Three-body scattering Unitarity-based approach

Mikhail Mikhasenko

CERN, Switzerland

May 9th, 2019

Content

Unitarity constraint
 Final-state interaction
 Three-particle scattering
 Analysis of the 1⁺⁺ sector

Hadronic excitations from Lattice QCD

[Dudek et al., PRD 88, 094505 (2013)]

Hadronic excitations from Lattice QCD

[Dudek et al., PRD 88, 094505 (2013)]

Hadronic excitations from Lattice QCD

[Dudek et al., PRD 88, 094505 (2013)]

Meanwhile, the first $ho\pi$ scattering – I=2 [A.Woss, et al. JHEP 1807 (2018) 043]

Mikhail Mikhasenko (CERN)

• no width

Unitarity of the scattering amplitude

unitarity cut, poles of resonances, dispersive relations [books by Martin-Spearman, Collins, Gribov]

Example: Breit-Wigner amplitude

Features of the complex s plane:

- $s = E^2$ the total inv.mass squared
- $\bullet\,$ The Real axis $\to\,$ physical world
- $\bullet~$ The Imaginary axis \rightarrow analytical continuation

Example: Breit-Wigner amplitude

Features of the complex s plane:

- $s = E^2$ the total inv.mass squared
- $\bullet\,$ The Real axis $\to\,$ physical world
- $\bullet~$ The Imaginary axis \rightarrow analytical continuation

Example: Breit-Wigner amplitude

Features of the complex s plane:

- $s = E^2$ the total inv.mass squared
- $\bullet\,$ The Real axis $\to\,$ physical world
- $\bullet~$ The Imaginary axis $\rightarrow~$ analytical continuation

Unitarity constraints for the two-body scattering

•
$$\hat{S}^{\dagger}\hat{S} = \hat{\mathbb{I}}$$
 $\hat{S} = \hat{\mathbb{I}} + i\hat{T}$

•
$$T(s,t) = \left\langle p_1' p_2' | \hat{T} | p_1 p_2 \right\rangle$$

- Partial-wave expansion . . .
- The final form

 $\hat{T} - \hat{T}^{\dagger} = i\hat{T}^{\dagger}\hat{T}.$ $T(s,t) - T^{\dagger}(s,t) = \int \mathrm{d}\Phi_2 T^{\dagger}(s,t') T(s,t'')$

 $t_I - t_I^{\dagger} = t_I^{\dagger} \,
ho(s) \, t_I$

Example: Breit-Wigner amplitude

Features of the complex s plane:

- $s = E^2$ the total inv.mass squared
- $\bullet\,$ The Real axis $\to\,$ physical world
- $\bullet~$ The Imaginary axis \rightarrow analytical continuation

Unitarity constraints for the two-body scattering

•
$$\hat{S}^{\dagger}\hat{S} = \hat{\mathbb{I}} \quad \hat{S} = \hat{\mathbb{I}} + i\hat{T}$$

•
$$T(s,t) = \left\langle p_1' p_2' | \hat{T} | p_1 p_2 \right\rangle$$

- Partial-wave expansion . . .
- The final form

 $\hat{T} - \hat{T}^{\dagger} = i\hat{T}^{\dagger}\hat{T}.$ $T(s,t) - T^{\dagger}(s,t) = \int \mathrm{d}\Phi_2 T^{\dagger}(s,t') T(s,t'')$

 $t_I - t_I^{\dagger} = t_I^{\dagger} \rho(s) t_I$

Three-particle interaction: resonances are everywhere

Three-particle interaction: resonances are everywhere

Three-body decay Final-state interaction

isobar model, rescattering, ladder of exchanges

Three-body decay

Decay amplitude – $\left< p_1 p_2 p_3 \right| \hat{T} \left| p_0 \right>$

$$\underbrace{ \sum_{\substack{J = D_{M\lambda}^{J*}(\alpha, \beta, \gamma) F_{\lambda}(s, \sigma_1, \sigma_2) \\ \xrightarrow{\text{scalars}} F(\sigma_1, \sigma_2) } }_{\text{scalars}}$$

Dalitz plot variables

- Subchannel resonances are bands.
- Angular distribution along the bands determined by angular momenta.

Partial-waves vs Isobar representation

Isobar representation

$$\begin{split} & \checkmark \underbrace{f}_{i} = \checkmark \underbrace{f}_{i}^{2} + \checkmark \underbrace{f}_{i}^{2} + \checkmark \underbrace{f}_{i}^{2} + \overbrace{f}_{i}^{2} \\ & F(\sigma_{1}, \sigma_{2}) = F^{(1)}(\sigma_{1}, \sigma_{2}) + F^{(2)}(\sigma_{1}, \sigma_{2}) + F^{(3)}(\sigma_{1}, \sigma_{2}) \\ & = \sum_{l}^{\text{few}} \sqrt{2l + 1} P_{l}(z_{1}) a_{l}^{(1)}(\sigma_{1}) + \sum_{l}^{\text{few}} \sqrt{2l + 1} P_{l}(z_{2}) a_{l}^{(2)}(\sigma_{2}) + \sum_{l}^{\text{few}} \sqrt{2l + 1} P_{l}(z_{3}) a_{l}^{(3)}(\sigma_{3}). \end{split}$$

Simple **model**:
$$\sim = a_l^{(i)}(\sigma_1) \rightarrow c^{(i)} BW(\sigma_1) = \sim <$$
.

Partial-waves vs Isobar representation

Isobar representation

$$\begin{split} & \checkmark \underbrace{F} = \sqrt{\sum_{i=1}^{2} \frac{1}{3}} + \sqrt{\sum_{i=1}^{2} \frac{1}{3}} \\ & F(\sigma_1, \sigma_2) = F^{(1)}(\sigma_1, \sigma_2) + F^{(2)}(\sigma_1, \sigma_2) + F^{(3)}(\sigma_1, \sigma_2) \\ & = \sum_{l=1}^{\text{few}} \sqrt{2l+1} P_l(z_1) a_l^{(1)}(\sigma_1) + \sum_{l=1}^{\text{few}} \sqrt{2l+1} P_l(z_2) a_l^{(2)}(\sigma_2) + \sum_{l=1}^{\text{few}} \sqrt{2l+1} P_l(z_3) a_l^{(3)}(\sigma_3). \end{split}$$

Simple **model**:
$$\sim = a_l^{(i)}(\sigma_1) \rightarrow c^{(i)} BW(\sigma_1) = \sim <.$$

Partial-wave representation

$$\checkmark = F(\sigma_1, \sigma_2) = \sum_{l}^{\infty} \sqrt{2l+1} P_l(z_1) f_l^{(1)}(\sigma_1)$$

Why would someone do this? – theoretical constant to $f^{(1)}(\sigma_1)$ is straightforward.

Two-body unitarity and Khuri-Trieman model

Example of $f_0^{(1)}(\sigma_1)$ constraints:

$$f_{0}^{(1)}(\sigma_{1}) = \underbrace{a_{0}^{(1)}(\sigma_{1})}_{\text{same channel}} + \underbrace{\int_{-1}^{1} \frac{\mathrm{d}z_{1}}{2} \left(\sum_{l} \sqrt{2l+1} P_{l}(z_{2}) a_{l}^{(2)}(\sigma_{2}) + \sum_{l} \sqrt{2l+1} P_{l}(z_{3}) a_{l}^{(3)}(\sigma_{3}) \right)}_{\text{cross-channel(c.-c.) projections}}$$

Unitarity of $f_0^{(1)}(\sigma_1)$ – same RHC as 2 \rightarrow 2 scattering amplitude, BW₀⁽¹⁾(σ_1) \Rightarrow consistency relation the **direct term** and the **cross-channel projections** $\Rightarrow a_l^{(1)}(\sigma_1)$ obtains corrections from one seen in 2 \rightarrow 2.

Diagramatic representation

Isobar representation with $a_l^{(i)}(\sigma_i) = \hat{a}_l^{(i)}(\sigma_i) BW_l^{(i)}(\sigma_i)$

The amplitude prefactor is not constant: $a_I^{(i)}(\sigma_i) = c_I^i \mathsf{BW}_I^{(i)}(\sigma_i) + \dots$

Khuri-Treiman model in practice

Light-meson decays

- $\eta \rightarrow 3\pi$ [Sebastian et al. (2011)], [P.Guo et al., JPAC, 2015], [Albaladejo, Moussallam (2017)]
- $\eta'
 ightarrow \eta \pi \pi$ [Isken, Kubis (2017)]
- $\omega/\phi
 ightarrow 3\pi$ [Niecknig, Kubis (2012)], [Danilkin et al., JPAC (2012)]
- $a_1
 ightarrow 3\pi$ [JPAC (in progress)]

Three-particle scattering

Three-body unitarity, Ladders and Resonances, short-range factorization
[arXiv:1904.11894]

• **Particle pairing** (symmetrization or isobar decomposition), e.g. for the state of identical particles:

$$\begin{split} |p_1 p_2 p_3 \rangle &= \frac{1}{3!} \left(|p_1 \rangle \otimes |p_2 \rangle \otimes |p_3 \rangle + \mathrm{symm.} \right) \\ &= \frac{1}{3} \sum_{a=1}^3 |p_{a_1} \rangle \, \frac{|p_{a_2} \rangle \otimes |p_{a_3} \rangle + |p_{a_3} \rangle \otimes |p_{a_2} \rangle}{2} = \frac{1}{3} \sum_{a=1}^3 |a\rangle \quad - \text{isobar-spectator states}, \end{split}$$

• **Particle pairing** (symmetrization or isobar decomposition), e.g. for the state of identical particles:

$$\begin{split} p_1 p_2 p_3 \rangle &= \frac{1}{3!} \left(|p_1\rangle \otimes |p_2\rangle \otimes |p_3\rangle + \mathrm{symm.} \right) \\ &= \frac{1}{3} \sum_{a=1}^3 |p_{a_1}\rangle \, \frac{|p_{a_2}\rangle \otimes |p_{a_3}\rangle + |p_{a_3}\rangle \otimes |p_{a_2}\rangle}{2} = \frac{1}{3} \sum_{a=1}^3 |a\rangle \quad \text{-isobar-spectator states,} \end{split}$$

• Separation of **connected** and **disconnected** terms (LSZ reduction):

$$\overline{\underline{\zeta}} = \sum_{9} \left(3 \frac{\overline{\underline{\zeta}}}{\underline{\underline{\zeta}}} + \overline{\underline{\zeta}} \right)$$

• **Particle pairing** (symmetrization or isobar decomposition), e.g. for the state of identical particles:

$$\begin{split} p_1 p_2 p_3 \rangle &= \frac{1}{3!} \left(|p_1\rangle \otimes |p_2\rangle \otimes |p_3\rangle + \text{symm.} \right) \\ &= \frac{1}{3} \sum_{a=1}^3 |p_{a_1}\rangle \, \frac{|p_{a_2}\rangle \otimes |p_{a_3}\rangle + |p_{a_3}\rangle \otimes |p_{a_2}\rangle}{2} = \frac{1}{3} \sum_{a=1}^3 |a\rangle \quad -\text{ isobar-spectator states,} \end{split}$$

• Separation of **connected** and **disconnected** terms (LSZ reduction):

$$\underbrace{} = \sum_{9} \left(3 \frac{1}{2} + \overline{(x)} \right)$$

• Partial wave expansion (spin / in subchannels, spin j overall)

• **Particle pairing** (symmetrization or isobar decomposition), e.g. for the state of identical particles:

$$\begin{split} p_1 p_2 p_3 \rangle &= \frac{1}{3!} \left(|p_1\rangle \otimes |p_2\rangle \otimes |p_3\rangle + \text{symm.} \right) \\ &= \frac{1}{3} \sum_{a=1}^3 |p_{a_1}\rangle \, \frac{|p_{a_2}\rangle \otimes |p_{a_3}\rangle + |p_{a_3}\rangle \otimes |p_{a_2}\rangle}{2} = \frac{1}{3} \sum_{a=1}^3 |a\rangle \quad -\text{ isobar-spectator states,} \end{split}$$

• Separation of **connected** and **disconnected** terms (LSZ reduction):

$$\underbrace{} = \sum_{9} \left(3 \frac{1}{2} + \overline{(x)} \right)$$

- Partial wave expansion (spin / in subchannels, spin j overall)
- Amputation of the last scattering bit

$$\underbrace{\stackrel{\circ}{\frown}}_{=} = t(\sigma),$$

$$\underbrace{\overline{(\mathbf{x})}}_{=} \equiv \underbrace{\stackrel{\circ}{\frown}}_{=} \underbrace{\stackrel{\circ}{\frown}}_{=} = t(\sigma') \mathcal{T}(\sigma', s, \sigma) t(\sigma),$$

Three-body-unitarity constraint

[G.Fleming, Phys.Rev. 135 (1964)]

Three-body scattering amplitude must satisfy the integral equation

In a short form: [Aaron-Amada(TCP 2 (1977)), Mai et al.(EPJ A53 (2017)), Jackura et al.(EPJ C79 (2019))]:

$$\mathcal{T} - \mathcal{T}^{\dagger} = \mathcal{D}\tau \mathcal{T} + \mathcal{T}^{\dagger}(\tau - \tau^{\dagger})\mathcal{T} + \mathcal{T}^{\dagger}\tau^{\dagger}\mathcal{D}\tau \mathcal{T} + \mathcal{T}^{\dagger}\tau^{\dagger}\mathcal{D} + \mathcal{D},$$

Splitting amplitude by the interaction range

$$\overline{\mathcal{T}} \qquad \qquad \mathcal{T}(\sigma', s, \sigma) = \mathcal{L}(\sigma', s, \sigma) + \mathcal{R}(\sigma', s, \sigma). \qquad \qquad \overline{\mathcal{U}} + \overline{\mathcal{R}} \overline{\mathcal{I}}$$

Long-range part: exchange processes (on-shell) [Mai et al.(EPJ A53 (2017))]

• Infinite sum of the one-particle-exchange process

$$\mathcal{L} = \mathcal{B} + \mathcal{L} au \mathcal{B} = \mathcal{B} + \mathcal{B} au \mathcal{L}.$$

• $\mathcal{T} = \mathcal{L}$, $\mathcal{R} = 0$ already satisfy unitarity. Can it have resonances?

Short-range part: resonances [MM, Y.Wunderlich, et al. (JPAC) 1904.11894]

- Condition for $\mathcal{R}(\sigma', s, \sigma)$ is complicated
- However, simplified significantly if FSI is factorized from both sides:

$$\mathcal{R}\equiv\left(1+\mathcal{L} au
ight)\widehat{\mathcal{R}}\left(au\mathcal{L}+1
ight).$$

$$\left(\underbrace{-}_{-}+\underbrace{\overline{\mathcal{C}}}_{-}\underbrace{\overline{\mathcal{C}}}_{-}\right)\underbrace{\overline{\mathcal{C}}}_{-}\underbrace{\left(\underbrace{-}_{-}\underbrace{\overline{\mathcal{C}}}_{-}\underbrace{\overline{\mathcal{C}}}_{-}\underbrace{\overline{\mathcal{C}}}_{-}+\underbrace{-}_{-}\right),$$

Unitarity constraint for the resonance kernel

Familiar form of the constraint (see two-body constraint at slide 4):

$$egin{aligned} \widehat{\mathcal{R}} &- \widehat{\mathcal{R}}^{\dagger} = \widehat{\mathcal{R}}^{\dagger} (1 + au^{\dagger} \mathcal{L}^{\dagger}) \left[au - au^{\dagger} + au^{\dagger} \mathcal{D} au
ight] (1 + \mathcal{L} au) \, \widehat{\mathcal{R}} \ &= \widehat{\mathcal{R}}^{\dagger} \left[au - au^{\dagger} + au \mathcal{L} au - au^{\dagger} \mathcal{L}^{\dagger} au^{\dagger}
ight] \, \widehat{\mathcal{R}}. \end{aligned}$$

Unitarity constraint for the resonance kernel

Familiar form of the constraint (see two-body constraint at slide 4):

$$egin{aligned} \widehat{\mathcal{R}} - \widehat{\mathcal{R}}^{\dagger} &= \widehat{\mathcal{R}}^{\dagger} (1 + au^{\dagger} \mathcal{L}^{\dagger}) \left[au - au^{\dagger} + au^{\dagger} \mathcal{D} au
ight] (1 + \mathcal{L} au) \, \widehat{\mathcal{R}} \ &= \widehat{\mathcal{R}}^{\dagger} \left[au - au^{\dagger} + au \mathcal{L} au - au^{\dagger} \mathcal{L}^{\dagger} au^{\dagger}
ight] \, \widehat{\mathcal{R}}. \end{aligned}$$

• K-matrix-like solution (cf. K_{d.f.} [M.Hansen, S.Sharpe, PRD90 (2014), 116003])

$$\begin{aligned} \widehat{\mathcal{R}} &= \mathcal{X} + \mathcal{X}(\tau + \tau \mathcal{L}\tau) \,\widehat{\mathcal{R}} \\ &= \mathcal{X} + \mathcal{X}(\tau + \tau \mathcal{L}\tau) \mathcal{X} + \mathcal{X}(\tau + \tau \mathcal{L}\tau) \mathcal{X}(\tau + \tau \mathcal{L}\tau) \mathcal{X} + \dots \\ &= \mathbf{X} + \mathbf{X} +$$

Unitarity constraint for the resonance kernel

Familiar form of the constraint (see two-body constraint at slide 4):

$$egin{aligned} \widehat{\mathcal{R}} - \widehat{\mathcal{R}}^{\dagger} &= \widehat{\mathcal{R}}^{\dagger} (1 + au^{\dagger} \mathcal{L}^{\dagger}) \left[au - au^{\dagger} + au^{\dagger} \mathcal{D} au
ight] (1 + \mathcal{L} au) \, \widehat{\mathcal{R}} \ &= \widehat{\mathcal{R}}^{\dagger} \left[au - au^{\dagger} + au \mathcal{L} au - au^{\dagger} \mathcal{L}^{\dagger} au^{\dagger}
ight] \, \widehat{\mathcal{R}}. \end{aligned}$$

• K-matrix-like solution (cf. K_{d.f.} [M.Hansen, S.Sharpe, PRD90 (2014), 116003])

$$\begin{aligned} \widehat{\mathcal{R}} &= \mathcal{X} + \mathcal{X}(\tau + \tau \mathcal{L} \tau) \,\widehat{\mathcal{R}} \\ &= \mathcal{X} + \mathcal{X}(\tau + \tau \mathcal{L} \tau) \mathcal{X} + \mathcal{X}(\tau + \tau \mathcal{L} \tau) \mathcal{X}(\tau + \tau \mathcal{L} \tau) \mathcal{X} + \dots \\ &= \underbrace{\mathbf{X}} + \underbrace{\mathbf{X} \circ \mathcal{L}} \circ \underbrace{\mathcal{L}} \circ \underbrace{\mathbf{X} \circ \mathcal{L}} \circ$$

• Rescattering interpretation [MM, Y.Wunderlich, et al. (JPAC) 1904.11894]:

Factorization of the resonance kernel

• Strictly, one more (weak) assumption - Factorization

$$\begin{split} \widehat{\mathcal{R}}(\sigma', \boldsymbol{s}, \sigma) &= k_f(\sigma') \widehat{\mathcal{R}}(\boldsymbol{s}) \ k_i(\sigma) \quad \mathsf{OR} \\ &= \widehat{\mathcal{R}}_{00}(\boldsymbol{s}) + \sigma' \widehat{\mathcal{R}}_{10}(\boldsymbol{s}) + \widehat{\mathcal{R}}_{01}(\boldsymbol{s})\sigma + \sigma' \widehat{\mathcal{R}}_{11}(\boldsymbol{s})\sigma + \dots, \end{split}$$

 \Rightarrow Unitarity requirement is algebraic!

 ${\cal K}$ is the modification of the isobar lineshape due to the rescattering

Factorization of the resonance kernel

• Strictly, one more (weak) assumption - Factorization

$$\begin{aligned} \widehat{\mathcal{R}}(\sigma', \boldsymbol{s}, \sigma) &= k_f(\sigma') \widehat{\mathcal{R}}(\boldsymbol{s}) \ k_i(\sigma) \quad \text{OR} \\ &= \widehat{\mathcal{R}}_{00}(\boldsymbol{s}) + \sigma' \widehat{\mathcal{R}}_{10}(\boldsymbol{s}) + \widehat{\mathcal{R}}_{01}(\boldsymbol{s})\sigma + \sigma' \widehat{\mathcal{R}}_{11}(\boldsymbol{s})\sigma + \dots, \end{aligned}$$

 \Rightarrow Unitarity requirement is algebraic!

$$\widehat{\mathcal{R}}(s) - \widehat{\mathcal{R}}^{\dagger}(s) = i \widehat{\mathcal{R}}^{\dagger}(s) \Sigma(s) \widehat{\mathcal{R}}(s),$$
with $\Sigma \equiv \mathcal{K}^{\dagger}(\tau - \tau^{\dagger})\mathcal{K} + \mathcal{K}^{\dagger}\tau^{\dagger}\mathcal{D}\tau\mathcal{K},$

$$\sim \mathcal{K}^{\frown} \mathcal{L}^{\bullet} + \mathcal{K}^{\bullet} \mathcal{L}^{\bullet} \mathcal{L}^$$

 ${\cal K}$ is the modification of the isobar lineshape due to the rescattering

Analysis of $a_1(1260)$

subchannel-resonance interference, analytic continuation [PRD98 (2018), 096021]

$a_1(1260)$ state – ground axial vector – isospin parter of ρ [PDG (2018)] $a_1(1260)$ WIDTH

VALUE (MeV)	EVTS		DOCUMENT ID		TECN	COMMENT	
250 to 600	OUR ESTIMATE						
$\textbf{389} \pm \textbf{29}$	OUR AVERAGE Error includes scale factor of 1.3.						
$430 \pm 24 \pm 31$			DARGENT	2017	RVUE	$D^0 o \pi^-\pi^+\pi^-\pi^+$	
$367 \pm 9 {}^{+28}_{-25}$	420k		ALEKSEEV	2010	COMP	190 $\pi^- ightarrow \pi^- \pi^- \pi^+ P b^{\prime}$	
••• We do not use the following data for averages, fits, limits, etc. •••							
$410 \; {\pm}31 \; {\pm}30$		1	AUBERT	2007AU	BABR	10.6 $e^+~e^- ightarrow ho^0 ho^\pm \pi^\mp \gamma$	
520 - 680	6360	2	LINK	2007A	FOCS	$D^0 o \pi^-\pi^+\pi^-\pi^+$	
480 ± 20		3	GOMEZ-DUMM	2004	RVUE	$ au^+ o \pi^+ \pi^+ \pi^- u_ au$	
580 ± 41	90k		SALVINI	2004	OBLX	$\overline{p} \; p ightarrow 2 \; \pi^+ 2 \; \pi^-$	
460 ± 85	205	4	DRUTSKOY	2002	BELL	$B^{(*)}K^{\!-}K^{\!*0}$	
$814 \pm 36 \pm 13$	37k	5	ASNER	2000	CLE2	$10.6 e^+ e^- o au^+ au^-$, $ au^- o \pi^- \pi^0 \pi^0 u_ au$	

$a_1(1260)$ state – ground axial vector – isospin parter of ρ [PDG (2018)] $a_1(1260)$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT		
250 to 600	OUR ESTIMATE						
389 ± 29	OUR AVERAGE Error includes scale factor of 1.3.						
$430 \pm 24 \pm 31$		DARGENT	2017	RVUE	$D^0 o \pi^-\pi^+\pi^-\pi^+$		
$367 \pm 9 \ _{-25}^{+28}$	420k	ALEKSEEV	2010	COMP	190 $\pi^- ightarrow \pi^- \pi^- \pi^+ P b^{\prime}$		
••• We do not use the following data for averages, fits, limits, etc. •••							
$410 \pm \!\! 31 \pm \!\! 30$		1 AUBERT	2007AU	BABR	10.6 $e^+~e^- ightarrow ho^0 ho^\pm\pi^\mp\gamma$		
520 - 680	6360	2 LINK	2007A	FOCS	$D^0 o \pi^-\pi^+\pi^-\pi^+$		
480 ± 20		3 GOMEZ-DUMM	2004	RVUE	$ au^+ o \pi^+ \pi^+ \pi^- u_ au$		
580 ± 41	90k	SALVINI	2004	OBLX	$\overline{p} \; p ightarrow 2 \; \pi^+ 2 \; \pi^-$		
460 ± 85	205	4 DRUTSKOY	2002	BELL	$B^{(*)} K^{-} K^{*0}$		
$814\pm\!36\pm\!\!13$	37k	5 ASNER	2000	CLE2	10.6 $e^{\scriptscriptstyle +}$ $e^{\scriptscriptstyle -} \rightarrow \tau^+ \tau^-$, $\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_\tau$		

$a_1(1260)$ state – ground axial vector – isospin parter of ρ [PDG (2018)] $a_1(1260)$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT		
250 to 600	OUR ESTIMATE						
389 ± 29	OUR AVERAGE Erro	r includes scale factor	of 1.3.				
$430 \pm 24 \pm 31$		DARGENT	2017	RVUE	$D^0 o \pi^-\pi^+\pi^-\pi^+$		
$367 \pm 9 \ _{-25}^{+28}$	420k	ALEKSEEV	2010	COMP	190 $\pi^- ightarrow \pi^- \pi^- \pi^+ P b^{\prime}$		
••• We do not use the following data for averages, fits, limits, etc. •••							
$410 \; {\pm}31 \; {\pm}30$		1 AUBERT	2007AU	BABR	10.6 $e^+~e^- o ho^0 ho^\pm \pi^\mp \gamma$		
520 - 680	6360	2 LINK	2007A	FOCS	$D^0 o \pi^-\pi^+\pi^-\pi^+$		
(480 ± 20)		3 GOMEZ-DUMM	2004	RVUE	$ au^+ ightarrow \pi^+ \pi^+ \pi^- u_ au$		
580 ± 41	90k	SALVINI	2004	OBLX	$\overline{p} \; p o 2 \; \pi^+ 2 \; \pi^-$		
460 ± 85	205	4 DRUTSKOY	2002	BELL	$B^{(*)} \ K^{-} \ K^{*0}$		
$814 \pm 36 \pm 13$	37k	5 ASNER	2000	CLE2	10.6 e^+ $e^- ightarrow au^+ au^-$, $ au^- ightarrow \pi^0 \pi^0 u_ au$		

 $\begin{array}{c} {\sf Clean}\\ {\cal J}^{{\it PC}}=1^{++}\end{array}$

- V-A: Vector (1⁻⁻) or Axial (1⁺⁺)
- Isospin 1 due to the charge
- Negative G-parity \Rightarrow positive C-parity

Analysis of experimental (ALEPH measurements) [data from

[data from Phys.Rept.421 (2005)]

Analysis of experimental (ALEPH measurements) [data from Phys.Rept.421 (2005)]

Two models of $\rho\pi$ scattering:

• SYMM-DISP: Approximate three-body unitarity (includes interference)

• QTB-DISP: Quasi-two-body unitarity

both neglect rescattering, $\mathcal{K} \rightarrow 1.$

Fit to the public data

- Stat. cov. matrix is used in the fit
- Syst. cov. matrix in the bootstrap

Determination of the $a_1(1260)$ pole position

Non-trivial analytic continuation IMM et al. (JPAC). PRD98 (2018), 096021]

- Large systematic uncertainties due to disregard of rescattering effects
- Effect of the subchannel-resonances interference is very important

Three-body scattering

Summary

- Unitarity is an important constraint
 - that guides the amplitude construction [Mai et al.(EPJ A53 (2017)), Jackura et al.(EPJ C79 (2019)), MM et al. (JPAC) 1904.11894]
 - ▶ is satisfied in a good FT consideration [R.Briceno, 1905.11188]
 - Separation between the short-range and the long-range is not unique [M.Doering et al., PLB681 (2009) 26-31]
 - Decomposition of the short-range is not unique [A.Jackura et al., 1905.12007]
- The ladder is a new phenomenon of the three-particle physics
 - sum of particle exchange diagrams
 - Ieft-hand singularity in the physical region
 - genuine non-factorizable component
- The resonance part admits Factorization:
 - Effect of the Ladder is the common final-state interaction
 - Unitarity requirement casts to the familiar two-body-like form.

Summary

- Unitarity is an important constraint
 - that guides the amplitude construction
 [Mai et al.(EPJ A53 (2017)), Jackura et al.(EPJ C79 (2019)), MM et al. (JPAC) 1904.11894]
 - ▶ is satisfied in a good FT consideration [R.Briceno, 1905.11188]
 - Separation between the short-range and the long-range is not unique [M.Doering et al., PLB681 (2009) 26-31]
 - Decomposition of the short-range is not unique [A.Jackura et al., 1905.12007]
- The ladder is a new phenomenon of the three-particle physics

Outlook

Better understanding of the exchange processes is needed:

- $\Rightarrow\,$ studies of the final-state interaction in the decays
- \Rightarrow studies of the fix-target production data (COMPASS, GlueX)

 $\Rightarrow\,$ studies of the nice, clean scattering data from the lattice

Thank you for attention

Thanks to my collaborators (JPAC group):

Yannick Wundelich

Alessandro Pilloni

Vincent Mathieu

Miguel
 Albaladejo

Cesar Fernandez

Bernhard

Ketzer

Adam Szczepaniak

Andrew

Jakura

Backup

Three-body scattering

[MM (JPAC), PRD98 (2018), 096021] Analytical continuation

$$|t_{ll}^{-1}(s)| = \left|\frac{m^2 - s}{g^2} - i\left(\frac{\tilde{\rho}(s)}{2} + \rho(s)\right)\right|.$$

• Analytical continuation of $\rho(s)$: integral over the Dalitz plot for the complex energy

$$ho(s) = \sum_{\lambda} \int \mathrm{d} \mathbf{\Phi}_3 ig| f_{
ho}(\sigma_1) d_{\lambda 0}(heta_{23}) - f_{
ho}(\sigma_3) d_{\lambda 0}(\hat{ heta}_3 + heta_{12}) ig|^2$$

• Analytic contuation of ρ -meson decay amplitude f_{ρ}

[MM (JPAC), PRD98 (2018), 096021] Analytical continuation

$$|t_{ll}^{-1}(s)| = \left|\frac{m^2 - s}{g^2} - i\left(\frac{\tilde{\rho}(s)}{2} + \rho(s)\right)\right|.$$

• Analytical continuation of $\rho(s)$: integral over the Dalitz plot for the complex energy

$$ho(s) = \sum_\lambda \int \mathrm{d} \Phi_3 ig| f_
ho(\sigma_1) d_{\lambda 0}(heta_{23}) - f_
ho(\sigma_3) d_{\lambda 0}(\hat{ heta}_3 + heta_{12}) ig|$$

• Analytic contuation of ρ -meson decay amplitude f_{ρ}

[MM (JPAC), PRD98 (2018), 096021] Analytical continuation

$$|t_{II}^{-1}(s)| = \left| \frac{m^2 - s}{g^2} - i\left(\frac{\tilde{
ho}(s)}{2} + \rho(s) \right) \right|.$$

• Analytical continuation of $\rho(s)$: integral over the Dalitz plot for the complex energy

$$ho(s) = \sum_{\lambda} \int \mathrm{d} \Phi_3 ig| f_
ho(\sigma_1) d_{\lambda 0}(heta_{23}) - f_
ho(\sigma_3) d_{\lambda 0}(\hat{ heta}_3 + heta_{12}) ig|^2$$

• Analytic contuation of ρ -meson decay amplitude f_{ρ}

[MM (JPAC), PRD98 (2018), 096021] Analytical continuation

$$|t_{II}^{-1}(s)| = \left| \frac{m^2 - s}{g^2} - i\left(\frac{\tilde{
ho}(s)}{2} + \rho(s) \right) \right|.$$

• Analytical continuation of $\rho(s)$: integral over the Dalitz plot for the complex energy

$$ho(s) = \sum_{\lambda} \int \mathrm{d} \Phi_3 ig| f_
ho(\sigma_1) d_{\lambda 0}(heta_{23}) - f_
ho(\sigma_3) d_{\lambda 0}(\hat{ heta}_3 + heta_{12}) ig|^2$$

• Analytic contuation of ρ -meson decay amplitude f_{ρ}

[MM (JPAC), PRD98 (2018), 096021] Analytical continuation

$$|t_{II}^{-1}(s)| = \left| \frac{m^2 - s}{g^2} - i\left(\frac{\tilde{
ho}(s)}{2} + \rho(s) \right) \right|.$$

• Analytical continuation of $\rho(s)$: integral over the Dalitz plot for the complex energy

$$ho(s) = \sum_{\lambda} \int \mathrm{d} \Phi_3 ig| f_
ho(\sigma_1) d_{\lambda 0}(heta_{23}) - f_
ho(\sigma_3) d_{\lambda 0}(\hat{ heta}_3 + heta_{12}) ig|^2$$

• Analytic contuation of ρ -meson decay amplitude f_{ρ}

[MM (JPAC), PRD98 (2018), 096021] Analytical continuation

$$|t_{I\!I}^{-1}(s)| = \left|\frac{m^2-s}{g^2} - i\left(\frac{\tilde{\rho}(s)}{2} + \rho(s)\right)\right|.$$

• Analytical continuation of $\rho(s)$: integral over the Dalitz plot for the complex energy

$$ho(s) = \sum_{\lambda} \int \mathrm{d} \Phi_3 ig| f_
ho(\sigma_1) d_{\lambda 0}(heta_{23}) - f_
ho(\sigma_3) d_{\lambda 0}(\hat{ heta}_3 + heta_{12}) ig|^2$$

• Analytic contuation of ρ -meson decay amplitude f_{ρ}

The spurious pole in the Breit-Wigner model

Energy dependent width, stable particles

$$t(s) = \frac{1}{m^2 - s - im\Gamma(s)}, \quad \Gamma(s) = \Gamma_0 \frac{p(s)}{p(m^2)} \frac{m}{\sqrt{s}}, \quad p(s) = \frac{\sqrt{(s - (m_1 + m_2)^2)(s - (m_1 - m_2)^2)}}{2\sqrt{s}}.$$

Example: $m_1 = 140$ MeV, $m_2 = 770$ MeV, $m = 1.26$ GeV, $\Gamma_0 = 0.5$ GeV
 s -plane in the BW(stable ρ) - model
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0