM subtraction between the diagrams with u and
c-quark loops.
The above argument can be extended straightforwardly

to higher-order diagrams in which the gluons are contained
within the u or c quark loop in Fig. 6. The emission of one
or more gluons from the u or c propagators in the loop to be
absorbed by a quark or gluon propagator which is external
to the loop reduces the order of divergence, again leading to
a convergent loop integration as JνðxÞ approaches HW . The
remaining divergences are those which are associated with
the renormalization of HW .

We have seen that as a result of gauge invariance and the
GIM mechanism in the four-flavor theory there are no
additional UV divergences in
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d4xhπjT½Jð0ÞHWðxÞ&jKi

coming from the short distance region x≃ 0. In the three-
flavor theory, gauge invariance still protects the correlation
function from quadratic divergences, but then there remains
a logarithmic term which can be removed using non-
perturbative renormalization techniques [25].

VI. CONCLUSIONS

Precision flavor physics will continue to be a central tool
in searches for new physics and in guiding and constraining
the construction of theories beyond the standard model.
Lattice QCD simulations play an important role in quanti-
fying the nonperturbative hadronic effects in weak proc-
esses. We must therefore continue to both improve the
precision of the determination of standard quantities (such
as leptonic decay constants, semileptonic form factors,
neutral meson mixing amplitudes etc.) and to extend the
range of physical quantities which become amenable to
lattice simulations. In this paper we propose a procedure for
the evaluation of the long-distance effects in the rare kaon
decay amplitudes K → πlþl−. These effects represent a
significant (and unknown) fraction of the amplitudes. In a
companion paper [2] we discuss the prospects for the
evaluation of long distance contributions to the rare decays
K → πνν̄ which will soon be measured by the NA-62
experiment at CERN and the KOTO experiment at J-PARC.
These decays are dominated by short-distance contribu-
tions, but given that they will soon be measured, it is
interesting also to determine the long-distance effects
which are expected to be of the order of a few percent
for Kþ decays.
In the previous sections we have explained how the

technical issues needed to perform the lattice simulations
can be resolved. Unphysical terms which grow exponen-
tially with the range of the time integration, generally
present when evaluating long-distance effects containing
intermediate states with energies which are less than those
of the external states, were shown in Sec. III C to be absent
or small. They could potentially arise from the presence of
intermediate states consisting of one, two or three pions and
we considered each of these cases in turn. Similarly, the
corresponding finite-volume corrections are small provided
that the invariant mass of the lepton-pair is smaller than
2Mπ . Ultraviolet effects were discussed in Sec. V. We
envisage using the lattice conserved electromagnetic vector
current Jμ so no renormalization of this operator is
required. In addition to the now standard renormalization
of the weak Hamiltonian HW , we need to consider the
possible additional ultraviolet divergences which may arise
when Jμ and HW approach each other. Electromagnetic
gauge invariance implies that no quadratic divergence is
present [1] and in the four-flavor theory the remaining
logarithmic divergence is canceled by the GIMmechanism.
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S and E classes of diagram. Jν represents the conserved
electromagnetic current and JLμ;ij is the local vector current
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3-point function of the electromagnetic current:

Γð3ÞPj

Jμ ðt; tJ;p;kÞ

¼
Z
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where P denotes the pseudoscalar meson (P ¼ π or K) and
j its charge. This correlation function has the following
asymptotic behavior for t ≫ tJ ≫ 0:

Γð3ÞPj

Jμ ðt; tJ;p;kÞ ¼
jZPj2MPj

Jμ ðp;kÞ
4EPjðpÞEPjðkÞ

e−ðt−tJÞEPj ðkÞe−tJEPj ðpÞ;
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where MPj

Jμ ðp;kÞ ¼ hPjðEPjðpÞ;pÞjJμð0ÞjPjðEPjðkÞ;kÞi
[note that MP0

J0 ðp;pÞ ¼ 0].

3. 4-point functions

In order to compute the amplitude (6), we define the
following unintegrated 4-point correlation function:

Γð4Þj
μ ðtH ; tJ;k;pÞ ¼

Z
d3x

Z
d3ye−iq·xhϕπjðtπ;pÞT½JμðtJ;xÞHWðtH ; yÞ%ϕ†

Kjð0;kÞi; ð18Þ

where 0 < tJ; tH < tπ . As explained in the next section, the rare kaon decay amplitudes are obtained by integrating
Γð4Þj
μ ðtH ; tJ;k;pÞ over tH and tJ (or by exploiting time translation symmetry and integrating over their difference).
We now perform the quark Wick contractions in (18) to generate the diagrams which need to be evaluated. Assuming

isospin symmetry in the quark masses, m u ¼ m d, 20 types of diagrams have to be computed for the charged correlator
and 2 additional ones are needed for the neutral correlator. We organize these diagrams in 5 classes, which are presented in
Fig. 7–11. It is convenient to define the factor

ZKπðtπ;k;pÞ ¼
ZπZ

†
K

4EπðpÞEKðkÞ
e−EπðpÞtπ ; ð19Þ

which represents the propagation of the external pseudoscalar mesons in Γð4Þj
μ ðtH ; tJ;k;pÞ. This factor does not contribute

to the rare kaon decay amplitude and we choose to define the normalized unintegrated correlator ~Γð4Þj
μ ≡ Γð4Þj

μ =ZKπ.
The decay amplitudes are obtained by integrating ~Γð4Þj

μ over tH and tJ as explained in the following subsection. We note
however, that if the times are sufficiently separated for ~Γð4Þj

μ to be dominated by single particle intermediate states, then
one has:

~Γð4Þj
μ ðtH ; tJ;k;pÞ ¼

8
>><

>>:

MH ðkÞMπj
Jμ
ðp;kÞ

2EπðkÞ
e−EKðkÞtH e−EπðkÞðtJ−tH ÞeEπðpÞtJ if 0 ≪ tH ≪ tJ

MH ðpÞMKj
Jμ
ðp;kÞ

2EKðpÞ
e−EKðkÞtJ e−EKðpÞðtH−tJÞeEπðpÞtH if tJ ≪ tH ≪ tπ:

ð20Þ

FIG. 3. Diagrams contributing to the 3-point function
Γð3Þ
H ðtH ;pÞ defined in Eq. (14). The two black circles represent

the currents in the four-quark operators Qq
1;2 defined in (8).

l denotes a light (u or d) quark propagator. The different
topologies contain the operators Qq

1 or Q
q
2 depending on whether

the initial state is a charged or neutral kaon. For example, when
the initial state is Kþ, theW and S topologies contain an insertion
of Qq

2 while the C and E topologies contain an insertion of Qq
1 .
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Euclidean correlation 
functions
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                         Results 
exploratory study

simulations where it gives the only exponentially growing
contribution. We have demonstrated the analysis tech-
niques to remove this state cleanly with minimal systematic
errors; hence it now remains to extend our simulations to
physical masses such that the contributions of additional
exponentially growing states can be investigated.

VI. FORM FACTOR

One opportunity of lattice QCD is to test the previous
work on rare kaon decays performed using effective
theories such as SUð3Þ ChPT. One previous analysis of
the form factor [29] has led to a parametrization of the form

ViðzÞ ¼ ai þ biz þ Vππ
i ðzÞ; ð27Þ

where z ¼ q2=M2
K , and Vππ

i ðzÞ ði ¼ þ ; 0Þ is introduced to
account for ππ → γ% rescattering in K → πππ decays
arising through the diagram show in Fig. 13. The most
straightforward check is to test the relation Eq. (27) by
determining the constants ai and bi from simulation
data. The contribution of the term Vππ

i ðzÞ is significantly
smaller that the linear contribution for physical masses;
for our initial calculation we can safely neglect this
term. Experimentally the coefficients aþ and bþ have
been determined from Kþ → πþ lþ l− spectra: aþ ¼
−0.578ð16Þ and bþ ¼ −0.779ð66Þ from Kþ → πþ eþ e−

data [5] and aþ ¼ −0.575ð39Þ and bþ ¼ −0.813ð145Þ
from Kþ → πþ μþ μ− data [6].
The parametrization of Eq. (27) is expected to be a good

approximation to the Oðp6Þ ChPT form factor. It is already
well known that existing Oðp4Þ ChPT predictions [30] for
the parameter bþ do not correctly predict experimental
observations [29,31]. Analysis of this decay in ChPT up to
Oðp4Þ gives the following predictions for the coefficients
ai and bi [29],

aþ ¼ G8

GF

!
1

3
− wþ

"
; a0 ¼ −

G8

GF

!
1

3
− w0

"
; ð28 Þ

bþ ¼ − G8

GF

1

60
; b0 ¼

G8

GF

1

60
; ð29Þ

where wi are defined in terms of SUð3Þ low energy
constants (LECs) Nr

14ðμÞ, Nr
15ðμÞ and Lr

9 as

wþ ¼ 64π2

3
ðNr

14ðμÞ − Nr
15ðμÞ þ 3Lr

9ðμÞÞ þ
1

3
ln
!

μ2

MKMπ

"
;

ð30Þ

w0 ¼
32π2

3
ðNr

14ðμÞ þ Nr
15ðμÞÞ þ

1

3
ln
!

μ2

M2
K

"
ð31Þ

for some renormalization scale μ. The coefficient bþ
depends only on the LEC G8, which can be determined
using information from K → ππ decay amplitudes [32]. A
comparison with the experimental result thus demonstrates
that large corrections must be expected at Oðp6Þ. Models
that go beyond Oðp4Þ ChPT in an attempt to make
predictions for bþ have been proposed [31,33], although
such models depend heavily on vector meson masses and
thus a comparison with our lattice data is difficult.
In Fig. 14 we display the dependence of the form factor

extracted from lattice data upon z ¼ q2=M2
K . Although our

simulation takes place with highly unphysical masses of the
pion and kaon, we are able to make some insights. Since we
have only three data points at quite large spacelike
momenta, we will not be able to fully explore the ChPT
anastz in Eq. (27). Here we simply use a linear fit, which
does provide a reasonable description of our data with a
χ2=d:o:f: ¼ 0.74. The parameters we obtain, alatþ ¼ 1.6ð7Þ
and blatþ ¼ 0.7ð8Þ, are different from the parameters
obtained from phenomenological fits to experimental data,
aexpþ ¼ −0.578ð16Þ and bexpþ ¼ −0.779ð66Þ. However such
a comparison must be taken with care given the unphysical
masses used in our simulation.
The most relevant and interesting comparison we make

with experimental results at this stage is to note that the
sizes of the absolute errors on the parameters aþ and bþ

FIG. 13. The one-loop contribution to the decays K → πγ%

arising as ππ → γ% rescattering in K → πππ decays.

FIG. 14. Dependence of the form factor for the decay Kþ →
πþ lþ l− upon z ¼ q2=M2

K . Our lattice data are fit to a linear
ansatz to obtain a ¼ 1.6ð7Þ and b ¼ 0.7ð8Þ.

NORMAN H. CHRIST et al. PHYSICAL REVIEW D 94, 114516 (2016)

114516-14

RBC-UKQCD, PRD94 (2016) 114516

K+ ! ⇡+l+l�

note that results 
so far for unphysical 
pion mass!
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We are now running physical �  — details in Fionn Ó hÓgáin’s Lattice2019 talkmπ

https://indico.cern.ch/event/764552/contributions/3420571/attachments/1865927/3068238/fohLat2019.pdf


New directions

Radiative leptonic decays



Radiative leptonic decays
Kane et al. arXiv:1907.00279  
also: Martinelli@Lattice2019

• Hard photon removes helicity suppression �
• Might allow constraining B-meson distribution amplitude
• Provide constraints for new physics searches
• Works also for �  

(ml /mB)2

D, K

http://arxiv.org/pdf/1907.00279.pdf
https://indico.cern.ch/event/764552/contributions/3421233/attachments/1863167/3062770/wuhan2019.pdf


Radiative leptonic decays

Cµ⌫(t, tB) =

Z
d3x

Z
d3y e�i~p�~xhJµ(t, ~x)Jweak

⌫ (0,~0)�†
B(tB , ~y)i

<latexit sha1_base64="IJJ4X7Av0z8coRW9qPNyB1bHTFg="></latexit>
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<latexit sha1_base64="lFfqZxX2/yjuIA3ou/bRwbDw4mY="></latexit>

Integrated over finite finite extent in Euclidean �t

Kane et al. arXiv:1907.00279  
also: Martinelli@Lattice2019

• Hard photon removes helicity suppression �
• Might allow constraining B-meson distribution amplitude
• Provide constraints for new physics searches
• Works also for �  

(ml /mB)2

D, K

http://arxiv.org/pdf/1907.00279.pdf
https://indico.cern.ch/event/764552/contributions/3421233/attachments/1863167/3062770/wuhan2019.pdf


Radiative leptonic decays
Again we find exponential contaminations
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<latexit sha1_base64="TOQCE30Vxbx5L6N4FRyCiv0r41A="></latexit>

vanishes for non-zero photon momentum

vanishes since hadronic state massiveIn �I>
μν

In �I<
μν

Kane et al. arXiv:1907.00279  
also: Martinelli@Lattice2019

http://arxiv.org/pdf/1907.00279.pdf
https://indico.cern.ch/event/764552/contributions/3421233/attachments/1863167/3062770/wuhan2019.pdf


Radiative leptonic decays
Kane et al. arXiv:1907.00279  
also: Martinelli@Lattice2019

Kane et al. want to push forward and invest in  
simulations

http://arxiv.org/pdf/1907.00279.pdf
https://indico.cern.ch/event/764552/contributions/3421233/attachments/1863167/3062770/wuhan2019.pdf


New directions

Disconnected diagrams  
for meson masses/decay



Beyond %-level precision

0.2% 0.1%
K → πlν



With a sub-percent precision goal we can’t ignore isospin 
breaking effects:

α ≈
1

137
∼ O(1%)

• QED

mu − md

ΛQCD
∼ O(1%)

mu = 2.5MeV md = 5.0MeV MS(2GeV)

• strong isospin breaking

Beyond %-level precision



Isospin breaking:  
EM effects

Factorisation  Γ = Weak x EM x Strong

Many questions:
• Photon is massless and induces power-suppressed FSE 

• How to formulate QED in finite volume  

• Renormalising QCD+QED
• IR singularities (Bloch-Nordsiek) need to be dealt with
• Disconnected diagrams
• …

Duncan et al. PRL 76 1996, Hayakawa, Uno Prog.Th.Ph. 120 2008, 
Endres et al. PRL 117 2016, Lucini et al. JHEP 02 2016

BMWc Science 347 2015, Lubicz et al. PRD 95 2017, Davoudi, Savage, PRD 90 2014, Endres et al. PRL 117 2016,  
Lucini et al. JHEP 02 2016, Davoudi et al. PRD 99 2019

Carrasco et al. PRD 91 2016



IB brk. in leptonic decay 

hOi = hOi0 +
e
2

2

@
2

@e2
hOi|e=0

<latexit sha1_base64="qIU4lownoCfc/pATZu30Mis2TPc="></latexit>

hOi = hOi0 +
(md �mu)

2
hOSi

<latexit sha1_base64="W84HWxwaRhN9i5mrGUihW+epbUI="></latexit>

RM123 PRD 87 6 2013 Divitiis et al. JHEP 1204 2012

QED strong IB

Quark-disconnected contributions to masses and decay

tadpole spectacles diagram burger diagram neutr. pion. exch.

http://arxiv.org/pdf/1303.4896.pdf
http://arxiv.org/pdf/1110.6294.pdf


IB brk. in leptonic decay 

D�1(x, y) =
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†
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†
h(y)
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Exact low-modes Stochastic high-modes

Foley et al. Comm.Phys.Commun. 172 2005

Richings@Lattice 2019

Low modes:
�
�
vl(x) = ϕl(x)
wl(y) = ϕl(y)/λl

High modes:
�
�
vh(x) = D−1

deflηh(x)
wh(y) = ηh(y)

http://arxiv.org/pdf/hep-lat/0505023.pdf
https://indico.cern.ch/event/764552/contributions/3421231/attachments/1864948/3066141/Lattice2019JR.pdf


IB brk. in leptonic decay 
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Exact low-modes Stochastic high-modes

Foley et al. Comm.Phys.Commun. 172 2005
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Meson fields �  stored on disk — versatile, can be used  
for other offline contractions

Πij
Richings@Lattice 2019

http://arxiv.org/pdf/hep-lat/0505023.pdf
https://indico.cern.ch/event/764552/contributions/3421231/attachments/1864948/3066141/Lattice2019JR.pdf


Our study
• Local vector currents
• Feynman gauge
• QEDL

• Stochastic photons �Δμν(x − y) = ⟨Aμ(x)Aν(y)⟩

vol. a-1 m𝜋 N Nl

483x96 1.73GeV 140MeV 19 2000

243x64 1.78GeV 340MeV 25 600

Richings@Lattice 2019

https://indico.cern.ch/event/764552/contributions/3421231/attachments/1864948/3066141/Lattice2019JR.pdf


Disconected in pion mass-splitting
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Physical �mπ

Richings@Lattice 2019

https://indico.cern.ch/event/764552/contributions/3421231/attachments/1864948/3066141/Lattice2019JR.pdf


IB brk. in leptonic decay 
Meson fields including elm. Field ⇧ij(t;A/) =

X

~x

w†
i (x)A/vj(x)

<latexit sha1_base64="Nb1PqogBvIAvgOVcvbM/A7QtrJw="></latexit>
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IB brk. in leptonic decay 
Meson fields including elm. Field ⇧ij(t;A/) =

X

~x

w†
i (x)A/vj(x)

<latexit sha1_base64="Nb1PqogBvIAvgOVcvbM/A7QtrJw="></latexit>

Or as sequential meson field
v0i(x) =

X

x

S(x, z)iA/(z)vi(z)
<latexit sha1_base64="L+JJ6pyzsg+o7gOPMWDonVajsLk="></latexit>

⇧0
ij(t;�) =

X

~x

w†
i (x)�v

0
j(x)

<latexit sha1_base64="Xm9kN9WaCt+N+GVbMC2GrV3kgKc=">AAACLXicdVBdSxtBFJ219Su1GtvHvgwNxfgSNolipBSkLdjHFIwK2XS5O7mJozO7y8zd1LDkD/XFvyJCHxTxtX+jkw9pFT0wcOacc5m5J0qVtOT7197ci5fzC4tLy4VXK69X14rrbw5tkhmBLZGoxBxHYFHJGFskSeFxahB0pPAoOvsy9o8GaKxM4gMaptjR0I9lTwogJ4XFr0FTboS5PB2V6WOwD1rD5qfAZjpQUkuyYR4MUPDz0c9Q/gi60O+jKZ9vTpN8EJ5uuFtYLPmVesOv79b4mDRq9e1/pFrxJyixGZph8SroJiLTGJNQYG276qfUycGQFApHhSCzmII4gz62HY1Bo+3kk21H/INTuryXGHdi4hP1/4kctLVDHbmkBjqxj72x+JTXzqjX6OQyTjPCWEwf6mWKU8LH1fGuNChIDR0BYaT7KxcnYECQK7jgSrjflD9PDmuVar1S+75V2vs8q2OJvWPvWZlV2Q7bY99Yk7WYYL/YJbtmN96F99u79e6m0TlvNvOWPYD35y+5Tahu</latexit>
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IB brk. in leptonic decay 

Richings@Lattice 2019

It works but signal needs improving — we are working on it.
More on out QCD+QED efforts next week …

mπ ≈ 330MeV

https://indico.cern.ch/event/764552/contributions/3421231/attachments/1864948/3066141/Lattice2019JR.pdf


Summary

Not covered:
• Heavy-quark discretisation
• Unstable states/multi-hadron states
• Baryon form factors
• Signal-to-noise
• Excited-state contaminations
• Renormalisation
• Critical slowing down
• …

• Tree semileptonic decay — parametrisation

• Rare semileptonic decay — howto

• Radiative decay — new

• Leptonic decay — disconnected


