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why hadronic spectral densities

® hadronic spectral densities are central objects in the
calculations of physical observables associated with the
continuum spectrum of the QCD Hamiltonian

® a notable classical example is the so-called R-ratio, i.e. the
ratio of the differential cross-section for eTe™ — hadrons
over the corresponding quantity for eTe™ — puT T
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® other important examples are hadronic 7 decays, the 6(H — E)
flavour—changing non—leptonic decay—rates of kaons and heavy
flavoured mesons, the deep inelastic scattering cross—section,
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and thermodynamic observables arising in the study of QCD at e
finite—temperature and of the quark—gluon plasma, etc.




spectral densities from lattice correlators

® first-principles model-independent calculations of hadronic spectral
densities can in principle be performed by recurring to
non—perturbative lattice techniques

® the primary observables in a lattice calculations are euclidean
time-ordered correlators at discrete values of the coordinates and on a
finite volume

C(t) = =3 3 T(010() 0(0)[0)z

® these can be rewritten in terms of the finite volume spectral densities

o = /0°° dE pp(B) e 'P
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spectral densities from lattice correlators: the problems

® now we see the problems:

o = /O°° B pr(B)e P 4 50(1)
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® |attice correlators are unavoidably affected by errors and, in this case,

the inverse Laplace-transform needed to extract the spectral densities
becomes an ill-posed numerical problem

® even in the ideal case in which these can be computed exactly, finite
volume spectral densities cannot be associated with physical
quantities

® the finite volume hamiltonian has a discrete spectrum and,
consequently, the finite volume spectral densities are distributions,
sums of isolated d-function singularities



smeared spectral densities

® in order to solve these problems one can conveniently
consider smeared spectral densities

Lo, By) = /0°° dE A, (Ey, E) pr,(E)
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® the smearing function can be chosen to be peaked ( ) [ % ( )

around E, and such that it becomes a Dirac §-function
when the smearing radius parameter o is sent to zero + +
€ €

® smeared spectral densities are smooth functions of the
energy and studying their infinite volume limit is a well
posed problem; the physical information is recovered by
taking the limits

e e
p(Ex) = Jim lim pp (o, By) S(H — E)
in the specified order!
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® notice that smeared spectral functions must be
introduced in order to properly define cross-sections, this
is the way we avoid the well-known issue of the square of
a 6-function appearing at intermediate stages of the
calculations




smeared spectral densities

® in order to solve these problems one can conveniently
consider smeared spectral densities

oo -
P B = [T AE AL(B., B) pL(E) e e
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® the smearing function can be chosen to be peaked
around E, and such that it becomes a Dirac §-function et et
when the smearing radius parameter o is sent to zero

® smeared spectral densities are smooth functions of the
energy and studying their infinite volume limit is a well
posed problem; the physical information is recovered by

taking the limits e e
6(H — E)
Ey) =1l li p , B
p(Ex) = lim lim pr (o, Ex)
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in the specified order! e

® moreover, experimental data can be smeared with the
same function used in the theoretical calculations



extracting smeared spectral densities: the BG method

® m.t.hansen, h.b.meyer, d.robaina, PRD96 (2017) proposed to extract
smeared spectral densities by using a classical method due to Backus
and Gilbert (BG), g.backus, f.gilbert, Geophys.J.R.Astron.Soc.16 (1968)

® the central idea of BG is to search for a smearing function that lives
in the space spanned by the basis-functions of the correlator

BG e t+1)E
APC (B B) = Y g(Be TDE
t=0

® once the coefficients g (E, ) are known, the smeared spectral density
is given by

C(t+1) = /oo dEpL(E)(;(tH)E
0
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extracting smeared spectral densities: the BG method

e = 14 tour =22 foe = 30
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® in absence of errors on the correlator (an idealization), the coefficients © ““\
gt (E4) are obtained by minimizing the following functional s | “
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® the width of the smearing function is optimized on the basis of the ¢ H H 2‘&‘
number of observations 05 \ \H\




extracting smeared spectral densities: the BG method

P tour =22 foe = 30
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® in the realistic case in which errors are present, the correlator has to 6 /‘w‘

be replaced with 5 X “\
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Ci(t) = C(t) + 6C;(t) , i=0,--- , N1 A

® since the coefficients are gigantic, even a tiny deviation from the
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average is enormously amplified
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and statistical errors also become gigantic I H‘ ‘M i
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® this is a manifestation of the fact that we are dealing here with a IR
numerically ill-posed problem




extracting smeared spectral densities: the BG method

® the very smart mechanism suggested by BG to keep errors under
control is to minimize the following functional

WX, gl = (1 = MApglg] + ABlg] s

tmax N
Blgl = Y Covir ge(Ey) gr(Ex) N\
t,r=0 | )
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® the presence of the error functional B[g] forbids solutions et

corresponding to gigantic values of the coefficients and statistical

errors are thus kept under control T
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® on the other hand, the shape of the smearing function now depends, < o e%ﬂ\ [AuA \‘ \ ‘J\\ o4
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errors: this is a particularly unpleasant feature if the method has to Al \,‘
be used in order to take the infinite volume limit 05 ‘\‘\‘ ‘\‘\‘
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® moreover, there is no natural way to set the trade-off parameter A, a o
part from trying to balance in a subjective way between resolution
and errors



extracting smeared spectral densities: the new method

m.hansen, a.lupo, n.t. arXiv:1903.06476

® we devised a method in which the target smearing function is an
input of the procedure; in what follows

_(BE—E,)?
e 20
Ay (Ex, E) = AR

J§C dE e 202

® the method searches for an optimal approximation of the target
smearing function in the space of the basis functions

B tmax i
Bo(Bo, B)= > gi(B)e Y
t=0

® and again the coefficients are obtained by minimizing a convex
combination of a deterministic and of the error functionals

Blg]
C(0)2

WX, gl = (1 = N A[g] + A

under the unit area constraint



extracting smeared spectral densities: the new method

m.hansen, a.lupo, n.t. arXiv:1903.06476

® but in our case the deterministic functional is a measure of the
difference between the target and approximated smearing functions

Alg] = /Ooo dE |Ag(E,, E) — Ap (B, B)|2



extracting smeared spectral densities: the new method

m.hansen, a.lupo, n.t. arXiv:1903.06476
® but in our case the deterministic functional is a measure of the
difference between the target and approximated smearing functions

Alg] = /0°° dE |Ag(E,, E) — Ap (B, B)|2

P
® in absence of errors, our method is just a way to find an optimal 4

polynomial approximation to a smooth function, z = e  E
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extracting smeared spectral densities: the new method

m.hansen, a.lupo, n.t. arXiv:1903.06476
® but in our case the deterministic functional is a measure of the
difference between the target and approximated smearing functions

Alg] = /0°° dE |Ag(E,, E) — Ap (B, B)|2

P
® in absence of errors, our method is just a way to find an optimal 4

polynomial approximation to a smooth function, z = e  E
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® with our method, by increasing t,, 4 the error in the approximation
of the target smearing function can be made arbitrarily small



extracting smeared spectral densities: the new method

m.hansen, a.lupo, n.t. arXiv:1903.06476

but in our case the deterministic functional is a measure of the e =1 e 22 o =0
difference between the target and approximated smearing functions 4

Alg] = /OOO dE |As(Ey, E) — Ao (Ey, B)|?

in absence of errors, our method is just a way to find an optimal
polynomial approximation to a smooth function, z = e  F
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with our method, by increasing ty,qa the error in the approximation 4 ‘

of the target smearing function can be made arbitrarily small

this has to be compared with the BG method where by increasing B
tmax one gets a different (sharper) smearing function op




extracting smeared spectral densities: the new method

® furthermore, since at the end of the procedure the difference between
the target and the approximated smearing function is known

Ao (B4, E)

P B B = (B )

® this information can be used in our method to estimate the

systematic error on the estimated smeared spectral densities induced
by this difference

m.hansen, a.lupo, n.t. arXiv:1903.06476
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extracting smeared spectral densities: the new method

m.hansen, a.lupo, n.t. arXiv:1903.06476

® furthermore, since at the end of the procedure the difference between
the target and the approximated smearing function is known
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® finally, in our method there is a a natural way to set the trade-off ;‘ o2
parameter A by studying the functional W [\, E,] evaluated at the
solution g4 (A, E4) as a function of A 025
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the benchmark system

® we have decided to test our method by using the same benchmark system
previously proposed to test the BG method in the context of the extraction

of hadronic spectral densities

Lint(z) = %m)n%) + %«»(@K%) ,

3my < 2mg < my

® we have considered a correlator having as finite volume spectral density

pL(E) =

+

2
9=

2 2
IR MG ) 3(E — 2Ek (p))
2(mnL)3

> 4E% (p)

0(E — Ex(p) — Ex(q) — Ex(Pp+q))

48m3 L6

>

P.q

Ex(p)Er(q)Ex(p+ q)

m.t.hansen, h.b.meyer, d.robaina, PRD96 (2017)
m.hansen, a.lupo, n.t. arXiv:1903.06476
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the benchmark system

® we have decided to test our method by using the same benchmark system
previously proposed to test the BG method in the context of the extraction
of hadronic spectral densities

Lint(z) = %¢<x)n3<x> + H @) K (@)
3my < 2mg < my

® that in the infinite volume limit becomes

2 2
g ms
p(E)= —F—— 1\2 0.3 —> 0(E —2mg)
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m.t.hansen, h.b.meyer, d.robaina, PRD96 (2017)
m.hansen, a.lupo, n.t. arXiv:1903.06476
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the benchmark system: exact data

the plots show the results obtained by using our method
and the ones obtained by using the BG method

both plots have been obtained by setting o = 0.1 and
tmaz = 30; the one on the top corresponds to
L = 24 while the one on the bottom to L = 32

the blue points, obtained with our method, are in perfect
agreement with the expected result that in this case is
known exactly

in the case of the BG (orange points) the smearing
function is an output of the procedure, it can only be
controlled by changing ¢4 and, moreover, it is
different at different values of E

m.hansen, a.lupo, n.t. arXiv:1903.06476




the benchmark system: dependence upon A\

m.hansen, a.lupo, n.t. arXiv:1903.06476

® the plots have been obtained by using our method on the
volume L = 24 with ty,42 = 30 and o = 0.1

A =025\

having a reliable estimate of the systematic errors, the

results must be compatible at different values of A
within the total uncertainties

WA gl = (1 = XNA[g] + A Blgl ® A= 0.125),
' : C(0)2

pi(o, E.)




the benchmark system: smoother is better

m.hansen, a.lupo, n.t. arXiv:1903.06476

L =24, tyu =30, 0 =015

® when the smeared spectral density is smoother, either
because the smearing radius is larger or because the 0
volume is larger, the reconstruction works much better 15

L =148, tye =30, 0 =010

® in these cases using

AV = (6, (By, Byl pr (o, By)

provides a very conservative estimate of the systematic L= A8 s = 02, 0= 010

errors




the benchmark system: the infinite volume limit

® the plots, obtained with o = 0.1 and tyqe = 31,
show the approach to the infinite volume limit of the
estimated smeared spectral functions

A28

nlo, E.)




the benchmark system: the infinite volume limit

® the plots, obtained with o = 0.1 and tyqz = 31,
show the approach to the infinite volume limit of the
estimated smeared spectral functions

® the green curve is the exact infinite volume spectral
density: this is a continuous function of the energy but
has a cusp in correspondence of the two-kaons threshold

® in the infinite volume limit the data have to reproduce
the black curve, the exact infinite volume smeared
spectral density: this is a smooth curve




the benchmark system: the infinite volume limit

the plots, obtained with o = 0.1 and ¢ty g = 31,
show the approach to the infinite volume limit of the
estimated smeared spectral functions

the green curve is the exact infinite volume spectral
density: this is a continuous function of the energy but
has a cusp in correspondence of the two-kaons threshold

in the infinite volume limit the data have to reproduce
the black curve, the exact infinite volume smeared
spectral density: this is a smooth curve

this already happens at L = 36 and the agreement is
remarkably good (at the level of the statistical errors) at
L =48

as already noticed, experimental data can be smeared
with the same smearing function used in the theoretical
calculations so that the results can directly be compared
with measurements

L=48




SC(0/C) =0

some other examples

pilo, E.)

5C(1)/C(t) ~ 2 x 107

5C(1)/C(t) ~2 % 107

SC()/C(1) ~ 2 x 10

pr(o, E.)
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true lattice data: a pseudoscalar QCD correlator

® we have applied our method to true lattice data in the case of o e = 0.134(3)
a QCD pseudoscalar-pseudoscalar correlator
-]
L]
1 = I
CQCD(t)=EZT<D|P(O)P(1)|O>a ®%00000000egad
=
P(z) = {J'YSU + ﬂ'YSd} () Ot 10 15 20 25

® the simulation has been performed on a lattice volume
L3 x T = 243 x 48 with equal (unphysical) masses for the
dynamical up, down and strange quarks

® in this channel we expect a peak in correspondence of m and
the next contribution to be at E, >~ 3m




true lattice data: a pseudoscalar QCD+QED correlator

0.45
® we have applied our method to true lattice data also in the my = 0.3264(7)
case of a QCD+QED pseudoscalar-pseudoscalar correlator e
e
1 e
C t) = — T(0| P(0) P(x) |0
Qcp+Qen (1) 2L3§: (0] P(0) P(=) |0) , ®ce0o0.
P(x) = {SvsU + UrsS} (@) 0% 10 15 20 25
t
® the simulation has been performed on a lattice volume s
L3 x T = 243 x 48, at the unphysical value avgy, = 0.05
with dynamical up, down and strange quarks 015
2 0.1
® in this channel we expect a peak in correspondence of Mot 00
and the next contribution to be at Egp /m 4 ~ 2.6 o
0 05 1 15 2 25 3

E./mk



conclusions and outlooks

we have devised a new numerical method to cope with inverse
problems

the method inherits from the classical BG approach the very
smart mechanism that allows to keep statistical errors under
control

in our method the smearing function is an input of the
procedure and there is a natural way to chose the trade-off
parameter A

by comparing results at sub-optimal values of A\ one can asses
the reliability of the estimated errors

the method is general and can be applied to inverse problems
arising in different research fields

we look forward to many interesting applications: the R-ratio,
hadronic T decays, exotic spectroscopy, etc.
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