ISOSPIN BREAKING IN TAU DECAYS AND

\((g - 2)_{\mu}\)

Mattia Bruno

ALGT TH Institute, CERN
August 9\(^{th}\), 2019
$(g - 2)_\mu$ RECAP

$(g - 2)_\mu$: discrepancy between exp vs theory ($\gtrsim 3\sigma$) hadronic contributions dominate the error

HLbL: models, lattice QCD, dispersive method [A. Gerardin’s talk]

HVP LO: dispersive approach vs lattice QCD [C. Lehner’s talk]

Let’s focus on Hadronic Vacuum Polarization

1. dispersive approach more precise than lattice
2. alternative data set for dispersive approach: τ
3. isospin-breaking corrections: unde venis?
4. isospin-breaking corrections: quo vadis?
Dispersive integral

\[a_\mu = \frac{\alpha}{\pi} \int \frac{ds}{s} K(s, m_\mu) \frac{\text{Im}\Pi(s)}{\pi} \] [Brodsky, de Rafael '68]

analyticity \(\hat{\Pi}(s) = \Pi(s) - \Pi(0) = \frac{s}{\pi} \int_{4m^2_\pi}^{\infty} dx \frac{\text{Im}\Pi(x)}{x(x - s - i\varepsilon)} \)

unitarity

\[\text{Im} = \sum X x \left| x \right|^2 \quad \frac{4\pi^2\alpha \text{Im}\Pi(s)}{s} \pi = \sigma_{e^+e^- \rightarrow \gamma^* \rightarrow \text{had}} \]

At present \(O(30) \) channels: \(\pi^0\gamma, \pi^+\pi^-, 3\pi, 4\pi, K^+K^-, \cdots \)

\(K(s, m_\mu) \rightarrow \pi^+\pi^- \) dominates due to \(\rho \) resonance

\(\pi\pi \) channel is \(\sim 70\% \) of signal and \(\sim 70\% \) of error
Some problems

[Davier '18]

BABAR and KLOE measurements most precise to date, but in poor agreement

- Others are in between, but not precise enough to decide
- No progress achieved in understanding the reason(s) of the discrepancy
- Conclusion: accuracy of combined results degraded
- Imperative to improve accuracy of prediction (forthcoming $g-2$ results at FNAL, J-PARC)
- Other efforts at VEPP-2000 underway
- Design a new independent BABAR analysis

The BABAR/KLOE discrepancy for $ppg(g)$

KLOE vs Babar

most precise exp. disagree on cross-sections in $\pi\pi$ channel

- averaging of cross-sections before dispersive integral \rightarrow error of 3×10^{-10}
- difference of a_μ after dispersive integral as systematic error $\rightarrow 10 \times 10^{-10}$

open opportunity: lattice QCD can be arbiter!
Radiative events

per-mille accuracy goal:
\[\sigma_{\pi^+\pi^-}(\gamma) : \text{contains } \pi\pi \text{ and } \pi\pi\gamma \]

- remove Initial state radiation (ISR)
- undress photon (remove VP)
+ leave final photon (FSR)

\[\sigma_{\pi^+\pi^-}(\gamma) = \sigma_{\pi^+\pi^-}^{\text{bare}} \]

(C invariance, ISR FSR factorize)

experiments do (most of) it for us

We introduce spectral function \(v_0(s) = \frac{s}{4\pi\alpha^2} \sigma_{\pi^+\pi^-}^{\text{bare}}(s) \)

\(v_0(s) \) used in dispersive integral for \(a_\mu \)

define pion form factor \(v_0 = e_{\text{FSR}}\beta_0^3|F_\pi^0|^2 \)
Motivations for τ

Final states $I = 1$ charged

τ data can improve $a_\mu [\pi \pi]$

$\rightarrow 72\%$ of total Hadronic LO

or $a_\mu^{ee} \neq a^\tau \rightarrow$ NP [Cirigliano et al '18]
Isospin Corrections

Restriction to $e^+e^- \rightarrow \pi^+\pi^-$ and $\tau^- \rightarrow \pi^-\pi^0\nu_\tau$

$$v_0(s) = \frac{s}{4\pi\alpha^2} \sigma_{\pi^+\pi^-}(s)$$

$$v_-(s) = \frac{m_\tau^2}{6|V_{ud}|^2} \frac{\mathcal{B}_{\pi\pi^0}}{\mathcal{B}_e} \frac{1}{N_{\pi\pi^0}} \frac{dN_{\pi\pi^0}}{ds} \left(1 - \frac{s}{m_\tau^2}\right)^{-1} \left(1 + \frac{2s}{m_\tau^2}\right)^{-1} \frac{1}{S_{EW}}$$

Isospin correction $v_0 = R_{IB}v_-$

$$R_{IB} = \frac{\text{FSR}}{G_{EM}} \frac{\beta_0^3 |F^0_\pi|^2}{\beta_-^3 |F^-_\pi|^2}$$ [Alemani et al. '98]

0. S_{EW} electro-weak radiative correction. [Marciano, Sirlin '88][Braaten, Li '90]

1. Final State Radiation of $\pi^+\pi^-$ system [Schwinger '89][Drees, Hikasa '90]

2. G_{EM} (long distance) radiative corrections in τ decays
 Chiral Resonance Theory [Cirigliano et al. '01, '02]
 Meson Dominance [Flores-Talpa et al. '06, '07]

3. Phase Space $(\beta_0, -)$ due to $(m_{\pi\pm} - m_{\pi^0})$
LONG DISTANCE QED - I

At low energies relevant degrees of freedom are mesons

Chiral Perturbation Theory

Meson dominance model

Corrections casted in one function $\nu_-(s) \rightarrow \nu_-(s)G_{EM}(s)$

Real photon corrections

Virtual photon corrections

Real + virtual

\rightarrow IR divergences cancel
Pion form factors

\[F_0^0(s) \propto \frac{m_\rho^2}{D_\rho(s)} \]

\[\times \left[1 + \delta_\rho \frac{s}{D_\omega(s)} \right] \]

\[+ \frac{m_X^2}{D_X(s)} \quad X = \rho', \rho'' \]

\[F_{\pi^-}^-(s) \propto \frac{m_{\rho^-}^2}{D_{\rho^-}(s)} + (\rho', \rho'') \]

Sources of IB breaking in phenomenological models

\[m_{\rho^0} \neq m_{\rho^\pm}, \quad \Gamma_{\rho^0} \neq \Gamma_{\rho^\pm}, \quad m_{\pi^0} \neq m_{\pi^\pm} \]

\[\rho - \omega \text{ mixing } \delta_\rho \omega \simeq O(m_u - m_d) + O(e^2) \]
Status

\[a_{\mu}^{\text{HVP,LO}}[\pi\pi, ee] = 503.51(3.5) \times 10^{-10} \]
with \(E \in [2m_\pi, 1.8 \text{ GeV}] \)

\[a_{\mu}^{\text{HVP,LO}}[\pi\pi, \tau] = 531.3(3.3) \times 10^{-10} \]

\[a_\mu[\pi\pi, ee] - a_\mu[\pi\pi, \tau] = -12.0(2.6) \quad \text{[Cirigliano et al.]} \]

\[a_\mu[\pi\pi, ee] - a_\mu[\pi\pi, \tau] = -16.1(1.8) \quad \text{[Davier et al. '09]} \]

\(\approx -10 \) due to \(S_{\text{EW}} \), rest \(R_{IB} \)

\[a_\mu[\tau] : \left\{ \begin{array}{l}
\text{model dependence} \\
\text{model dependence} \\
\text{data more precise}
\end{array} \right. = \text{abandoned} \]

Additional \(\rho \gamma \) mixing correction \[\text{[Jegerlehner, Szafron '11]} \]

partly accounted in \(m_{\rho^0} - m_{\rho^-} \) in \[\text{[Davier et al. '09]} \]

\[a_\mu[\pi\pi, ee] = 385.2(1.5) \text{ with } E \in [0.582 - 0.975] \text{ GeV} \]

\[a_\mu[\pi\pi, \tau] = 386.0(2.4) \text{ after } R_{IB} \]
Details of calculation

Our calculation: Domain Wall Fermion ensemble $N_f = 2 + 1$

- $a^{-1} \simeq 1.73$ GeV $\simeq 0.11$ fm, $L \approx 5.4$ fm
- $a^{-1} \simeq 1.01$ GeV $\simeq 0.19$ fm, $L \approx 4.6, 6.1, 9.12$ fm
- $a^{-1} \simeq 1.43$ GeV $\simeq 0.14$ fm, $L \approx 4.5$ fm

Diagrammatic expansion to $O(\alpha)$ and $O(m_u - m_d)$ [RM123]

E.g. $\langle O \rangle_{QCD+QED} = \langle O_0 \rangle_{QCD} + \alpha \langle O_1 \rangle_{QCD} + O(\alpha^2)$

QED_L and QED_∞: remove zero-modes of photon [Hayakawa, Uno ’08]

Hadronic scheme at $O(\alpha)$ and $O(m_u - m_d)$: [Blum et al. '18]

- Ω^- mass \rightarrow a latt.spacing
- $m_{\pi^\pm} - m_{\pi^0}$ and $m_{\pi^\pm} \rightarrow m_u, m_d$
- $m_{K^\pm} \rightarrow m_s$

Local vector current $\rightarrow Z_V$
\[a_\mu = 4\alpha^2 \int dQ^2 K(Q^2)[\Pi(Q^2) - \Pi(0)] \quad (Q^2 \text{ euclidean}) \quad \text{[Blum '03]} \]

\[\Pi_{\mu\nu}(Q^2) = \int d^4 x e^{iQ \cdot x} \langle j^\gamma_\mu(x) j^\gamma_\nu(0) \rangle \text{ on the lattice} \]

small \(Q^2 \lesssim m^2_\mu \) very difficult

Time-momentum representation \[\text{[Bernecker, Meyer, '11]} \]

\[G^\gamma(t) = \frac{1}{3} \sum_k \int d\vec{x} \langle j^\gamma_k(x) j^\gamma_k(0) \rangle, \quad [\Pi(Q^2) - \Pi(0)] = \int dt G^\gamma(t) f(t, Q^2) \]

\[a_\mu = 4\alpha^2 \int dt w(t) G^\gamma(t), \quad w(t) \text{ muon kernel (weights)} \]

more natural to study \(G^\gamma \) in euclidean time

spectral decomposition (reconstruction)
Contribution to a_μ

Time-momentum representation

$$G_\gamma(t) = \frac{1}{3} \sum_k \int d\vec{x} \langle \tilde{j}_k^\gamma(x) j_k^\gamma(0) \rangle \rightarrow a_\mu = 4\alpha^2 \sum_t w_t G_\gamma(t)$$

Isospin decomposition of u, d current

$$j_\mu^\gamma = \frac{i}{6} (\bar{u}\gamma_\mu u + \bar{d}\gamma_\mu d) + \frac{i}{2} (\bar{u}\gamma_\mu u - \bar{d}\gamma_\mu d) = j_\mu^{(0)} + j_\mu^{(1)}$$

$$G_{00} \leftarrow \langle j_k^{(0)}(x) j_k^{(0)}(0) \rangle = \quad \ldots$$

$$G_{01} \leftarrow \langle j_k^{(0)}(x) j_k^{(1)}(0) \rangle = \quad \ldots$$

$$G_{11} \leftarrow \langle j_k^{(1)}(x) j_k^{(1)}(0) \rangle = \quad \ldots$$

Decompose $a_\mu = a_\mu^{(0,0)} + a_\mu^{(0,1)} + a_\mu^{(1,1)}$
\[\frac{i}{2} (\bar{u} \gamma_\mu u - \bar{d} \gamma_\mu d), \left[\begin{array}{c} I = 1 \\ I_3 = 0 \end{array} \right] \rightarrow j^{(1,-)}_\mu = \frac{i}{\sqrt{2}} (\bar{u} \gamma_\mu d), \left[\begin{array}{c} I = 1 \\ I_3 = -1 \end{array} \right] \]

Isospin 1 charged correlator $G_{11}^{W} = \frac{1}{3} \sum_k \int d\vec{x} \langle j^{(1,+)}_k(x) j^{(1,-)}_k(0) \rangle$

\[\delta G^{(1,1)} \equiv G_{11}^{\gamma} - G_{11}^{W} \]

\[= Z_V^4 (4\pi\alpha)^4 \frac{(Q_u - Q_d)^4}{4} \left[\begin{array}{c} \text{subleading diagrams currently not included} \end{array} \right] \]

\[G_{01}^{\gamma} = Z_V^4 \frac{(Q_u^2 - Q_d^2)^2}{2} (4\pi\alpha) \left[\begin{array}{c} \text{subleading diagrams currently not included} \end{array} \right] \]

\[+ Z_V^2 \frac{Q_u^2 - Q_d^2}{2} (m_u - m_d) \left[\begin{array}{c} \text{subleading diagrams currently not included} \end{array} \right] \]
from QCD we need a 4-point function \(f(x, y, z, t) \):

- known kernel with details of photons and muon line
- 1 pair of point sources \((x, y)\), sum over \(z, t\) exact at sink
- stochastic sampling over \((x, y)\) (based on \(|x - y|\))

Successfull strategy: \(\times 10\) error reduction

from QCD we need a 4-point function \(f(x, y, z, t) \):

- \((g - 2)\mu\) kernel + photon propagator

Similar problem → re-use HLbL point sources!
Synergy - II

contribution of diagram F to pure $I = 1$ part of Δa_μ

$\Delta a_\mu^{(I=1)}[F \text{ only}]$

$O(1000)$ point-src per conf.
$5 \cdot 10^5$ combinations
80 configurations
$\times 4$ reduction in error
finite volume errs relevant → dedicated study

data from [Blum et al. '18]: $O(500)$ point-src per conf.
76 configurations
Synergy - III

contribution of diagrams V, S to a_μ

$O(2000)$ point-src per conf.
~ 3000 combinations
$O(10)$ configurations
$\times 4$ reduction in error

expected QED conn. error $\leq 3 \times 10^{-10}$ \rightarrow matches target
Presently only leading diagrams are computed V, F, S, M [Blum et al. '18]

same diagrams for isospin-breaking in τ spectral functions

improvement in precision beneficial to both $(g - 2)_{\mu}$ and τ

preliminary numbers for $SU(3)$ and $1/N_c$ suppressed diagrams

[Blum et. al. '18]
Restriction to $2\pi \rightarrow$ neglect pure $I = 0$ part $a_\mu^{(0,0)}[\pi^0 \gamma, 3\pi, \ldots]$

Lattice: $\Delta a_\mu[\pi\pi, \tau] = 4\alpha^2 \sum_{t} w_t \times \left[G^\gamma_{01}(t) + G^\gamma_{11}(t) - G^W_{11}(t) \right]$

Pheno: $\Delta a_\mu[\pi\pi, \tau] = \int_{4m^2_\pi}^{m^2_\tau} ds K(s) \left[v_0(s) - v_-(s) \right]$

Conversion to Euclidean time for direct comparison

$Lattice \text{ fully inclusive}$

$Lattice$ manipulate $G(t)$ (e.g. Backus-Gilbert) to implement cut $E < m_\tau$

include additional channels in v_0/v_-

$effects$ above $\sim 1 \text{ GeV}$ suppressed by (muon) kernel

preliminary: smaller than current precision for Δa_μ

additional investigations on the way
LATTICE: PRELIMINARY RESULTS - I

$\Delta a_\mu \to G_{01} + \delta G_{11}$:

$\Delta a_\mu(t) \times 10^{-10}$

$V = \bullet$ $F = \bullet$ $S = \bullet$

$M = \bullet$ $O = \bullet$ relevant, negative, neglected

Pure $I = 1$ only $O(\alpha)$ terms:
Systematic errors

\[a_{\mu}^{\text{QED,conn}} = V + 2S \]

FV study at coarse \(a^{-1} \sim 1 \text{ GeV} \)

Finite volume errors

empirical observation: diagrams may have largish FV errors

cancellation of FV effects in physical combinations

similar observation in ChPT, e.g. [Bijnens, Portelli ’19]
Dilemma

I am interested in comparing integrands beyond integrals
I have computed correlation functions in Euclidean time

To be or not to be Euclidean

1. leave lattice as it is, convert experiment to Euclidean time
 well-posed problem, simple Laplace trafo

2. spectral reconstruction of lattice data [talks by Tantalo, Bulava, Portelli]
 ill-posed problem, not needed for integrals like a_μ

let's do the comparison it in Euclidean time

Calculation incomplete, what follows mostly qualitative!
Lattice: Preliminary results - II

Study integrand in euclidean time → as important as integral

direct comparison
Lattice vs. EFT+Pheno

1. validate previous estimates of R_{IB}
2. study neutral/charged ρ and ω properties

Preliminary lattice (full) calculation: $G_{01}^\gamma + \delta G$

Not included:
1. relevant
2. sub-leading $1/N_c$, $SU(N_f)$
3. finite-volume errors
4. discretization errors
MODEL CALCULATIONS

Preliminary (using G_{EM}^π and without S_{EW})

\[\Delta a_\mu(t) \times 10^{-10} = \text{[Jegelehner, Szafron '11]} \]

depends on ρ^0 and ρ^- masses/widths

requires G_{EM}^π to compare with lattice

resembles lattice results qualitative agreement

Data from private comm. with F. Jegelehner
Experimental results

\[\Delta a_\mu(t) = 4\alpha^2 \sum_t w_t \left\{ \int ds h(s, t) \left[v_0(s) - \frac{v_1(s)}{G_{EM}(s)} \right] \right\} \]

\(v_0 \) BaBar, \(v_1 \) Aleph

preliminary GEM\(^\pi \)

\(v_1 \rightarrow kv_1 \)
\(k = 1 \) Standard Model
\(k \neq 1 \) BSM (SMEFT)

[Cirigliano et al. '18]

lattice suggests a different answer
Towards a comparison

Lattice contains $\pi^0\pi^-\gamma$ states →

Re-evaluation of $G_{EM} \rightarrow G_{EM}^{\pi}$ [in collab. with Cirigliano]

Real photon corrections

Virtual photon corrections

G_{EM}^{π} w/o $\pi^0\pi^-\gamma$ FSR

$\frac{v_-}{G_{EM}^{\pi}}$ w $\pi^0\pi^-\gamma$ FSR
Outlook

use arbitrary kernels with desired properties [with M. Gonzales-Alonso]

even stronger suppression of neglected channels at high energies

suppression of short distances (cutoff effects)

suppression of long distances (noise)

map other spectral functions to the corresponding correlators

 e.g. K^* channel in vector-vector correlator

Eventually proper calculation is isospin-breaking corrections of $\pi\pi$ form factors
Conclusions

These are exciting times for $(g - 2)_\mu$:

1% goal for lattice results to be expected soon

QED+SIB crucial to reach target uncertainty

As a bi-product we get $\Delta a_\mu[\tau]$:

1. **first lattice calculation** of $\Delta a_\mu[\tau]$ almost complete
2. tests/checks previous calculations
 - comparing v_- with experiment requires G^{π}_{EM}
 - study G^{γ}_{01} alone $\rightarrow \rho \omega$ mixing; $\delta G^{(1,1)}$ alone $\rightarrow \rho^0 \text{ vs } \rho^-$
3. possibly sensitive to new physics

Thanks for your attention
Gauss law + periodic BC: no states with total electric charge

Solution: remove zero-spatial mode $\tilde{A}_\mu(p_0, \vec{0}) = 0 \ \forall p_0$

local in time: Hamiltonian and transfer matrix
non-local in space: renormalizability? OPE?

Do we really need it?

at $O(\alpha)$ I can factorize my observable

$$\sum_{x,y} \langle O(0, x, y, z) \rangle_{QCD} \Delta_\gamma(x, y)$$

freedom on photon propagator \rightarrow analytic (infinite volume)

my view on Lattice QCD+QED (at $O(\alpha)$):

$\langle n\text{-point functions} \rangle_{QCD} \times$ analytic QED kernels

provided QED kernels fall-off sufficiently fast
Gounaris-Sakurai based on VMD model w/o EM gauge invariance
- generation of a photon mass
 + based on phase shift (proper pion rescattering behavior)
widely used: e.g. PDG estimates of m_ρ, Γ_ρ

VMD model with gauge-invariance
at 1-loop s-dependent mass matrix

limits of validity pion-loop? high enough energy must break down
$\rho\gamma$ MIXING - II

[Jefferson, Szafron '11]

Fig. 6. a) Ratio of the full $|F_\pi(E)|^2$ in units of the same quantity omitting the mixing term together with a standard GS fit with PDG parameters. b) The same mechanism scaled up by the branching fraction $\Gamma_V/\Gamma_V(V\to\pi\pi)$ for $V=\omega$ and ϕ.

In the $\pi\pi$ channel the effects for resonances $V\neq\rho$ are tiny if not very close to resonance.

Fig. 7. CMD-2 data for $|F_\pi|^2$ in $\rho-\omega$ region together with Gounaris-Sakurai fit. Left before subtraction right after subtraction of the ω.

has to be applied in the relation between the spectral functions. Finally state radiation correction FSR(s) and vacuum polarization effects we have been subtracted from all e^+e^--data.

In Fig. 8 we illustrate the consequence of $\rho-\gamma$ mixing. After applying the correction (for our set of parameters, which is not far from standard GS fit parameters) the consistency of τ and e^+e^- data is

30% correction at 1 GeV

δ_1^{ρ} in good agreement $E < 800$ MeV

perhaps restrict the $\rho\gamma$ below 800 MeV?
$[1] = [\text{Jegelehner, Szafron '17}]$

Modified $\rho\gamma$ coupling

large negative Δa_μ

Modified $\rho\gamma$ suggests different behavior from lattice data

direct comparison with lattice not possible \rightarrow hard cut at 1 GeV
Some QED corrections computed in Chiral PT

\[\text{e.g. photon exchange between } \tau \text{ and hadrons} \]

\[\text{relevant to compare lattice data vs } v_- \]

\[\text{is current precision enough?} \]

\[\text{alternative calculation from lattice possible} \]

[Giusti et al. ’17]